

Recent measurements of exclusive processes in ultra-peripheral collisions

IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay

IJCLab, Orsay, France

ECT* 2024, Trento,

Towards improved hadron tomography with hard exclusive reactions

August 5-9, 2024, ECT*, Trento, Italy

Dukhishyam Mallick

Laboratoire de Physique des 2 Infinis

Introduction to photon-induced processes \checkmark Part I : Results from $\gamma\gamma$ interactions PartII : Results from photonuclear interactions Summary and outlook

Relativistic heavy-ion collisions: Electromagnetic field emitter

LHC or RHIC: acts as source of photon collider Relativistic heavy-ions are strong EM field emitters

V ≃C Pb Pb = impact parameter "b"

Equivalent Photon Approximation (EPA) : EM fields can be treated in terms of photon quanta or flux

B

IJCLab, Orsay, France

Electromagnetic fields

QM@2023, Peter Steinberg

maximum energy Ε γ,max ~γ(ħc/R)	80 GeV in Pb+Pb@LHC 3 GeV in Au+Au@RHIC
typical p⊤ (& virtuality) <i>р</i> т _{max} ~ ħc/R	O(30) MeV @ RHIC & LH

Photon-induced processes in UltraPeripheral collisions

UltraPeripheral Collisions (UPCs) : $b > R_1 + R_2$

Flux of photons on other nucleus ~ Z^2 (nuclei >> proton) Flux of photons on photons ~ Z^4

Types of interactions

Electromagnetic interactions are dominant, QED processes play crucial role

Measurements available: Exclusive ny processes in UPCs

UPC 2023 : /indico.cern.ch/event/1263865/

	$\gamma\gamma \rightarrow ee$	JHEP 06 (2023) 182
Dileptons	$\gamma\gamma \rightarrow \mu\mu$	Phys. Rev. C 104 (2021) 024906
	$\gamma\gamma \rightarrow \tau\tau$	Phys. Rev. Lett. 131 (2023) 151802
Exotica	$\gamma\gamma \rightarrow \gamma\gamma$	Nature Physics 13 (2017) 852 Phys. Rev. Lett. 123 (2019) 052001
	$\gamma\gamma \rightarrow ALP$	JHEP 03 (2021) 243

Model

STARlight: S.R.Klein, et.al., Comput.Phys.Commun.212(2017) 258 Study of Higgs boson production and its $b\overline{b}$ decay in $\gamma - \gamma$ processes in proton-nucleus collisions at the LHC SuperChic: Lucian Harland-Lang, Eur. Phys. J. C 80, 925 (2020) David d'Enterria and Jean-Philippe Lansberg Phys. Rev. D 81, 014004 - Published 7 January 2010 gamma-UPC : Hua-Sheng Shao et al., JHEP 09 (2022) 248 NLO correction calculations for dimuon and ditaun-pairs: Hua-Sheng Shao et al., arXiv:2407.13610

G. Breit and J. A. Wheeler, "Collision of two light quanta," Phys. Rev. 46 (1934) 1087.

JADE Collaboration, W. Bartel et al., "Lepton pair production in double tagged two photon interactions," Z. Phys. C 30 (1986) 545.

L3 Collaboration, M. Acciarri *et al.*, "Production of e, μ and τ pairs in untagged two photon collisions at LEP," *Phys. Lett. B* **407** (1997) 341–350.

C. R. Vane et al., "Electron positron pair production in Coulomb collisions of ultrarelativistic sulphur ions with fixed targets," Phys. Rev. Lett. 69 (1992) 1911.

CERES/NA45 Collaboration, R. Bauer *et al.*, "Measurement of electromagnetically produced e⁺e⁻ pairs in distant S-Pt collisions," Phys. Lett. B 332 (1994) 471.

STAR Collaboration, J. Adams *et al.*, "Production of e^+e^- pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collision," Phys. Rev. C 70 (2004) 031902, arXiv:nucl-ex/0404012.

STAR Collaboration, J. Adam et al., "Measurement of e⁺e⁻ momentum and angular distributions from linearly polarized photon collisions," *Phys. Rev. Lett.* **127** (2021) 052302, arXiv:1910.12400 [nucl-ex].

PHENIX Collaboration, S. Afanasiev *et al.*, "Photoproduction of J/ψ and of high mass e^+e^- in ultra-peripheral Au+Au collisions at $\sqrt{s} = 200 \text{ GeV}$," *Phys. Lett. B* 679 (2009) 321, arXiv:0903.2041 [nucl-ex].

