The electron-ion collider

Charlotte Van Hulse University of Alcalá

Towards improved hadron femtography with hard exclusive reactions 2024 ECT*, Trento, Italy August 5–9, 2024

**Comunidad
de Madrid**

- Based on RHIC:
	- use existing hadron storage ring energy: 41–275 GeV
	- add electron storage ring in RHIC tunnel energy: 5–18 GeV

- Based on RHIC:
	- use existing hadron storage ring energy: 41–275 GeV
	- add electron storage ring in RHIC tunnel energy: 5–18 GeV
- \vec{e} + \vec{p}^{\uparrow} , \vec{d}^{\uparrow} , \overrightarrow{He} ⃗↑ • $\vec{e} + \vec{p}^{\uparrow}$, d^{\uparrow} , He^{\downarrow} , unpolarised ions up to U
	- ~ 70% polarisation

- Based on RHIC:
	- use existing hadron storage ring energy: 41–275 GeV
	- add electron storage ring in RHIC tunnel energy: 5–18 GeV
- \vec{e} + \vec{p}^{\uparrow} , \vec{d}^{\uparrow} , \overrightarrow{He} ⃗↑ • $\vec{e} + \vec{p}^{\uparrow}$, d^{\uparrow} , He^{\downarrow} , unpolarised ions up to U
	- ~ 70% polarisation
- $\mathscr{L} = 10^{33-34}$ cm⁻² s⁻¹
	- \leftrightarrow \mathcal{L}_{int} = 10 100 fb⁻¹/year

- Based on RHIC:
	- use existing hadron storage ring energy: 41–275 GeV
	- add electron storage ring in RHIC tunnel energy: 5–18 GeV
- \vec{e} + \vec{p}^{\uparrow} , \vec{d}^{\uparrow} , \overrightarrow{He} ⃗↑ • $\vec{e} + \vec{p}^{\uparrow}$, d^{\uparrow} , He^{\downarrow} , unpolarised ions up to U
	- ~ 70% polarisation
- $\mathscr{L} = 10^{33-34}$ cm⁻² s⁻¹
	- \leftrightarrow \mathcal{L}_{int} = 10 100 fb⁻¹/year

- Based on RHIC:
	- use existing hadron storage ring energy: 41–275 GeV
	- add electron storage ring in RHIC tunnel energy: 5–18 GeV
- \vec{e} + \vec{p}^{\uparrow} , \vec{d}^{\uparrow} , \overrightarrow{He} ⃗↑ • $\vec{e} + \vec{p}^{\uparrow}$, d^{\uparrow} , He^{\downarrow} , unpolarised ions up to U
	- ~ 70% polarisation
- $\mathscr{L} = 10^{33-34}$ cm⁻² s⁻¹
	- \leftrightarrow \mathcal{L}_{int} = 10 100 fb⁻¹/year

9.5 m

9.5 m

-
-
-
-
-
-

high-precision lead-glass PbWO₄ + Si sensors

- Backward EMCAL: high-precision lead-glass PbWO₄ + Si sensors
- Barrel EMCAL: 3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors

- Backward EMCAL:
- Barrel EMCAL: •3D imaging with MAPS and sampling Pb/ scintillating fibres with Si sensors scintillating fibres with Si sensors
- Forward EMCAL: finely segmented W powder/scintillating fibres

steel/scintillator sandwich as tail catcher

• Backward HCAL:

steel/scintillator sandwich as tail catcher

• Barrel HCAL: Fe/scintillator sandwich: detection of neutrals

• Backward HCAL:

- Barrel HCAL: Fe/scintillator sandwich: detection of neutrals • Barrel HCAL: Fe/scintillator sandwich: detection of neutrals
- Forward HCAL: W/scintillator sandwich longitudinally segmented, high granularity: good E resolution

include TOF 491 mm IP 650 mm 2.5 cm Pecm 12 cm 1 detectors based on the contract of the contrac aerogel container acrylic filter 1.7 T magnet for 1 GeV/c<p<50 GeV/c FEEE
Sceel outer conical mirror outer vessel shell

