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Key assumption: all species internally equilibrated 
(=assumption that transitions between levels 

within a nuclear species occur more rapidly than 
reactions of the species with other species)

Pj ∝ gj ⋅ e−Ej/kT



This assumption not always true (especially for 
a species with a long-lived isomer) 

=>must account for the transition rates among 
levels

“Astromers”
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in the overall equilibration rate.
The strongest single-particle transitions occur between

two nuclear levels when their spins differ by zero or unity
and when their parities are different, since the selection rules
permit E1 transitions to occur. However, at low temperatures
such transitions are hampered in 26Al by the fact that in our
set of 67 levels, every energy level below 4.4 MeV has posi-
tive parity. Thus the system is forced to make small spin
jumps with no change in parity. Figure 2 shows the dominant
paths at five different temperatures. Below T9!0.3 the tran-
sition through the levels 2!3!1 completely dominates the
scenario. This represents a 0"!3"!5" progression in spins
and parities. At T9#0.6 the dominant route is through levels
2!4!3!1 where the spin-parity progression is 0"!1"

!3"!5". With the opportunity to reach for higher energy
levels that may offer even smaller spin increments, we have
at T9#1.3 the level route 2!4!8!3!1 with a spin-parity
chain 0"!1"!2"!3"!5". This progression dominates
until T9!3.0 when several 2! states at "4.5 MeV become
accessible, allowing parity changes. This is reflected in the
fourth pathway in Fig. 2. The fifth pathway in Fig. 2 through
the levels 2!4!35!3!36!1 is the dominant one at T9
#5.0: it has a 0"!1"!2!!3"!4"!5" progression with
all spin jumps equal to unity. At this temperature there are so
many optimal paths that the concept of one best route be-
comes meaningless. This is illustrated by Fig. 3 which shows
the steep drop in the contribution of the dominant path to the
total effective rate as a function of temperature. The five
most dominant pathways in the internal equilibration of 26Al
at T9#5.0 are shown in Fig. 4. The most dominant pathway
starts furthest to the left. The second, third, fourth, and fifth
most dominant pathways start sequentially rightward of the
most dominant and are minor variations of it.
We now discuss issues of convergence. Figure 5 shows

the number of terms that we must retain to attain an accuracy
of one part in 1016. Figure 6 demonstrates the effect of con-
sidering a finite number of nuclear energy states. It is clear
that a single intermediate node #level 3, which is a 3" at
0.416 MeV$ suffices until we reach T9!0.3. Thereafter,
higher energy levels and multiple intermediate nodes become
necessary as rising temperatures make more complicated
pathways energetically possible. Four energy levels #level 4
is a 1" state at 1.058 MeV$ and two intermediate nodes
suffice until T9!1.0. Beyond T9!1.0, the number of terms

FIG. 1. The effective transition rate %21
e f f for 26Al as a function

of temperature. The solid line gives the result of the full calculation.
The dashed line gives the rate when the direct transitions between
levels 2 and 3 are disabled. For reference, the dotted line gives the
&"-decay rate of the 0" metastable state. For T9$0.4, the meta-
stable state has no chance of equilibrating with the ground state
before & decaying.

FIG. 2. The dominant pathways at #A$ T9#0.2, #B$ T9#0.6, #C$
T9#1.3, #D$ T9#3.0, and #E$ T9#5.0 in the internal equilibration
of 26Al. At low temperatures, the dominant pathways must take spin
jumps larger than unity. At higher temperatures, large energy tran-
sitions are possible. This allows strongly favored spin jumps of
unity in the dominant pathway, thereby dramatically increasing the
effective equilibration rates. Levels are denoted by the format, en-
ergy in keV, spin parity, and #level number$ on the right-hand side
of the energy-level diagram.