ALICE Collaboration, E. Abbas *et al.*, "Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$," *Eur. Phys. J. C* **73** (2013) 2617, arXiv:1305.1467 [nucl-ex]. CMS Collaboration, S. Chatrchyan et al., "Search for exclusive or semi-exclusive photon pair production and observation of exclusive and semi-exclusive electron pair production in pp collisions at $\sqrt{s} = 7$ TeV," *JHEP* 11 (2012) 080, arXiv:1209.1666 [hep-ex].

CMS Collaboration, A. M. Sirunyan et al., "Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$," *Phys. Lett. B* **797** (2019) 134826, arXiv:1810.04602 [hep-ex]. CMS Collaboration, A. Hayrapetyan et al., "Measurements of the light-by-light scattering and the Breit-Wheeler processes, and searches for axion-like particles in ultraperipheral PbPb collisions at 5.02 TeV." CMS-PAS-HIN-21-015, 2024.

*In this talk, results will be discussed based on personal choice

Breit-Wheeler processes and higher muon and tau-lepton pairs production

G. Breit, Phys. Rev. 46 (1934) 1087

Pb

Pb

IJCLab, Orsay, France

Light by Light scattering via box diagram

Excellent probe for QED & new physics search (BSM)

Each category probes different impact parameters (b)

ECT* 2024, Trento, Italy

IJCLab, Orsay, France

Differentiate difference processes: Zero Degree Calorimeters (ZDC)

• ZDC are 140 m away from the IP ($|\eta| > 8.3$)

Detect neutral particles: e.g. neutrons, photons

Events are categorised into: 0n0n/0nXn/XnXn

Acoptanarity in $\gamma\gamma \rightarrow ll$ with differnent nuclear break up

• Acoplanarity is a key tool for distinguishing these processes: $a = 1 - |\Delta \varphi| / \pi$

$$\stackrel{\prime}{\stackrel{}{\underset{\mu^{+}}{\longleftarrow}}} \mu^{-}$$

 $\alpha = 0$

Clear differences between samples selected with ZDC topologies:

Onon: excellent agreement with STARlight+Pythia8

• OnXn and XnXn clear contributions from dissociative processes (modelled with SuperChic)

STAR: $\gamma\gamma \rightarrow e+e-$, Phys. Rev. C 70, 031902(R) (2004),

ATLAS: $\gamma\gamma \rightarrow \mu + \mu$ -, Phys. Rev. C 104, 024906 (2021), $\gamma\gamma \rightarrow e+e-$, JHEP 06 (2023) 182

CMS: $\gamma \gamma \rightarrow \mu + \mu -$, JHEP 01 (2012) 052,

STARlight: S.R.Klein, et.al., Comput.Phys.Commun.212(2017) 258

SuoperChic:Lucian Harland-Lang, Eur. Phys. J. C 80, 925 (2020)

8

Observation OF Breit-wheeler processes: n -> ete-

□ Pure QED 2 \rightarrow 2 scattering : $d\sigma/dM \propto E^{-4} \approx M^{-4}$ **I** No vector meson contribution

Measurement of total cross section agrees with theory calculations

0

Measure θ' , the angle between the e+ and beam axis in pair rest frame

STARLight: S.R. Klein, et.al. Comput. Phys. Commun. 212(2017) 258

QED: W.Zha et al., , Phys. Lett. B 800 (2020) 135089

Observation OF Breit-wheeler processes: ny -> ete-

Birefringence of the QED vacuum

momentum -> anisotropy in e+- momentum

□ Results are consistent with QED or SuperChic with linear photon polarized

Similar observation also seen for muon-pairs

Experimental demonstration to access transverse linearly polarized of photon and QED vacuum Birefriengence

IJCLab, Orsay, France

 $\frac{\pi}{2}$ $\Delta \phi = \phi_{ee}$

 $\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$ $\approx \Delta \phi[(e^+ + e^-), e^+]$

Observed $\cos(\Delta \varphi)$ modulation for produced e+e-

Dilepton pair production in higher order decay channel: $\gamma\gamma \rightarrow \tau^+\tau^-$

 $\Box \tau$ -leptons pair production observed at LHC energies

 \Box Constraints on τ -lepton anomalous magnetic moment, a_{τ} . $a_{\tau} = (g_{\tau} - 2)/2$

Its value is sensitive to new physics search, such as many BSM models

IJCLab, Orsay, France

CMS, Phys. Rev. Lett 131, 151803 (2023)

Dirac equation (classical) assumption) : no internal structure, spin =1/2, g = 2, any deviation from g-2 is considered as anomalous magnetic moment

