

Photoproduction in peripheral pA and AA collisions

L. Massacrier

IJCLab Orsay, CNRS/IN2P3, Université Paris-Saclay

Towards improved hadron tomography with hard exclusive reactions, 5-9th Aug. 2024, Trento, Italy

Laboratoire de Physique des 2 Infinis

Photon induced processes and ultraperipheral Pb-Pb collisions

□ The EM field of Pb nuclei can be described as beam of quasi-real photons (number of photons proportional to Z^2)

 \rightarrow Use LHC as photon-photon or photon-hadron collider

Ultraperipheral collisions (UPC): interactions with *b* larger than the sum of the radii of the incoming nuclei. Involve at least one photon:

- Hadronic interactions strongly suppressed
- Electromagnetic interactions dominant
- Clean experimental signature: few tracks produced, large rapidity gaps

Photon induced reactions well studied in UPC

See talk of D. Mallick

2

□ But also present in non-UPC (ie. in events where an hadronic interaction also occurs) \rightarrow focus of this presentation

Dilepton production in two-photon interactions

3

□ Breit Wheeler mechanism (G. Breit, Phys. Rev. 46 (1934) 1087):
 ☆ Production of very low p_T lepton pair

Test QED (at LO + possibly higher order corrections)
 ~ 15% effect for the reduction of the cross section at LHC energies A. J. Baltz, Phys. Rev. C 80, 034901

Map the EM field produced in heavy-ion collisions

- ✤ Larger Lorentz-boost factor w.r.t RHIC
- Maximum electric field reached 30 times larger than at RHIC

Vector meson (VM) photoproduction

Dependence of the pair Photon oscillates into a quark-antiquark pair

 \Box Production of a very low- p_T vector meson (for coherent process)

Gives access to gluon distributions in nuclei at low Bjorken-*x*, provides constraints to initial stages of heavy-ion collisions

 10^{-5} < Bjorken-x < 10^{-2} at LHC energies

□ Coherent photoproduction of VM

- \checkmark γ couples coherently to all nucleons
- $4 < p_T > J/\Psi \sim 60 \text{ MeV}$
- Usually no breaking of target nucleus

- Incoherent photoproduction of VM
 φ couples to a nucleon
 - $4 < p_T > J/\Psi \sim 500 \text{ MeV}$
 - ✤ Usually target nucleus breaks

Dilepton production in two-photon interactions

□ Very low-p_T dielectron excess observed by STAR, at mid-y for $0.4 < m_{e+e-} < 2.6 \text{ GeV/c}^2$ in Au–Au and U–U collisions (centrality 60-80%) : compatible with expectations from $\gamma\gamma$ intercations but p_T^2 distribution not reproduced (intially interpreted as possible sign of strong magnetic field trapped in a conducting QGP)

- □ Observation by ATLAS of centrality-dependent acoplanarity for muon pairs produced via $\gamma\gamma$ scattering, for $4 < m_{\mu+\mu-} < 45$ GeV/c² → initially interpreted as a sign of em. scattering of the muons with a hot and dense QGP medium
- □ Inclusion of a *b*-dependence of photon- k_{τ} distribution in QED calculations reproduce both STAR and ATLAS data (without need for medium induced or final state effects)

 \Box Similar measurement by ALICE of a dilepton excess at very low- p_T for 0.4 < m_{e+e-} < 2.6 GeV/c² in peripheral Pb–Pb

- ✤ Data cannot be described by cocktail of e⁺e⁻ expected hadronic sources
- * At low $p_{T,ee}$, thermal radiation from medium is expected to be one order of magnitude smaller than observed excess
- \Box Clear peak observed at low p_{Tee} in the 70-90% centrality range
- \Box Data described by $\gamma\gamma$ interaction models including the *b*-dependence of the photon- k_T distribution (QED,Wigner)

□ New measurement by ATLAS with full Run 2 Pb—Pb statistics, to further inspect possible role from initial e.m fields