FIG. 3. Fractional contribution of the dominant pathway to the
total rate %21

e f f in 26Al. When this quantity is unity, a single pathway
dominates the effective rate. Clearly different regimes apply at dif-
ferent temperatures. These are identified in the text in Sec. IV.
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in the expansion, which had stayed almost constant, begins
to show a very steep increase indicating the onset of very
complex pathways. However, at all temperatures the number
of terms required is finite. At T9!2.0, the number of terms
required in the matrix series is N!74. At T9!5.0, 1239
terms are required in the matrix series, and at T9!10.0, N
!22 332. Even the last calculation imposes very mild de-
mands on computer time. The effect of not including enough
terms, however, is quite dramatic. As Fig. 5 shows, an inad-
equate number of transit points in the flow from the ground-
state ensemble to the metastable-state ensemble can result in
pathological behavior in the vicinity of T9!3.0 where the
rate curves actually dip below values attained at lower tem-
peratures. This happens because many higher-lying levels
open up at such high temperatures, but if we constrain the

system to an inadequate number of intermediate nodes then it
cannot take advantage of the pathways that have become
available. Indeed, since the f i j’s among the lower-lying lev-
els decrease with rising temperature, the rate as a whole
suffers a decline due to premature series truncation.
Table I investigates the dependability of !FN! as a con-

vergence criterion. Clearly, the general trend of increase in N
with temperature is closely followed for the different accu-
racies !one part in 1016,1010,106,103,102, and 101). In fact, at
a fixed temperature N varies remarkably slowly even though
we investigate such a wide range of accuracies. Indeed, we
have observed that 90% accuracy is achieved in the rate cal-
culation when an accuracy of one part in 10 is estimated by
!FN! , 99% accuracy for one part in 102, and so on. This
interesting result may be obtained by comparison with rates
for N!1 000 000, at which the last term of the matrix series
is zero for the purpose of practical computation. This indi-
cates that even though !FN! is a conservative estimate of the
fractional error, it is a very good one. It behaves like a ‘‘least
upper bound,’’ loosely speaking, and is a powerful tool for
ensuring not only the accuracy of our technique, but also its
efficiency, since it curtails superfluous matrix arithmetic.
Such is not the case for !F!N, which for the reasons dis-
cussed in Sec. II grossly overestimates the fractional error

FIG. 4. The first five dominant pathways in the internal equili-
bration of 26Al at T9!5.0. The most dominant pathway is the one
that starts furthest to the left. The second, third, fourth, and fifth
most dominant pathways start sequentially rightward of the most
dominant.

FIG. 5. Variations in the effective flow rate from the metastable-
state ensemble to the ground-state ensemble when a different num-
ber of terms is retained in the series expansion. The rates are accu-
rate to one part in 1016.

FIG. 6. Variations in the effective flow rate from the metastable-
state ensemble to the ground-state ensemble when a different num-
ber of nuclear energy levels is used to approximate the full network.
The rates are accurate to one part in 1016 for the adopted level
subset.
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in the overall equilibration rate.
The strongest single-particle transitions occur between

two nuclear levels when their spins differ by zero or unity
and when their parities are different, since the selection rules
permit E1 transitions to occur. However, at low temperatures
such transitions are hampered in 26Al by the fact that in our
set of 67 levels, every energy level below 4.4 MeV has posi-
tive parity. Thus the system is forced to make small spin
jumps with no change in parity. Figure 2 shows the dominant
paths at five different temperatures. Below T9!0.3 the tran-
sition through the levels 2!3!1 completely dominates the
scenario. This represents a 0"!3"!5" progression in spins
and parities. At T9#0.6 the dominant route is through levels
2!4!3!1 where the spin-parity progression is 0"!1"

