Deeply virtual exclusive production of mesons at COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

on behalf of the COMPASS Collaboration

Towards improved hadron tomography with hard exclusive reactions

> ECT* workshop, Trento August 5 - 9, 2024

Contents

- Introduction
- Exclusive π^0 production and chiral-odd GPDs
- SDMEs for exclusive ρ^0 and ω productions
- Outlook

GPDs and Hard Exclusive Meson Production

factorisation proven only for σ_L σ_T suppressed by 1/Q²

wave function of meson (DA) additional non-perturbative term Chiral-even GPDs
helicity of parton unchanged $H^{q,g}(x,\xi,t)$ $E^{q,g}(x,\xi,t)$ $\widetilde{H}^{q,g}(x,\xi,t)$ $\widetilde{E}^{q,g}(x,\xi,t)$

Chiral-odd GPDs

helicity of parton changed (not probed by DVCS)

$H^q_{\scriptscriptstyle T}(x,\xi,t)$	$E_T^q(x,\xi,t)$
$oldsymbol{\widetilde{H}}^q_{\scriptscriptstyle T}(x,\xi,t)$	$oldsymbol{\widetilde{E}}^q_T(x,\xi,t)$

Flavour separation for GPDs example:

$$E_{\rho^{0}} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u} + \frac{1}{3} E^{d} + \frac{3}{8} E^{g} \right)$$
$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u} - \frac{1}{3} E^{d} + \frac{1}{8} E^{g} \right)$$
$$E_{\varphi} = -\frac{1}{3} E^{s} - \frac{1}{8} E^{g}$$

for VMs contribution from gluons at the same order of αs as from quarks

COMPASS experiment at CERN

Basic ingredients of versatile COMPASS experimental setup

secondary beam line M2 from the SPS

flexible target area

beam

- delivers: high energy polarised μ^+ or μ^- beams
 - negative or positive hadron beams

two-stage forward spectrometer SM1 + SM2

≈ 300 tracking detectors planes – high redundancy variety of tracking detectors to cope with different particle flux from $\theta = 0$ to $\theta \approx 200$ mrad + calorimetry, µID, RICH

SM2

RICH

E/HCAL

MuonWall

MuonWall

E/HCAL

50 11

The COMPASS set-up for the GPD program (starting from 2012)

Main new equipments

ECAL2

2.5m-long Liquid H₂ Target

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol

ECALO Calorimeter

Shashlyk modules + MAPD readout $\sim 2 \times 2 \text{ m}^2$, $\sim 2200 \text{ ch}$.

Recoil particle reconstruction in CAMERA

Proton signature clearly visible after exclusivity selections

Hard Exclusive π^0 Production on Unpolarised Protons and Chiral-Odd (quark helicity-flip) GPDs

Exclusive π^0 production on unpolarised protons

$$\left[\frac{\alpha_{em}}{8\pi^3} \frac{y^2}{1-\varepsilon} \frac{1-x_{Bj}}{x_{Bj}} \frac{1}{Q^2}\right]^{-1} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{Bj} \mathrm{d}Q^2 \mathrm{d}t \mathrm{d}\phi} =$$

$$\frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--} \right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re}(\sigma_{+-}^{++}) - \sqrt{\varepsilon(1+\varepsilon)} \cos(\phi) \operatorname{Re}(\sigma_{+0}^{++} + \sigma_{+0}^{--})$$

$$-P_l\sqrt{arepsilon(1-arepsilon)}\sin(\phi)\mathrm{Im}(\sigma_{+0}^{++}+\sigma_{+0}^{--})$$

 σ_{mn}^{ij} : helicity-dependent photoabsorption cross sections and interference terms

$$\sigma_{\textit{mn}}^{\textit{ij}}ig(x_{B}, Q^{2}, tig) \propto \sum ig(M_{\textit{m}}^{i}ig)^{*}M_{\textit{n}}^{j}$$