ATLAS Collaboration, Phys. Rev. C 107, 054907

- □ k_{\perp} less sensitive to muon momentum than acoplanarity → better observable to probe role from e.m fields
- From theory, if centrality-dependent modification of α (or k_⊥) comes from initial e.m, the broadening should vary as a function of th(Δy), or Δφ (orientation of dimuon w.r.t 2nd order EP angle [correlated to the direction of e.m field])
- □ No dependence of the broadening with Δy or $\Delta \phi \rightarrow$ rules out interaction of leptons with e.m fields generated by a QGP

Vector meson (VM) photoproduction

9

First observation of VM photoproduction in Pb–Pb collisions with nuclear overlap

□ Very low- p_T J/ ψ excess in peripheral Pb–Pb collisions first measured in ALICE at forward y and $\sqrt{s_{NN}} = 2.76$ TeV

- Interpreted as coherent photoproduction
- Significance: of the excess:

5.4σ (70-90%), 3.4σ (50-70%), 1.4σ (30-50%)

ALICE Collaboration, PRL 116, 222301 (2016)

Opened questions on VM photoproduction in heavy-ion collisions with nuclear overlap

□ Theoretical challenges:

- Survival of coherence condition for a broken nucleus? Only spectator nucleons participating to coherence?
- A potential new probe of charmonium color screening in the QGP?
- A novel way to access σ_{γPb} when combined to UPC measurement? (see J.G. Contreras, Phys. Rev. C 96, 015203 (2017))

→ Need to understand time ordering of the interaction and theoretical open questions related to the treatment of the nuclear overlap

First theoretical approches developed since 2016 based on UPC-like models with modified photon flux and/or modified photonuclear cross section to account for overlap

Opened questions on VM photoproduction in heavy-ion collisions with nuclear overlap

□ Theoretical challenges:

- Survival of coherence condition for a broken nucleus? Only spectator nucleons participating to coherence?
- A potential new probe of charmonium color screening in the QGP?
- □ A novel way to access $\sigma_{\gamma Pb}$ when combined to UPC measurement? (see J.G. Contreras, Phys. Rev. C 96, 015203 (2017))

→ Need to understand time ordering of the interaction and theoretical open questions related to the treatment of the nuclear overlap

First theoretical approches developed since 2016 based on UPC-like models with modified photon flux and/or modified photonuclear cross section to account for overlap

First theoretical developments to describe VM photoproduction in Pb–Pb collisions with nuclear overlap

M. Klusek-Gawenda, PRC 93, 044912 (2016)

Equivalent photon approximation + vector dominance model

Standard photon flux (UPC)

Effective photon flux (considering geometrical constraints for the photon to reach the nucleus medium)

$$N^{(1)}(\omega_1, b) = \int N(\omega_1, b_1) \frac{\theta(R_A - b_2)}{\pi R_A^2} d^2 b_1$$

Effective photon flux (considering photons reaching the spectator nucleon region only)

$$N^{(2)}(\omega_{1},b) = \int N(\omega_{1},b_{1}) \frac{\theta(R_{A}-b_{2}) \times \theta(b_{1}-R_{A})}{\pi R_{A}^{2}} d^{2}b_{1}$$
ALICE data (Pb–Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$)

ALICE syst. uncertainties

First theoretical developments to describe VM photoproduction in Pb–Pb collisions with nuclear overlap

W. Zha, PRC 97, 044910 (2016)

- Strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions between photon and pomeron:
- -N + NNucleus (γ emitter) Nucleus (pomeron emitter) $\cdots N + S$ Nucleus (γ emitter) Spectator (pomeron emitter) $\cdots S + N$ Spectator (γ emitter) Nucleus (pomeron emitter) $\cdots S + S$ Spectator (γ emitter) Spectator (pomeron emitter)
- ALICE Run 1 data consistent with all 4 scenarios within uncertainties
- Need more precise data and measurement towards most central collisions (challenging!) to constrain theoretical models

Recent work by same authors (Phys. Rev. C 99, 061901) considering target nucleus as double slits (interference patterns)