!3"!5". With the opportunity to reach for higher energy
levels that may offer even smaller spin increments, we have
at T9#1.3 the level route 2!4!8!3!1 with a spin-parity
chain 0"!1"!2"!3"!5". This progression dominates
until T9!3.0 when several 2! states at "4.5 MeV become
accessible, allowing parity changes. This is reflected in the
fourth pathway in Fig. 2. The fifth pathway in Fig. 2 through
the levels 2!4!35!3!36!1 is the dominant one at T9
#5.0: it has a 0"!1"!2!!3"!4"!5" progression with
all spin jumps equal to unity. At this temperature there are so
many optimal paths that the concept of one best route be-
comes meaningless. This is illustrated by Fig. 3 which shows
the steep drop in the contribution of the dominant path to the
total effective rate as a function of temperature. The five
most dominant pathways in the internal equilibration of 26Al
at T9#5.0 are shown in Fig. 4. The most dominant pathway
starts furthest to the left. The second, third, fourth, and fifth
most dominant pathways start sequentially rightward of the
most dominant and are minor variations of it.
We now discuss issues of convergence. Figure 5 shows

the number of terms that we must retain to attain an accuracy
of one part in 1016. Figure 6 demonstrates the effect of con-
sidering a finite number of nuclear energy states. It is clear
that a single intermediate node #level 3, which is a 3" at
0.416 MeV$ suffices until we reach T9!0.3. Thereafter,
higher energy levels and multiple intermediate nodes become
necessary as rising temperatures make more complicated
pathways energetically possible. Four energy levels #level 4
is a 1" state at 1.058 MeV$ and two intermediate nodes
suffice until T9!1.0. Beyond T9!1.0, the number of terms

FIG. 1. The effective transition rate %21
e f f for 26Al as a function

of temperature. The solid line gives the result of the full calculation.
The dashed line gives the rate when the direct transitions between
levels 2 and 3 are disabled. For reference, the dotted line gives the
&"-decay rate of the 0" metastable state. For T9$0.4, the meta-
stable state has no chance of equilibrating with the ground state
before & decaying.

FIG. 2. The dominant pathways at #A$ T9#0.2, #B$ T9#0.6, #C$
T9#1.3, #D$ T9#3.0, and #E$ T9#5.0 in the internal equilibration
of 26Al. At low temperatures, the dominant pathways must take spin
jumps larger than unity. At higher temperatures, large energy tran-
sitions are possible. This allows strongly favored spin jumps of
unity in the dominant pathway, thereby dramatically increasing the
effective equilibration rates. Levels are denoted by the format, en-
ergy in keV, spin parity, and #level number$ on the right-hand side
of the energy-level diagram.

FIG. 3. Fractional contribution of the dominant pathway to the
total rate %21

e f f in 26Al. When this quantity is unity, a single pathway
dominates the effective rate. Clearly different regimes apply at dif-
ferent temperatures. These are identified in the text in Sec. IV.
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Effective isomerization rate



!F!!FN!
!F!! "

!FN#FN#1#FN#2#•••!
!F!!

"
!FN"I#F#F2#••• #!

!F!!

"
!FNF!!

!F!! $
!FN!!F!!

!F!!

"!FN! , "2.34#

where we have used the inequality

!F1F2!$!F1!!F2! "2.35#

for any two m$m matrices F1 and F2 %12&. We may also use
this inequality to note that !FN!$!F!N. However, the row
sum of the substochastic matrix F is maximized for the row
k in the parent matrix corresponding to a minimum in the
sum ( f k1# f k2) of branching ratios to the ground and meta-
stable states. For T9$10.0, this is of the order 10!17 to
10!15. Thus while !F!N is certainly an upper bound on
'((F))N, in practice it is too conservative to be used as a
convergence criterion. We have used !FN! to estimate the
fractional error. As will be seen in Sec. IV, it turns out to be
an excellent guide.