Tau-Lepton anamolos magnetic moment : $\gamma\gamma \rightarrow \tau^+\tau^-$

 \Box Observed 95% CL limits: $a\tau \in (-0.057, 0.024)$ SR = signal regions

 \Box First time put limits using LHC energies since LEP era, a $\tau \in (-0.052, 0.013)$, EPJC 35 (2004) 159

 \Box Statistical uncertainties dominant \rightarrow expected to improve with Run-3 data

ATLAS, Phys. Rev. Lett. 131, 151802

Dirac equation (classical assumption) : no internal structure, spin =1/2, g = 2, any deviation from g-2 is considered as anomalous magnetic moment

$$a_{\tau} = (g_{\tau} - 2)/2$$

Three signal regions defined: μ 1T-SR: muon + 1 track (e/μ /hadron) μ 3T-SR: muon + 3 tracks (3 hadrons) μe -SR: muon + electron,

Baryon-antibaryon Production in Au—Au UPC at RHIC

Can $\gamma\gamma$ produces more complex baryon anti baryon pairs ?

IJCLab, Orsay, France

Xin Wu, SQM 2024

Observed process $\gamma\gamma \rightarrow p\bar{p}$ in UPCs

Measurement of light-by-light scattering (LbL) 1/ -> 1/

Light-by-light (LbyL) scattering: key example of rare SM process probed in UPC

$$\mathsf{A}_{\phi}^{\gamma\gamma} = |1 - \frac{\Delta \phi^{\gamma\gamma}}{\pi}|$$

 \Box Not allowed classically, but possible in QED at O(α^4)

- -2015 data -> evidence at 4.4 σ
- -2018 data -> evidence at 8.2 σ
- 2015 + 2018 data -> differential cross section

Differential measurements ($m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$, $p_{T\gamma}$, $|\cos\theta^*|$) are reasonably good agreement of distribution shapes with SuperChic3 predictions

IJCLab, Orsay, France

ATLAS, Nature Phys. 13 (2017) 852 Phys. Rev. Lett. 123, 052001 (2019)

JHEP 03 (2021) 243

□ Fiducial cross-section:120 ± 17(stat.) ± $13(syst.) \pm 4$ (lumi) nb

Compare to theoretical predictions: 80 ± 8 nb, M. Kłusek-Gawenda et al, Phys. Rev. C 93, 044907

78 ± 8 nb (SuperChic 3, Lucian Harland-Lang, Eur. Phys. J. C 80, 925 (2020)

Light-by-light (LbyL) scattering: key example of rare SM process probed in UPC

26 exclusive diphoton candidates observed for 12.8 ±3.1 signal events expected —> significance of the LbL signal = 5.2 standard deviations

Measurement of light-by-light scattering (LbL): 11 -> 11

Limits on search for axion-like particles

Axion-like particles can couple to photons in initial- and final-state of $\gamma\gamma \rightarrow \gamma\gamma$ S. Knapen et al., Phys. Rev. Lett. 118, 171801

CMS-PAS-HIN-21-015 Exclusion limits at 95% confidence level **CMS** *Preliminary* 10 BaBar LEP I and II CDF PrimEx Belle-II **ATLAS** (PbPb) LHC (pp) 10-CMS (PbPb) S **Beam Dump** g_{aγ} (TeV)⁻¹ u 10⁻² 4 10⁻³ 10⁻⁴ ` 10⁻² • 0.4 0.3 **ATLAS** 0.2 (PbPb) 0.1 0.08 0.07 CMS SN1897A (PbPb) 0.06 0.05 50 60 70 80 5 6 7 8 9 10 40 **10**⁻⁵ 1 1 1 1 1 1) 10^2 10^3 axion mass m_a (GeV) 10⁻² 10^{-3} **10**⁻¹ 10

Most stringent constraints in the mass range CMS : 5–100 GeV ATLAS : 6-100 GeV

Photonuclear interactions:

photoproduction of vector mesons

$$x = \frac{m_{J/\psi}}{\sqrt{s_{\rm NN}}} \times \exp(\pm y)$$

*W*_{Vp/Pb} : Center-of-mass energy of photon-lead system

Motivation: Photoproduction of vector mesons

How to probe gluon saturation?