VM photoproduction in Pb–Pb collisions with nuclear overlap (STAR)

□ Observation confirmed by STAR Collaboration at lower energy in U–U (193 GeV), Au–Au collisions (200 GeV), at mid-y

- \clubsuit First measurement of the *t*-dependence of the J/ ψ excess :
 - Slope parameter of exponential fit related to the position of the interaction sites within the target
 - Can be used to investigate interference patterns
- Supports also photoproduction origin

STAR Collaboration, PRL 123, 132302 (2019)

VM photoproduction in Pb–Pb collisions with nuclear overlap (LHCb)

□ Observation confirmed in Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV by LHCb (restricted to peripheral events <N_{part}> ~ 19.7)

- > First p_T and y-differential J/ ψ excess yield measurement
- Qualitative (but not quantitative) description of the data by a model (including or not) the effect of the nuclear overlap (although limited in peripheral events)

LHCb Collaboration, PRC 105 (2022) L032201 W. Zha, PRC 97, 044910 (2016), Phys. Rev. C 99, 06190

VM photoproduction in Pb–Pb collisions with nuclear overlap (ALICE) : centrality dependence (forward y)

Phys. Lett. B 846 (2023) 137467

□ No centrality dependence of the coherent J/ψ photoproduction cross section within uncertainties

□ Models with either a modification of the γ flux (VDM) or a modification of the γ flux + $\sigma_{\gamma Pb}$ (IIM/GBW S3) describe semicentral data

GG-hs: J. Cepila et al., Phys. Rev. C. 97 (2018) 024901

- γ flux with constraints on b range

VDM: M. Klusek-Gawenda et al., Phys. Lett. B. 790 (2019) 339

- only γ reaching the spectator region considered [fixed area]

- $\sigma_{
m _{Pb}}$ unmodified

IIM/GBW: M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 116013

- only γ reaching the spectator region considered [b-dependent area]
- S2: $\sigma_{\gamma Pb}$ unmodified
- S3: $\sigma_{\gamma Pb}$ modified (exclusion of overlap region)

17

VM photoproduction in Pb–Pb collisions with nuclear overlap (ALICE) : p_T and centrality dependence (mid y)

Caveat: No normalization to the centrality interval width

p_T-differential J/ψ photoproduction cross section measured at mid-*y* in peripheral Pb–Pb
 p_T shape reproduced by model including modified *γ* flux and *σ_{γPb}* to account for the overlap (although limited in 70-90%)
 W. Zhn et al., Phys. Rev. C99 (2019) 061901: Nucleus (*γ* emitter) – Spectator (pomeron emitter) scenario + shadowing + interferences
 Same models reproduce at the same time the order of magnitude of the cross section at mid and forward rapidity

L. Massacrier – Photoproduction in peripheral pA and AA collisions – Towards improved hadron tomography with hard exclusive reactions, 5-9th Aug. 2024 – Trento, Italy

Laboratoire de Physique des 2 Infinis

(see slide 17)

Model references

VM photoproduction in Pb–Pb collisions with nuclear overlap (ALICE) : forward and mid y comparison

ΔC : width of centrality interval

PC: Phys. Lett. B 846 (2023) 137467

 \Box Larger J/ ψ photoproduction cross section at mid-y than at forward-y (as expected from models). No strong centrality dependence at both rapidities.

□ J/ ψ photoproduction ratio in Pb–Pb to UPC (in the same rapidity window) \rightarrow similar ratio for mid-y and forward-y. \succ Ratio flat with centrality \rightarrow no evidence for a decrease of σ_{PC} because of the nuclear overlap or medium effects

20

Multidifferential measurements to further contrain models (strong rapidity dependence expected in the forward region)

□ Clear J/ ψ low p_T excess in all rapidity intervals in peripheral Pb–Pb events

- Qualitative description of the magnitude of the cross section by the UPC-like models modified for the centrality range 70-90%
- Difficulties at reproducing the rapidity dependence for all models, but also the case in UPC !