III. A COMBINATORIAL INTERPRETATION OF THE
EFFECTIVE RATE

The expression enclosed by square brackets in Eq. "2.29#
is actually the effective branching ratio (" f 21

e f f) due to indi-

rect transitions. Let each nuclear energy level be represented
by the node of a directed graph "digraph#, weighted such that
the transition probability f i j is the cost of the arc connecting
nodes i and j. If the costs of successive arcs along a path are
combined multiplicatively to yield the path cost, then Eq.
"2.29# is the transfer matrix formula for the sum of the costs
of all possible paths between nodes 2 and 1, with the restric-
tion that the number of intermediate nodes should not exceed
N. "See Ref. %13& and references therein for a detailed dis-
cussion of the transfer matrix in graph theory.# In other
words, our technique is a combinatorial enumeration of all
finite ‘‘f strings’’ of the form ( f 2i1 f i1i2 f i2i3 . . . f im1), where
1$m$N .
Suppose we wish to find the effective rate to order N

"3 for a n"4 level system. First we need the (n!2)$(n
!2) matrix F, which reduces to order 2$2,

F"" 0 f 34
f 43 0 # . "3.1#

Next we compute the partial sum of transfer matrices

FN"F3"I#F#F2"" 1# f 34f 43 f 34
f 43 1# f 43f 34# . "3.2#

The effective rate to third order in the series expansion may
then be obtained immediately from Eq. "2.29#,

*21,3
e f f "+2$ " f 23f 24#" 1# f 34f 43 f 34

f 43 1# f 43f 34# " f 31f 41# % "3.3#

"3.4#

Keeping in mind that the number of arcs in a path is one
more than the number of intermediates visited between the
origin and the destination, we see from Eq. "3.4# that Eq.
"2.29# automatically enumerates every possible pathway with
1, 2 or 3 intermediate nodes. The matrix FN elegantly enu-
merates all the ways in which nodes 3 and 4 can be arranged
to give 1, 2, and 3 intermediates. Then ( f 2

out)T connects the
possible ‘‘intermediate circuits’’ to the metastable state to
‘‘feed’’ them while at the other end f 1

in connects them to the
ground state, which is the final ‘‘recipient.’’ Though a strictly

correct calculation of *21
e f f would use F! , FN typically con-

verges rapidly for finite N because the magnitude of every
element of F is strictly less than unity.
Further insight may be obtained by defining the follow-

ing:
"i# The N-arc ‘‘cascade probability vectors’’

,q ,N
in "" ,3q

&
,nq

# -FNf q
in .
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ϕk = Xk /Xeq
k

Fugacity



ϕk = Γk1ϕ1 + Γk2ϕ2

In upper-level steady state





ϕk = Γk1ϕ1 + Γk2ϕ2

In upper-level steady state

ground state. In this case, the effective beta-decay lifetime
will be the beta-decay lifetime of the metastable state. There
can be a large discrepancy in the effective beta-decay life-
times in these two scenarios.
One could remove this ambiguity in a nuclear reaction

network by including many levels in 26Al as separate spe-
cies. This becomes computationally burdensome. We seek
here a means of treating the system as if it had only two
nuclear species. To begin, we must be clear about those two
species. From Eq. !5.9", the definition of the fugacity #k and
the fact that Yk

eq/Yq
eq!Rqk , where Rqk is the ‘‘reverse ratio’’

previously defined as ($qk /$kq), we may find, under the as-
sumption that the upper-lying levels are in a steady state, that

Yk!%k1R1kY 1"%k2R2kY 2 , !6.1"

for levels k#2. We define the weight factors at temperature
T as

wk
(q)!! &qk if k!1,2,

%kqRqk if k#2 ,
!6.2"

where q!1 refers to the ground state and q!2 to the meta-
stable state, to permit use of the more compact equation

Yk!wk
(1)Y 1"wk

(2)Y 2 !6.3"

for all levels k, 1'k'n . If we now take Y tot to be the total
number of 26Al nuclei !at any excitation energy", we find

Y tot!" (
k
wk
(1)#Y 1"" (

k
wk
(2)#Y 2

!W1Y 1"W2Y 2)Y (1)"Y (2) . !6.4"

