Nuclear Isomers in Nucleosynthesis Brad Meyer **Clemson University**

Key assumption: all species internally equilibrated (=assumption that transitions between levels within a nuclear species occur more rapidly than reactions of the species with other species)

$$P_j \propto g_j \cdot e^{-E_j/kT}$$

This assumption not always true (especially for a species with a long-lived isomer) =>must account for the transition rates among levels

"Astromers"

 $A_{21}n_2$

 $\frac{B_{21}}{B_{12}} = \frac{g_1}{g_2}$

 $B_{12}n_1\rho(\nu)$

 $2h\nu^3$ A_{21} _____ $B_{21} - c^2$

A

A

Effective isomerization rate

 $\lambda_{21}^{eff} = \sum_{k} \lambda_{2k} \Gamma_{k1}$

$$\lambda_{21,3}^{eff} = \Lambda_2 \left\{ \begin{array}{cc} (f_{23}f_{24}) \begin{pmatrix} 1 + f_{34}f_{43} & f_{34} \\ f_{43} & 1 + f_{43}f_{34} \end{pmatrix} \begin{pmatrix} f_{31} \\ f_{41} \end{pmatrix} \right\}$$

$$= \Lambda_2(f_{23}f_{31} + f_{24}f_{41} + f_{23}f_{34}f_4)$$

all two-arc paths all three

effective branching ratio

Fugacity

In upper-level steady state

 $\phi_k = \Gamma_{k1}\phi_1 + \Gamma_{k2}\phi_2$

In upper-level steady state

 $\phi_k = \Gamma_{k1}\phi_1 + \Gamma_{k2}\phi_2$

 $w_k^{(q)} = \begin{cases} \delta_{qk} & \text{if } k = 1,2, \\ \Gamma_{kq} R_{qk} & \text{if } k > 2, \end{cases}$

 $\lambda_{(p,\gamma),q}^{eff} = \left\{ \frac{(\lambda_{(p,\gamma)})^T w_q}{W_q} \right\}$

- 27.8% of naturally occurring rubidium
- Produced in the s (slow) process of nucleosynthesis
- 49.2 Gyr lifetime (${}^{87}Rb {}^{87}Sr$)
- ⁸⁷Sr/⁸⁶Sr ratio

87Rh

• During fractional crystallization, Sr tends to concentrate in plagioclase, so a residual magma may have an increased Rb/Sr ratio=>rock age can be determined from Rb and Sr concentrations and knowledge of the initial

Massive Star

TP AGB Star

Outlook and Future Work

Misch et al. (2021)

Uncertainties dominated by unmeasured transition rates

- 1107.32 keV -> 304.871 keV
- 1140.73 keV -> 1107.32 keV
- 1166.69 keV -> 1140.73 keV
- 1166.69 keV -> 304.871 keV
- 1223.98 keV -> 1140.73 keV
- 1223.98 keV -> 1166.69 keV
- 1416.57 keV -> 1107.32 keV

Processes Affected

- S process
- I process
- R Process (especially decay back to stability)

- general quantum level systems
- rate matrix
- Available from https:// webnucleo.readthedocs.io

LVISpy

Python package developed by Jaad Tannous and myself for handling

Computes necessary rates in an astrophysical plasma and the appropriate

Formalism

- Graph-theory treatment (Sayani Ghosh)
- directed graphs rather than sum over all paths.

Compute generalized cascade parameters from ratios of branchings on

Conceptually clearer and potentially more convenient computationally.