— To probe gluon saturation effects inside nucleon or nucleus at low Bjorken-x

Ideal probe: photoproduction of coherent vector mesons (ρ , J/ Ψ , Ψ 2S),Y(nS))

IJCLab, Orsay, France

How well do we model photon flux ? **Constrain** parameters of models and test pQCD

Coherent photo production

 $< p_T > J/\Psi ~ 1/R ~ 60 MeV/c$

Usually no breaking of target

- Does this include nuclear excitation ?
- Does this include coherent breakup

Incoherent photo production

- $^{P}T^{J}\Psi \sim 500 \text{ MeV}/c$ Usually target nucleus breaks
- neutrons are observed p_T distribution follows exp(bt), b small

Clear definition require between the theory and (variable) experimental

IJCLab, Orsay, France

Different photon-induced processes

- Photon (γ) couples coherently to all nucleons

*p*_T distributions for different processes Phys. Lett. B798 (2019) 134926

Coherent photoproduction of VMs are dominant at low transverse momentum ($p_{\rm T}$) region

IJCLab, Orsay, France

20

t: Mandelstam variable = - p_T^2 , helps to constrain transverse gluonic structure at low Bjorken-x, Mantysaari, Schenke, PLB 772 (2017) 832

Coherent photoproduction tells about transverse dependence of the gluon shadowing

STARlight: Comp. Phys. Comm. 212 (2017) 258.

Forward region (ALICE, CMS, LHCb): $J/\Psi \longrightarrow \mu^+\mu^-$

Midrapidity region (ALICE) : $J/\Psi \longrightarrow \mu^{+}\mu^{-}, e^{+}e^{-}, p\bar{p}$

Compatibility between ALICE and LHCb at forward rapidity but values are found different among experiments in the rapidity,

-2.5 < y < -1.5

ALICE: EPJ C 81 (2021) 712 LHCb: JHEP 07 (2022) 117, JHEP 06 (2023) 146 CMS: PRL 131 (2023) 262301

IJCLab, Orsay, France

(qm)

dy

do_{J/ψ}

emitter: two values of Bjorken-*x* probed

Rapidity dependence : Photon energy ambiguity

Solution to photon energy ambiguity

Proposed solution by [V. Guzey et al., PLB 726 (2013), 290-295 and J. G. Contreras, PRC 96, 015203 (2017)]

emission

- 1. ALICE Collaboration, JHEP 10 (2023) 119
- 2. CMS Collaboration, PRL 131 (2023) 262301

3. STAR Collaboration, arXiv:2311.13632 (submitted to PRC), arXiv:2311.13637 (submitted to PRL) Simultaneously solving the cross section measurements from UPCs and PCs

1. J. Contreras et al., PRC 96, 015203 (2017)

Electromagnetic dissociation of nuclei (EMD): modeling of photon fluxes associated to neutron

Photo production of VM: Jypb vs. Wypb or x

Energy dependence of coherent J/Ψ production

First measurement of the energy dependence of the photonuclear cross section ($\sigma_{\rm yPb}$) down to Bjorken-x ~ 10⁻⁵

24

IJCLab, Orsay, France

25

Nuclear suppression factor at LHC and RHIC energies

Coherent 4(25) photoproduction cross section

 \Box Nuclear gluon shadowing factor, $S_{Pb} = 0.66 \pm 0.06$, consistent with the value obtained from J/ Ψ at midrapidty

 \Box First y-differential $\Psi(2S)$ photoproduction cross section by LHCb

 \Box First midrapidity $\Psi(2S)$ by STAR Collaboration

26

Polarization: Coherent vector meson photoproduction

s-channel helicity conservation (SCHC): helicity or polarization of photon transferred to vector meson (J/ψ)

Vector meson (VM) has retained same helicity and polarization as that of the initial photon that interacted with the target

Helicity frame: z-axis (polarization axis): flight direction of the J/ψ in its rest frame

VM

IJCLab, Orsay, France

 $W(\cos\theta, q)$

 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) \implies \text{No polarization}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (+1, 0, 0) \Rightarrow$ Transverse polarization $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) \Rightarrow$ Longitudinal polarization

Polarization refers to the particle spin alignment with respect to a chosen direction

Phys. Lett. B 31 (1970) 387-390, JETP Lett. 68 (1998) 696-703

Dilepton decay angular distribution

P. Faccioli et al., Eur.Phys.J.C69:657-673, 2010

$$\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos^2 \phi + \lambda_{\theta\phi} \sin^2 \theta \cos^2 \phi)$$

Polarization: Coherent vector meson photo production in UPC

IJCLab, Orsay, France

dukhishyam.mallick@cern.ch

ECT* 2024, Trento, Italy

Entanglement-enabled spin interference in exclusive VM photoproduction

29

Demonstration of Einstein–Podolsky–Rosen (EPR) paradox (Linearly polarized photons + interference + entanglement effects)

IJCLab, Orsay, France

Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions, Sci. Adv.g (2023) 1, abq3903