 M_m^i : amplitude for subprocess $\gamma^* p \rightarrow V p'$ with photon helicity *m* and target proton helicity *i*

muon polarisation dependence cancels in $S_{CS,U} = [d\sigma(\mu^+) + d\sigma(\mu^-)]/2$

$$\frac{1}{2}\left(\sigma_{++}^{++}+\sigma_{++}^{--}\right)+\varepsilon\sigma_{00}^{++}-\varepsilon\cos(2\phi)\operatorname{Re}(\sigma_{+-}^{++})-\sqrt{\varepsilon(1+\varepsilon)}\cos(\phi)\operatorname{Re}(\sigma_{+0}^{++}+\sigma_{+0}^{--})$$

$$-P_l\sqrt{\varepsilon(1-\varepsilon)}\sin(\phi)\mathrm{Im}(\sigma_{\pm0}^{++}+\sigma_{\pm0}^{--})$$

M q' product y

GPDs in exclusive π^0 production on unpolarised protons

$$\frac{d^{2}\sigma}{dtd\phi} = \frac{1}{2\pi} \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \varepsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi \frac{d\sigma_{LT}}{dt}\right]$$

 $\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re}\left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \quad \text{leading twist} \\ \text{at JLAB only few% of} \quad \frac{d\sigma_T}{dt}$

other contributions arise from coupling of chiral-odd (quark helicity-flip) GPDs to twist-3 pion amplitude

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{E}_T \rangle \right|^2 \right] & \text{def.} \quad \overline{E}_T = 2\tilde{H}_T + E_T \\ \\ \frac{\sigma_{LT}}{dt} &= \frac{4\pi\alpha}{\sqrt{2k'}} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re} \left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right] \\ \\ \frac{\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{E}_T \rangle \right|^2 & \text{An impact of } \overline{E}_T \text{ should be visible in } \frac{\sigma_{TT}}{dt} \\ & \text{and in a dip at small } t' \text{ of } \frac{d\sigma_T}{dt} \end{aligned}$$

Sensitivity for constraining GPD models; an example

8.5 GeV < v < 28.0 GeV $1.0 (\text{GeV}/c)^2 < Q^2 < 5.0 (\text{GeV}/c)^2$

Data 2012 (pilot run): PLB 805 (2020) 135454 GK2011: EPJA 47 (2011) 112 GK2016: updated GK model, private comm. Recent preliminary results from exclusive π° analysis of 2016 data

Exclusive π^0 production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay
- Recoil proton candidate
- $1 < Q^2 < 8 \; (\text{GeV}/c)^2, \; 6.4 < \nu < 40$ GeV, $0.08 < |t| < 0.64 \; (\text{GeV}/c)^2$

Selections for exclusive π^0 events:

- Transverse momentum constraint: $\Delta p_T = p_{T,spect}^p - p_{T,recoil}^p$
- $\Delta \varphi = \varphi_{spect}^p \varphi_{recoil}^p$
- Z coordinate of inner CAMERA ring: Δz
- Energy-momentum conservation: $M_X^2 = (p_{\mu} + p_p - p_{\mu'} - p_{p'} - p_{\pi^0})^2$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit of reaction $\mu p \rightarrow \mu' p' \pi^0$

Distributions of "exclusivity variables"

SIDIS background estimate

- Main background of π^0 production \Rightarrow non-exclusive DIS processes
- 2 Monte Carlo simulations with the same π^0 selection criteria:
 - LEPTO for the non-exclusive background
 - HEPGEN++ shape of distributions of exclusive π^0 production (signal contribution)
- Both MC samples normalised to the experimental $M_{\gamma\gamma}$ distribution
- The fraction of background events r_{LEPTO} from fitting MC mixture on the exclusivity distributions

• Fraction of non-exclusive

background in data $\Rightarrow (8 \pm 5)\%$

 Background fit method is the main source of systematic uncertainty

Exclusive π^0 production cross section as a function of |t|

At small |t| an impact of
$$\overline{E}_T$$
 contribution in $\frac{d\sigma_T}{dt}$

- Differential $\gamma^* \mathbf{p} \to \mathbf{p}' \pi^0$ cross-section as function of |t|, integrated over ϕ
- Newest 2016 data release