Particle identification HRPPD photosenors,

spherical mirrors

 $\overline{1}$

spherical mirrors

Timeline

nucleon spin

Why an electron-ion collider

Why an electron-ion collider

collider measurements are our only source of depenc explore them. spin-dependent nucleon multi-dimensional structure

andont puoloon multi dir chucht huchcom munt un ancional atrusture one is proportional to the number of pairs $Y \cup C$ [†] $\overline{}$ beyond the large-*N^c* limit is accomplished collider measurements are our only source of depenc explore them. spin-dependent nucleon multi-dimensional structure

Why an electron-ion collider

Why an electron-ion collider

andont puoloon multi dir chucht huchcom munt un ancional atrusture one is proportional to the number of pairs $Y \cup C$ [†] $\overline{}$ beyond the large-*N^c* limit is accomplished collider measurements are our only source of depenc explore them. spin-dependent nucleon multi-dimensional structure

$A^{1/3}$ enhancement of saturation effect for ions $\mathbb N$ is a contration. The fig. $\mathbb N$ is a set from a set $\mathbb N$ is a set of the factor of \mathbb{N} enhancement of saturation effective saturation ef

Why an electron-ion collider

andont puoloon multi dir chucht huchcom munt un ancional atrusture one is proportional to the number of pairs $Y \cup C$ [†] **beyond the limit is accomplished the limit is accomplished to the limit is a** collider measurements are our only source of depenc explore them. spin-dependent nucleon multi-dimensional structure

$A^{1/3}$ enhancement of saturation effect for ions $\mathbb N$ is a contration. The fig. $\mathbb N$ is a set from a set $\mathbb N$ is a set the boost, the boost, the boost, the nucleons, as $\mathcal{M}_{\mathcal{A}}$ of the factor of \mathbb{N} enhancement of saturation effective saturation ef

a a generalization of Eq. (3.3) hadronisation

andont puoloon multi dir chucht huchcom munt un ancional atrusture one is proportional to the number of pairs $Y \cup C$ [†] **beyond the limit is accomplished the limit is accomplished to the limit is a** collider measurements are our only source of depenc explore them. spin-dependent nucleon multi-dimensional structure

Why an electron-ion collider

$A^{1/3}$ enhancement of saturation effect for ions $\mathbb N$ is a contration. The fig. $\mathbb N$ is a set from a set $\mathbb N$ is a set of the factor of \mathbb{N} enhancement of saturation effective saturation ef

Luminosity and COM E needs for physics topics

[Poster by S Maple] Kinematic coverage at the EIC

Helicity structure of the nucleon: gluons

ECCE consortium, 10.5281/zenodo.6537587

Helicity structure of the nucleon: gluons

Helicity structure of the proton: sea quarks

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

13

Helicity structure of the proton: sea quarks

Semi-inclusive measurements, via good hadron PID \rightarrow access to sea-quark spin

CVH et al., NIM A 1056 (2023) 168563

Helicity structure of

Semi-inclusive measurements, via good hadron PID → access to sea-quark spin simulated inclusive DIS data and the reweighting with simulated ECCE semi-inclusive DIS data at ^p*^s* ⁼ ²⁸.6 GeV and ^p*^s* ⁼ ¹⁴⁰.7 GeV are presented.

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Sivers asymmetry

 $\sigma^h(\phi, \phi_S) \propto S_T 2\langle \sin(\phi - \phi_S) \rangle_{UT}^h \sin(\phi - \phi_S) \longrightarrow C[f_{1T}^{\perp} \times D_1^{q \to h}]$

Spin-dependent TMD PDFs: Sivers

15

Sivers asymmetry

 $\sigma^h(\phi, \phi_S) \propto S_T 2\langle \sin(\phi - \phi_S) \rangle_{UT}^h \sin(\phi - \phi_S) \longrightarrow C[f_{1T}^{\perp} \times D_1^{q \to h}]$

 $\overline{15}$ for the Sivers asymmetry at an intermediate $\overline{15}$

Spin-dependent TMD PDFs: Sivers

Impact of EIC on Sivers TMD PDF

R. Seidl, A. Vladimirov et al., NIM A 1055 (2023) 168458

R. Seidl, A. Vladimirov et al., NIM A **1055** (2023) 168458

Impact of EIC on Sivers TMD PDF

Di-hadron production and jets in eA

• Complementarity region covered by dihadron and jet production

Exclusive measurements on p with the EIC *xP_z*

Deeply virtual Compton scattering

Figure 3.8: Left: Projected DVCS cross-section measurements as a function of the momentum transfer *t* for

Exclusive measurements on p with the EIC *xP_z*

What object are we probing?