In this equation, Y (1) and Y (2) are the abundances of two
ensembles of states. Ensemble !1" is comprised of the ground

FIG. 8. The same as Fig. 7 except for T9!2.0. A significant portion of the evolution in this case does not occur in a steady state. Indeed,
for this temperature, the timescales to reach a steady state and equilibrium are nearly equal. The reason for this is that, for this temperature,
the rates for upward transitions from levels 1 and 2 to the upper-lying levels are now comparable to the destruction rates of those upper-lying
levels.
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!"
e f fY tot!#

k
!" ,kY k , $6.5%

where !" ,k is the beta-decay rate out of nuclear level k. From
Eq. $6.3%, we may write

!"
e f fY tot!! #

k
!" ,kwk

(1)"Y 1"! #
k

!" ,kwk
(2)"Y 2

!! #
k

!" ,kwk
(1)

#
k
wk
(1) " ! #

k
wk
(1)"Y 1

"! #
k

!" ,kwk
(2)

#
k
wk
(2) " ! #

k
wk
(2)"Y 2

!! #
k

!" ,kwk
(1)

#
k
wk
(1) " W1$T %Y 1

"! #
k

!" ,kwk
(2)

#
k
wk
(2) " W2$T %Y 2

!! #
k

!" ,kwk
(1)

#
k
wk
(1) " Y (1)"! #

k
!" ,kwk

(2)

#
k
wk
(2) " Y (2)

&!" ,1
e f f Y (1)"!" ,2

e f f Y (2) , $6.6%

where

!" ,q
e f f !! #

k
!" ,kwk

(q)

#
k
wk
(q) " $6.7%

gives the effective beta-decay rate out of ensemble $q% and
vindicates our choice of weight factor wk

(q) for level k in
ensemble (q), as it leads to !" ,q

e f f being the appropriately
weighted ensemble average.
The weight factors provide more than conceptual insight

into how each level influences the two ensembles; they also
give us a compact vector formula for the effective beta-decay
rate. We define the following vectors:

$i% The n-dimensional weight vectors

wq!! w1(q)#
wn
(q)
" for q!1

$ground-state ensemble% and q!2 $metastable-state en-
semble%;

$ii% The n-dimensional abundance vector

Y!! Y 1
Y 2
Y 3
SS

#
Yn
SS

" ;
and

$iii% The "-decay rate vector

!"!! !" ,1

#
!" ,n

" .
With these definitions, Eq. $6.3% may be recast in matrix form
as

Y!w1Y 1"w2Y 2 , $6.8%

and Eq. $6.7% as

!" ,q
e f f !$ $!"%Twq

Wq
% . $6.9%

Although our treatment has been of the effective beta-
decay rate, the same formulas would apply for any reaction
on 26Al. For example, consider (p ,') reactions on 26Al. The
proton capture rate

! (p ,')!! ! (p ,'),1

#
! (p ,'),n

"
leads to

! (p ,'),q
e f f !& $! (p ,')%

Twq

Wq
' , $6.10%

where ! (p ,'),k is the rate of proton capture out of level k. All
that is required to compute the (p ,') reaction rates on en-
sembles $1% and $2% are $a% the ! (p ,'),k from experiment or
calculation, $b% the known energies Ek , and $c% the weight
factors wk

(q) (q!1,2) at a particular temperature, which we
have calculated and tabulated along with the ‘‘cascade’’
probabilities (k1 and (k2 in the electronic addendum to this
paper )16*. The reverse reactions, here the (' ,p) reactions,
are derived from simple detailed balance. In full nuclear sta-
tistical equilibrium,

! (' ,p),q
e f f +Yeq$27Si%,!! (p ,'),q

e f f +Y (q)
eq $26Al%,. $6.11%
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• 27.8% of naturally occurring rubidium


• Produced in the s (slow) process of nucleosynthesis


• 49.2 Gyr lifetime (87Rb—>87Sr)