Comparison to the published results from 2012

For the comparison the 2016 data are shown at the kinematic range of 2012 data

• Newest 2016 data release

Exclusive π^0 production cross section as a function of ϕ

- Newest 2016 data release
- Differential $\gamma^* p \to p' \pi^0$ cross-section as function of ϕ , averaged over |t|: $\frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d}t \mathrm{d}\phi} = \frac{1}{2\pi} \left[\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_L}{\mathrm{d}t} + \epsilon \cos(2\phi) \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} + \sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} \right]$

$$\left\langle \frac{\sigma_{\rm T}}{|t|} + \epsilon \frac{\sigma_{\rm L}}{|t|} \right\rangle = (6.9 \pm 0.3_{\rm stat} \pm 0.8_{\rm syst}) \frac{\rm nb}{({\rm GeV}/c)^2}$$
$$\left\langle \frac{\sigma_{\rm TT}}{|t|} \right\rangle = (-4.5 \pm 0.5_{\rm stat} \pm 0.2_{\rm syst}) \frac{\rm nb}{({\rm GeV}/c)^2}$$
$$\left\langle \frac{\sigma_{\rm LT}}{|t|} \right\rangle = (0.06 \pm 0.2_{\rm stat} \pm 0.1_{\rm syst}) \frac{\rm nb}{({\rm GeV}/c)^2}$$

An impact of
$$\overline{E}_{T}$$
 visible in $rac{\sigma_{TT}}{dt}$

Spin Density Matrix Elements in Exclusive Vector Meson Production on unpolarised protons

- $P_{\lambda_V} \lambda'_V \text{decomposes into nine matrices } P_{\lambda_V \lambda'_V}^{\alpha} \text{ corresponding to different photon polarisation states} \\ \alpha = 0 3 \text{transv.}, 4 \text{long.}, 5 8 \text{interf.}$
- Another notation: when contributions from transverse and longitudinal photons cannot be separeted notation introduced in (K.Schilling and K. Wolf, NP B 61 (1973) 381)

$$r^{04}_{\lambda_V \lambda'_V} = (\rho^0_{\lambda_V \lambda'_V} + \epsilon R \rho^4_{\lambda_V \lambda'_V}) (1 + \epsilon R)^{-1},$$

Access to helicity amplitudes allows:

- > test of s-channel helicity conservation (SCHC) ($\lambda_{\gamma} = \lambda_{V}$)
- > quantify the role of transitions with helicity flip

decomposition into Natural (N) Parity and Unnatural (U) Parity exchange amplitudes

$$F_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}=T_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}+U_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}$$

• e.g. in Regge framework NPE: $J^P = (0^+, 1^-, ...)$ (pomeron, $\rho, \omega, a_2 ...$ reggeons) UPE: $J^P = (0^-, 1^+, ...)$ (π, a_1, b_1 ... reggeons)

tests of GPD models

• e.g. for SCHC-violating transitions $\gamma_T \rightarrow V_L$ test sensitivity to GPDs with exchanged-quark helicity flip (transversity GPDs)

> extraction of $R = \sigma_{\rm L} / \sigma_{\rm T}$ in the case of SCHC violation