GG-hs: J. Cepila et al., Phys. Rev. C. 97 (2018) 024901

- γ flux with constraints on b

Zha: W. Zha et al., Phys. Rev. C 99 (2019) 6, 061901

- Double slit experiment ~ Nucleus (γ emitter) – Spectator (pomeron emitter) scenario + shadowing + interferences

IIM/GBW: M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 116013

- S3: only γ reaching the spectator region considered $\sigma_{\gamma^{
m Pb}}$ modified

ALICE Collaboration, Eur. Phys. J. C 81 (2021) 712

Difficulties for models to reproduce the y-dependence, similarly for UPC and PC

Need better theoretical description of y-dependent cross sections from UPC data to interpret PC data and possible modifications related to the nuclear overlap

IIM/GBW: M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 116013

- S1: no significant modification w.r.t UPC (γ flux with constraints on b) - S2: only γ reaching the spectator region considered, $\sigma_{\gamma Pb}$ unmodified - S3: only γ reaching the spectator region considered, $\sigma_{\gamma Pb}$ modified (exclusion of overlap region)

□ IIM vs GBW: different assumptions on the color dipole cross section used as input for $\sigma_{\gamma \rm Pb}$ calculations

□ Effect of the nuclear overlap (in 70-90%) on the J/ ψ photoproduction cross section predicted by model as large as theoretical assumptions done on color dipole cross section

 \rightarrow Multidifferential studies in more central collisions (ie. bigger overlap) important to further constrain models

Inclusive J/ ψ polarization at very low p_T in peripheral Pb–Pb collisions

P. Faccioli et al., Eur. Phys. J. C 69 (2010) 657-673

Polarization: particle spin alignment w.r.t a chosen direction
 Related to dilepton decay angular distribution:

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta+\lambda_{\phi}\sin^2\theta\cos2\phi+\lambda_{\theta\phi}\sin2\theta\cos\phi)$$

$(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0)$	\rightarrow	no polarization
$(\lambda_{\theta},\lambda_{\phi},\lambda_{\theta\phi})=(+1,0,0)$	\rightarrow	transverse polarization
$(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0)$	\rightarrow	longitudinal polarization

□ Helicity frame (HX): direction of the VM in the collision c.o.m frame

Test VM production mechanism via polarization measurement:
 Photoproduction process: VM expected to keep the (transverse) polarization of incoming photon due to s-channel helicity conservation (SCHC)
 El Gilman et al., Phys Lett B 31 (1970) 387

- * ALICE UPC polarization results for coherently photoproduced J/ ψ consistent with SCHC arXiv:2304.10928
- ✤ Inclusive J/ψ at low p_T in the 70-90% centrality range used as proxy to study coherently photoproduced J/ψ. Yield dominated by photoproduced J/ψ, hadronic J/ψ unpolarized (in HX) in Pb–Pb

Phys. Lett. B 815 (2021) 136146

L. Massacrier – Photoproduction in peripheral pA and AA collisions – Towards improved hadron tomography with hard exclusive reactions, 5-9th Aug. 2024 – Trento, Italy

Inclusive J/ ψ polarization at very low p_T in peripheral Pb–Pb collisions

 \Box Angular distribution of J/ ψ decay products hints at transverse polarization (~ 2σ)

 $\Box \lambda_{\theta}$ value for inclusive J/ ψ in 70-90% centrality range and for $p_T < 0.3$ GeV/c consistent with UPC results and SCHC

conclusion and outlook

- Several measurements of γγ to dilepton pair production at RHIC and LHC from peripheral (to central) AA collisions
 Several observables reproduce by models including b-dependence of photon k_T distribution
 The presence of medium induced effects (eg. strong e.m fields) seems ruled out by latest ATLAS measurements
- \Box Wide variety of measurements performed at RHIC and LHC to probe coherent J/ ψ photoproduction in AA collisions with nuclear overlap from peripheral to central events (multi-differential cross sections, polarization...):
 - All measurements give a consistent picture pointing to coherent photoproduction mechanism
 - UPC-like models modified to account for the nuclear overlap are able to describe the magnitude of the cross sections
 - Stronger constraints on models inputs needed (using eg. UPC measurements)
 - Multi-differential measurements towards most central collisions are needed to understand the impact of the nuclear overlap on the coherence condition

