Nuclear Isomers in Nucleosynthesis
 Brad Meyer
 Clemson University

Key assumption: all species internally equilibrated (=assumption that transitions between levels within a nuclear species occur more rapidly than reactions of the species with other species)

$$
P_{j} \propto g_{j} \cdot e^{-E_{j} / k T}
$$

This assumption not always true (especially for a species with a long-lived isomer) =>must account for the transition rates among levels

"Astromers"

Energy (keV), J^{π}, level

Effective isomerization rate

$$
\lambda_{21}^{e f f}=\sum_{k} \lambda_{2 k} \Gamma_{k 1}
$$

$$
\lambda_{21,3}^{e f f}=\Lambda_{2}\left\{\left(f_{23} f_{24}\right)\left(\begin{array}{cc}
1+f_{34} f_{43} & f_{34} \\
f_{43} & 1+f_{43} f_{34}
\end{array}\right)\binom{f_{31}}{f_{41}}\right\}
$$

$$
=\Lambda_{2}(\underbrace{f_{23} f_{31}+f_{24} f_{41}}_{\text {all two-arc paths }}+\underbrace{f_{23} f_{34} f_{41}+f_{24} f_{43} f_{31}}_{\text {all three-arc paths }}+\underbrace{f_{23} f_{34} f_{43} f_{31}+f_{24} f_{43} f_{34} f_{41}}_{\text {all four-arc paths }}
$$

effective branching ratio

Fugacity

$$
\phi_{k}=X_{k} / X_{k}^{e q}
$$

In upper-level steady state

$$
\phi_{k}=\Gamma_{k 1} \phi_{1}+\Gamma_{k 2} \phi_{2}
$$

time (s): $1.00 \mathrm{e}-15 ; T_{9}=0.26$

In upper-level steady state

$$
\phi_{k}=\Gamma_{k 1} \phi_{1}+\Gamma_{k 2} \phi_{2}
$$

$$
w_{k}^{(q)}= \begin{cases}\delta_{q k} & \text { if } k=1,2, \\ \Gamma_{k q} R_{q k} & \text { if } k>2,\end{cases}
$$

$$
\lambda_{(p, \gamma), q}^{e f f}=\left\{\frac{\left(\lambda_{(p, \gamma)}\right)^{T} w_{q}}{W_{q}}\right\}
$$

87Rb

- 27.8% of naturally occurring rubidium
- Produced in the s (slow) process of nucleosynthesis
- 49.2 Gyr lifetime (${ }^{87} \mathrm{Rb}->{ }^{87} \mathrm{Sr}$)
- During fractional crystallization, Sr tends to concentrate in plagioclase, so a residual magma may have an increased $\mathrm{Rb} / \mathrm{Sr}$ ratio=>rock age can be determined from Rb and Sr concentrations and knowledge of the initial ${ }^{87} \mathrm{Sr} / 86 \mathrm{Sr}$ ratio

Massive Star

TP AGB Star

Outlook and Future Work

Misch et al. (2021)

Uncertainties dominated by unmeasured transition rates

1107.32 keV -> 304.871 keV
1140.73 keV -> 1107.32 keV
1166.69 keV -> 1140.73 keV
1166.69 keV -> 304.871 keV
1223.98 keV -> 1140.73 keV
1223.98 keV -> 1166.69 keV
1416.57 keV -> 1107.32 keV

Processes Affected

- S process
- I process
- R Process (especially decay back to stability)

Lvlspy

- Python package developed by Jaad Tannous and myself for handling general quantum level systems
- Computes necessary rates in an astrophysical plasma and the appropriate rate matrix
- Available from https://lvlspy.readthedocs.io or https:// webnucleo.readthedocs.io

Formalism

- Graph-theory treatment (Sayani Ghosh)
- Compute generalized cascade parameters from ratios of branchings on directed graphs rather than sum over all paths.
- Conceptually clearer and potentially more convenient computationally.