in the COMASS SDME analyses all above-mentioned tasks are adressed

Experimental access to SDMEs

$$\begin{split} W^{U+L}(\Phi,\phi,\cos\Theta) &= W^{U}(\Phi,\phi,\cos\Theta) + P_{B}W^{L}(\Phi,\phi,\cos\Theta) \propto \frac{d\sigma}{d\Phi \, d\phi \, d\cos\Theta} \\ W^{U} &= \frac{3}{8\pi^{2}} \left[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)_{\cos^{2}} \Theta - \sqrt{2} \operatorname{Re}(r_{10}^{04})_{\sin 2} \Theta \cos\phi - r_{1-1\sin^{2}}^{04} \Theta \cos 2\phi \\ &- \epsilon \cos 2\Phi \left(r_{11\sin^{2}} \Theta + r_{01\cos^{2}}^{1} \Theta - \sqrt{2} \operatorname{Re}(r_{10}^{1})_{\sin 2} \Theta \cos\phi - r_{1-1\sin^{2}}^{1} \Theta \cos 2\phi \right) \\ &- \epsilon \sin 2\Phi \left(\sqrt{2} \operatorname{Im}(r_{10}^{2})_{\sin 2} \Theta \sin\phi + \operatorname{Im}(r_{1-1}^{2})_{\sin^{2}} \Theta \cos\phi \right) \\ &+ \sqrt{2\epsilon(1+\epsilon)} \cos\Phi \left(r_{11\sin^{2}}^{5} \Theta + r_{00\cos^{2}}^{5} \Theta - \sqrt{2} \operatorname{Re}(r_{10}^{3})_{\sin 2} \Theta \sin\phi + \operatorname{Im}(r_{1-1}^{2})_{\sin^{2}} \Theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon(1+\epsilon)} \sin\Phi \left(\sqrt{2} \operatorname{Im}(r_{10}^{3})_{\sin 2} \Theta \sin\phi + \operatorname{Im}(r_{1-1}^{3})_{\sin^{2}} \Theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon(1-\epsilon)} \sin\Phi \left(\sqrt{2} \operatorname{Im}(r_{10}^{3})_{\sin 2} \Theta \sin\phi + \operatorname{Im}(r_{1-1}^{2})_{\sin^{2}} \Theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon(1-\epsilon)} \sin\Phi \left(r_{11\sin^{2}}^{5} \Theta + r_{00\cos^{2}}^{8} \Theta \\ &- \sqrt{2} \operatorname{Re}(r_{10}^{8})_{\sin 2} \Theta \cos\phi \\ &- r_{1-1\sin^{2}}^{8} \Theta \cos2\phi \right) \\ &+ \sqrt{2\epsilon(1-\epsilon)} \sin\Phi \left(r_{11\sin^{2}}^{8} \Theta + r_{00\cos^{2}}^{8} \Theta \\ &- \sqrt{2} \operatorname{Re}(r_{10}^{8})_{\sin 2} \Theta \cos\phi \\ &- r_{1-1\sin^{2}}^{8} \Theta \cos2\phi \right) \\ &\end{bmatrix}$$

for ω angle Θ between direction of ω and normal to decay plane

Data and selected samples

- Data collected within four weeks in 2012 using 2,5 m long LH2 target
- Data with polarised ($|P| \approx 0.8$) μ^+ and μ^- beams taken separately
- Independent analyses of two samples:

(i)
$$\mu p \rightarrow \mu' p' \rho^0 \approx 52\ 200\ \text{evts}$$

 $\longrightarrow \pi^+ \pi^- \qquad \text{BR} \approx 99\%.$

(ii)
$$\mu p \rightarrow \mu' p' \omega \approx 3\,000 \text{ evts}$$

 $\downarrow \rightarrow \pi^+ \pi^- \pi^0 \qquad \text{BR} \approx 89\%$
 $\downarrow \rightarrow \gamma\gamma \qquad \text{BR} \approx 99\%.$

- Results for (i) published in 2023 (EPJC 83,924 (2023))
- Results for (ii) published in 2021 (EPJC 81,126 (2021))

Experimental access to SDMEs (2)

$$W^{U+L}(\Phi,\phi,\cos\Theta) = W^U(\Phi,\phi,\cos\Theta) + P_B W^L(\Phi,\phi,\cos\Theta)$$

 $\frac{d\sigma}{d\Phi \, d\phi \, d\cos\Theta}$

SDMEs: "amplitudes" of decomposition of W^{U+L} in the sum of 23 terms with different angular dependences

[K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)]

15 unpolarised SDMEs (in W^U) and 8 polarised (in W^L)

- Unbinned ML fit to experimental W^{U+L} taking into account
 - total acceptance
 - fraction of background in the signal window
 - anglar distribution of background W^{U+L}_{bkg} (determined either from LEPTO MC or real data side band)

for ω angle Θ between direction of ω and normal to decay plane

Results on SDMEs for exclusive ρ^0 production for total kin. range

 $\begin{array}{l} 1 \ GeV^2 < Q^2 & < 10 \ GeV^2 \\ 5 \ GeV < W & < 17 \ GeV \\ 0.01 \ GeV^2 < p_T{}^2 < 0.5 \ GeV^2 \end{array}$