What object are we probing?

Coherent interaction: interaction with target as a whole. ∼ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ∼ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

∼ target does not remain in same quantum state. Ex.: target dissociation, excitation

Coherent interaction: interaction with target as a whole. ∼ target remains in same quantum state. Sonerent interaction. Interaction

< target remains in same quantum

> ∼ target does not remain in same quantum state. Ex.: target dissociation, excitation $\mathsf{L} \mathsf{X}$. Let $\mathsf{G} \mathsf{X}$ and $\mathsf{G} \mathsf{X}$ and $\mathsf{G} \mathsf{X}$ are $\mathsf{G} \mathsf{X}$ and $\mathsf{G} \mathsf{X$

Incoherent interaction: interaction with constituents inside target.

Exclusive measurements Exclusive measurements on nuclear targets

What object are we probing? V

Coherent eA production

 \rightarrow probe gluon saturation

→ nuclear imaging in position space:

Figure 3.5: The non-linear small-*x* evolution of a hadronic or nuclear wave functions. All partons $d\Delta_\perp \text{ GPD}(x,0,\Delta_\perp)\ e^{-ib_\perp \Delta_\perp}$ Experimentally limited by maximum transverse momentum.
Need measured p_T range as extended as possible. Need measured p_T range as extended as possible. ~third diffractive minimum.

$$
\int_0^\infty d\Delta_\perp \ \text{GPD}(x,0,\Delta_\perp) \ e^{-ib_\perp \Delta_\perp}
$$

@ ln(1*/x*) ⁼ ↵*^s ^K*BFKL ⌦ *^N*(*x, r^T*) ↵*^s* [*N*(*x, r^T*)]2*.* (3.3) • Need 90%, 99%, and > 99.8% veto efficiency for tion equation [147, 148, 149], which is valid f n Active minir **POOLIVO TIMENI** *parton saturation*, when the number density of partons stops growing with decreasing *x*. incoherent production, for the respective minima at

Coherent eA production

 \rightarrow probe gluon saturation

 \rightarrow nuclear imaging in position space:

reconstruction via scattered lepton and exclusively produced vector meson/photon

Figure 3.5: The non-linear small-*x* evolution of a hadronic or nuclear wave functions. All partons $d\Delta_\perp \text{ GPD}(x,0,\Delta_\perp)\ e^{-ib_\perp \Delta_\perp}$ Experimentally limited by maximum transverse momentum.
Need measured p_T range as extended as possible. Need measured p_T range as extended as possible. ~third diffractive minimum.

 \rightarrow resolving minima is crucial

Toll, Ulrich, PRC **87** (13) 0249

Classical Gluon Fields and the Nuclear "Oomph" Factor ration is a universal phonomenon, valid both in the set of the set \rightarrow use entire far-forward detector systems we demonstrate that nuclei provide an extra that nuclei provide an extra that nuclei provide an extra that nuclei • veto of events where nuclei break up

Need precise determination of t

- increasing t.
- -
-

Exclusive measurements on nuclear targets with the EIC

Summary

EIC with ePIC can address various aspects of the nucleon and nuclear structure through:

• Precise inclusive and semi-inclusive (spin-dependent) DIS measurements via high-resolution EM calorimeters.

-
- Measurements for 3D (spin-dependent) tomography in momentum space provided by good Cherenkov-based and TOF AC-LGAD hadron PID detectors and tracking.
- •Exclusive measurements on protons, using the far-forward detector system.
- Diffractive and exclusive measurements with coherent/incoherent separation via very precise EM calorimeters and far-forward detector system.