□ Perspectives for LHC Run 3 + 4 ($L_{int} \sim 10 \text{ nb}^{-1}$ in Pb–Pb) for quarkonium photoproduction:

- Significant signal at both mid- and forward-y in most central events
- * Multi-differential measurements towards most central collisions (y-dependence, p_{T} -dependence (mid y), polarization)
- * Look at other quarkonium states for the first time $\rightarrow \psi(2S)/J/\psi$ to probe possible QGP effects

BACKUP

Event display: UPC events versus hadronic events (ALICE)

UPC event in the central barrel

UPC event in the muon spectrometer

Pb–Pb hadronic event

J/ ψ photoproduction in Pb–Pb collisions with nuclear overlap (forward-y)

29

Phys. Lett. B 846 (2023) 137467

$R_{AA} = \frac{Y_{J/\psi}^{Pb-Pb}}{\langle T_{AA} \rangle \sigma_{J/\psi}^{pp}}$

- □ J/ ψ R_{AA} for p_T < 0.3 GeV/c significantly larger than in 1 < p_T < 2 GeV/c where hadroproduction dominates (except in most central events)
- □ Hint for incoherent photoproduction in 70-90% for $0.3 < p_T < 1$ GeV/c (~2 σ deviation w.r.t 1 < $p_T < 2$ GeV/c)
- Data well described by a model including hot medium effects on J/ψ production (primordial J/ψ survival, regeneration)+ J/ψ photoproduction (p_T < 0.3 GeV/c). QGP effects on photoproduced J/ψ are also considered

W. Shi et al., Phys. Lett. B 777 (2018) 399-405

J/ ψ photoproduction in Pb–Pb collisions with nuclear overlap (forward-y)

Phys. Lett. B 846 (2023) 137467

- \Box J/ ψ photoproduction cross section increases with the c.m.s energy and doesn't depend on the centrality
- VDM and IIM/GBW models reproduce fairly well the cross section ratio in the three centrality intervals

J/ ψ photoproduction in Pb–Pb collisions with nuclear overlap (mid-y)

Coherent J/ ψ yield measured using an unbinned (m_{ee}, p_T) likelihood fit

Photoproduced J/ψ components obtained from STARlight

y-differential J/ ψ production cross section in pp collisions (forward-y)

Laboratoire de Physique des 2 Infinis

VDM model

M. Klusek-Gawenda, PRC 93, 044912 (2016), from presentation of M. Klusek-Gawenda at HF2022 workshop

 J/ψ photoproduction for (a) ultraperipheral and (b) central heavy ion collisions.

The inclusion of the absorption effect by modifying effective photon fluxes in the impact parameter space.

Laboratoire de Physique des 2 Infinis

IIM/GBW model

34

M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 11601

FIG. 2. Schematic drawing used in the construction of the effective photon flux.

$$N^{\rm eff}(\omega,b) = \frac{1}{A_{\rm eff}(b)} \int d^2 b_1 N(\omega,b_1) \theta(R_A - b_2) \theta(b_1 - R_A),$$
(12)

where

$$A_{\rm eff}(b) = R_A^2 \left[\pi - 2 \cos^{-1} \left(\frac{b}{2R_A} \right) \right] + \frac{b}{2} \sqrt{4R_A^2 - b^2}.$$

Projections for J/ ψ photoproduction in Pb–Pb collisions with nuclear overlap (mid-y) : Run 3+4

Results from photon induced processes in UPC

□ Nuclear gluon shadowing of $S_{Pb} = 0.64 \pm 0.04$ for Bjorken-x ~ 10^{-3}

□ Provides important constraints to initial state of HIC

M. Klusek-Gawenda, J. Phys. Lett. B 814 (2021) 136114

UPC dileptons: initial photon energy

UPC dileptons: initial photon energy

100

38