$$< Q^2 > = 2.4 \text{ GeV}^2$$

 $< W > = 9.9 \text{ GeV}$
 $< p_T^2 > = 0.18 \text{ GeV}^2$

- SDMEs grouped in clasess: A, B, C, D, E corresponding to different helicity transitions
- SDMEs coupled to the beam polarisation shown within green areas
- if SCHC holds all elements in classes C, D, E should be 0

not obeyed for transitions $\gamma^*_{\ T} \rightarrow \rho_L$

Transitions $\gamma^*_{T} \rightarrow \rho_{L}$

possible GPD interpretation **Goloskokov and Kroll, EPJC 74 (2014) 2725** contribution of amplitudes depending on chiral-odd ("transversity") GPDs H_T , $\overline{E}_T = 2\widetilde{H}_T + E_T$

0

0

0.4

0.6

 $p_T^2 (\text{GeV}/c)^2$

0.2

15

 $W (\text{GeV}/c^2)$

10

0

5

6

0

2

4

 $O^2 (\text{GeV}/c)^2$

COMPASS

Results on SDMEs for exclusive ω production for total kin. range

 $\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} \ < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W \ < 17 \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} \ < {\rm p_T^2} \ < 0.5 \ {\rm GeV^2} \end{array}$

 $< Q^2 > = 2.1 \text{ GeV}^2$ < W > = 7.6 GeV $< p_T^2 > = 0.16 \text{ GeV}^2$

- GK model, EPJA 50 (2014) 146 (1st version) parameters constrained mostly by HERMES results for ρ^0 and ω
 - COMPASS provides new constraints for parameterisation of the model
 - p⁰ and ω results for class C complementary

 \overline{E}_T and H have the same signs for u and d quarks H_T and E have opposite signs for u and d quarks

for ω the first term in Eq. (•) still dominates, but sensitivity to H_{T} is enhanced compared to ρ^{0}

NPE-to-UPE asymmetry of cross sections

$$P = \frac{2r_{1-1}^1}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_T^N(\gamma_T^* \to V_T) - d\sigma_T^U(\gamma_T^* \to V_T)}{d\sigma_T^N(\gamma_T^* \to V_T) + d\sigma_T^U(\gamma_T^* \to V_T)}$$

Extraction of R

Most of the previous analyses commonly assumed SCHC hypothesis

In such case $R = \frac{\sigma_L(\gamma_L^* \to V)}{\sigma_T(\gamma_T^* \to V)}$ is approximated by $R' = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$

> To include effect of helicity-changing amplitudes one can use $\widetilde{R} = R' - \frac{\eta(1 + \epsilon R')}{\epsilon(1 + \eta)}$ with $\eta = \frac{(1 + \epsilon R')}{N} \sum \{|T_{01}|^2 + |U_{01}|^2 - 2\epsilon(|T_{10}|^2 + |U_{10}|^2)\}$

as proposed in A. Airapetian et al. (HERMES Collab.) EPJC 62, 659 (2009)

 η can be approximately estimated as $\eta \approx (1 + \epsilon R')(\tau_{01}^2 - 2\epsilon \tau_{10}^2)$ with τ_{01}^2 and τ_{10}^2 denoting fractions of contributions to the cross section from NPE processes $\gamma_T^* \rightarrow \rho_L^0$ and $\gamma_L \rightarrow \rho_T^0$

<u>Comparison between both COMPASS estimates</u>; on average the correction to R' ≈ -0.07

Q^2 dependence of R

> HERMES and COMPASS results corrected for contribution of T_{01} and T_{10} ; H1 for contr. of T_{01}

> For other experiments SCHC hypothesis assumed

Outlook

from the large data sample collected in 2016+2017

with LH_2 target, RPD and **wide-angle** electromagnetic calorimetry collected statistic ~ 10 larger than from 2012 test run

Deeply Virtual Compton Scattering:

- t-dependence of DVCS cross section vs. x_{Bj} ("proton tomography")
- mapping GPD H by measurments real and imaginary parts of DVCS
 via φ-dependence the μ⁺ and μ⁻ cross sections difference and sum

Hard Exclusive Meson Production:

- differential cross section for π^0 vs. Q², v (W), t(p_T²), ϕ
- differential cross sections and SDMEs for VMs vs. Q², v (W), t (p_T^2)

Spares

0.6

0.8