• During fractional crystallization, Sr tends to concentrate in plagioclase, so 
a residual magma may have an increased Rb/Sr ratio=>rock age can be 
determined from Rb and Sr concentrations and knowledge of the initial 
87Sr/86Sr ratio

87Rb
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85Krm
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Outlook and Future Work



Symmetry 2021, 13, 1831 10 of 50

0.0), (1160.0 ! 1147.96), (1251.01 ! 0.0), (1251.01 ! 743.35), (1276.09 ! 0.0), (1276.09 !
1147.96), (1276.09 ! 1251.01), (1433.92 ! 1147.96), (1433.92 ! 1251.01), (1433.92 !
1276.09), (1548.36 ! 0.0), (1548.36 ! 1147.96), (1548.36 ! 1276.09), (1548.36 ! 743.35),
(1750.43 ! 1251.01), (2357.0 ! 0.0), (2357.0 ! 743.35) transition rates. No expected new
effect on the r process due to its half-life being much shorter than that of its b-decay parent.

99Tc: Transition region nuclide. In total, 144 measured levels, 30 in this calcula-
tion. Isomer at 142.6836 keV (type A). Known uncertainties dominated by unmeasured
(181.09423 ! 142.6836) transition rate. No expected new effect on the r process due to its
half-life being much shorter than that of its b-decay parent.

Figure 4. Effective transition rates for Kr (Z = 36) isotopes. Darkest shaded band shows unmeasured rates increased or
decreased by one order of magnitude; light by two orders of magnitude. Thermalization temperature, Ttherm, estimated by
dashed vertical grey line.

3.5. Cd (Z = 48) Isotopes
Results for the isotopes in the following discussion are shown in Figure 6.
113Cd: Transition region nuclide. In total, 215 measured levels, 30 in this calculation.

Isomer at 263.54 keV (type A). Known uncertainties dominated by unmeasured (316.206 !
263.54), (458.633 ! 263.54), (458.633 ! 316.206), (522.259 ! 458.633), (530.0 ! 263.54),
(530.0 ! 316.206), (530.0 ! 458.633) transition rates. Isomer greatly accelerates b decay, but
likely unobservable because the half-life is still quite long (14 y) and the isomer population
is relatively low.

115Cd: Transition region nuclide. IN total, 70 measured levels, 30 in this calcula-
tion. Isomer at 181.0 keV (type B, 6 keV). Known uncertainties dominated by unmea-
sured (181.0 ! 0.0), (229.1 ! 0.0), (360.5 ! 229.1), (389.0 ! 181.0), (389.0 ! 360.5),
(393.9 ! 360.5), (393.9 ! 389.0), (417.2 ! 181.0), (417.2 ! 393.9) transition rates. Isomer
significantly slows b decay with possible consequences for r-process heating curves.

Misch et al. (2021)





Uncertainties dominated by 
unmeasured transition rates

1107.32 keV —> 304.871 keV


1140.73 keV —> 1107.32 keV


1166.69 keV —> 1140.73 keV


1166.69 keV —> 304.871 keV


1223.98 keV —> 1140.73 keV


1223.98 keV —> 1166.69 keV


1416.57 keV —> 1107.32 keV



Processes Affected

• S process


• I process


• R Process (especially decay back to stability)



Lvlspy

• Python package developed by Jaad Tannous and myself for handling 
general quantum level systems


• Computes necessary rates in an astrophysical plasma and the appropriate 
rate matrix


• Available from https://lvlspy.readthedocs.io or https://
webnucleo.readthedocs.io

https://lvlspy.readthedocs.io
https://webnucleo.readthedocs.io
https://webnucleo.readthedocs.io


Formalism

• Graph-theory treatment (Sayani Ghosh)


• Compute generalized cascade parameters from ratios of branchings on 
directed graphs rather than sum over all paths.


• Conceptually clearer and potentially more convenient computationally.