- W. Zha, et al, Phys. Rev. D 103, 033007 (2021)
- 30

IJCLab, Orsay, France

Extraction of nuclei Radii : Au and U nucleus

Model I: implementing a photon and Pomeron interaction using a Woods-Saxon distribution,

Model II: implements a dipole and gluon interaction with the gluon distribution inside the nucleus given by a color glass condensate (CGC) model, H. Xing et al, J. High Energ. Phys. 2020, 064 (2020)

Entanglement-enabled spin interference in exclusive VM photoproduction

information

31

IJCLab, Orsay, France

\Box Measurements of the spin interference with J/ ψ or higher VMs at LHC and EIC will provide more

Photoproduction of K^+K^- Pairs in Ultraperipheral Collisions

S. Acharya et al. (ALICE Collaboration) Phys. Rev. Lett. 132, 222303 – Published 31 May 2024

arXiv:2405.14525 **ALICE Collaboration**

Nuclear Experiment

[Submitted on 11 Apr 2024]

Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

ALICE Collaboration

arxiv:2404.07542

Exclusive J/ψ , $\psi(2s)$, and e^+e^- pair production in Au + Au ultraperipheral collisions at the **BNL Relativistic Heavy Ion Collider**

Energy Dependence of Polarized $\gamma\gamma
ightarrow {f e}^+ {f e}^-$ in Peripheral Au+Au Collisions at RHIC STAR Collaboration • M.I. Abdulhamid (American U., Cairo) et al. (Jul 31, 2024)

Published in: *Phys.Rev.C* 110 (2024) 1, 014911

Search for magnetic monopole pair production in ultraperipheral Pb+Pb collisions at √sNN=5.36 TeV with the ATLAS detector at the LHC

ATLAS Collaboration (Jul 23, 2024)

Nicole Lewis (Brookhaven), Wendi Lv (Hefei, CUST), Mason Alexander Ross (East Carolina U.), Chun Yuen Tsang (Kent State U. and Hampton U.), James Daniel Brandenburg (Brookhaven) et al. (May 11, 2022)

Published in: *Eur.Phys.J.C* 84 (2024) 6, 590 • e-Print: 2205.05685 [hep-ph]

Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ^0 photoproduction in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

```
STAR Collaboration (Jul 20, 2024)
```

```
e-Print: 2407.14821 [nucl-ex]
```

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

ultra peripheral collisions (UPCs)

D Photon-photon interactions:

- production, along with precise measurement of tau-anomalous magnetic moment
- \checkmark Also seen light-by-light (LbL) scattering and possibility for search of ALPs particle

Photonuclear interactions:

- photon flux
- ✓ Understanding photon-energy ambiguity in symmetric collisions
- ✓ Polarization study test SHC hypothesis and transversely polarized nature of vector mesons
- ✓ Spin-enabled interference effects: demonstration of EPR phenomena

Photon-photon and photonuclear reactions have been provided a reach set of physics opportunity in

✓ Observed Breit-Wheeler processes, experimentally demonstrate mass -energy equivalence relation \checkmark Observed higher mass dilepton (muon, tau) pairs and search for new physics in tau-lepton pair

✓ Coherent photoproduction cross section measurements provide constrain to model for modelling

Outlook

Photon-photon interactions

OPrecise measurement on anomalous magnetic moment a_{τ} , LbyL at at

low diphoton masses, $\pi^0 \pi^0$ photoproduction

- Search for rare probe of SM and BSM physics (ALPs, etc)
- Higgs boson production in photon-photon collisions

Photonuclear interactions

- Precision and more differential studies (rapidity, polarization, O azimuthal anisotropy, etc.)
- Bottomonia and open heavy-flavour (D-meson), strangeness O
- Exclusive hadron pairs ($\pi\pi$,KK,pp etc.), phi-meson,double vector meson photoproduction
- Search of exotica (e.g. X(3872), 4ρ , or 6ρ etc.)
- Inclusive/semi inclusive UPCs e.g. inclusive J/ψ , jets in UPCs

IJCLab, Orsay, France

Back up

- JADE Collaboration, W. Bartel et al., "Lepton pair production in double tagged two photon interactions," Z. Phys. C 30 (1986) 545.
- **Ω** L3 Collaboration, M. Acciarri et al., "Production of e, μ and τ pairs in untagged two photon collisions at LEP," Phys. Lett. B407 (1997) 341-350.
- C. R. Vane et al., "Electron positron pair production in Coulomb collisions of ultrarelativistic sulphur ions with fixed targets,"Phys. Rev. Lett. 69 (1992) 1911.

Results: yy -> L+L-

Good agreement: measurements

Experimental verification: Yield scale with Z²