What holds the nucleus together?

In the past quarter century physicists have devoted a huge
amount of experimentation and mental labor to this problem —
probably more man-hours than have been given to any other
scientific question in the history of mankind. [...]

The glue that holds the nucleus together must be a kind of
force utterly different from any we yet know.

HANS A. BETHE: “What holds the nucleus together?”,
Scientific American 189 (1953), no. 2, p. 58




What Is Modern Ab Initio Low-Energy Nuclear Theory,

And What Are Its Goals? — A Bias-Free Review!!
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0 The Goals of Modern Nuclear Physics
@ Chiral Effective Field Theory
© Some Achievements and Targets

@ A Few Issues | Need To Understand Better for Lasers: @ < 100 MeV

How to root Nuclear Physics in QCD?

_ Which constituents rule nucleons and nuclei at low energies?
/ Office of , _
¢ d Science How do nuclei react to external fields?

U.S. DEPARTMENT OF ENERGY

How does that serve our understanding?
How to plan effective experiments & test theory?

Community Effort — see US and NUPECC Long Range Plans.
Unrepresentative examples of interest to me.



1 . The Goals Of Modern Nuclear Phy3|CS Nuclear/Hadronic Long-Range Plans: NSAC 2023, NAS 2012

NuPECC 2024, OECD 2008, STFC-NPA (UK) 2009
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| M | Goal: Unified, systematic, quantified, rooted in QCD.

Bridge from lattice QCD to complexity of Nuclear Physics:
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Unique signals of the QCD symmetries & dynamics;

& o Q Reliable predictions & extractions at frontiers:
In

stability, Astrophysics (n-stars,...), beyond-SM,. ..

—> Controlled approximations: | Effective Field Theories
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chart adapted from G. Henning



(a) (Dis)Agreement Significant Only When All Error Sources Explored Ez‘i]'ﬁr;a(')foﬁg?

PHYSICAL REVIEW A 83, 040001 (2011)

Editorial: Uncertainty Estimates

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical
calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In
contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication
The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations.
It is all too often the case that the numerical results are presented without uncertainty estimates. Authors sometimes say that it
is difficult to arrive at error estimates. Should this be considered an adequate reason for omitting them? In order to answer this
question, we need to consider the goals and objectives of the theoretical (or computational) work being done. Theoretical papers

accuracy. However, the same is true for the uncertainties in experimental data.

There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation; for
example, in scattering processes involving complex systems. The comparison with experiment itself provides a test of our
theoretical understanding. However there isa broad claqs of papers where estimates of theoretical uncertainties can and should
be made. Papers presenting th 2xpected to include uncertainty estimates for the calculations
whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental
measurements.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Scientific Method: Quantitative results with corridor of theoretical uncertainties for falsifiable predictions.
Need procedure which is established, economical, reproducible: room to argue about “error on the error”.

“Double-Blind” Theory Errors: Assess with pretense of no/very limited data.




(b) Why Theory Error Bars Are Relevant

observablel

Ch. Forssén, idea: V. Nazarewicz
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(b) Why Theory Error Bars Are Relevant

favourite theorist reaction until ca. 2020
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(b) Why Theory Error Bars Are Relevant

theories with uncertainties —- falsifiable

observablel

Ch. Forssén, idea: V. Nazarewicz
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(b) Why Theory Error Bars Are Relevant

Ch. Forssén, idea: V. Nazarewicz

theory 1: low accuracy, imprecise
mindful of correlations: theory 2: mild tension with data of observable 1

theory 3: high-ish accuracy, strong tension with theory 2
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(c) Extensive Use of Bayesian Statistics: Bayesian Uncertainty Quantification

ai W Prior No infinite sampling pool; data fixed; more data changes confidence.
Posterior
® True value |Ca|| upon the Reverend Bayes for probabilistic interpretation! |

e.g. BUQEYE collaboration Furnstahl/Phillips!...1506.01343+1511.01952+. ..
New information increases level of confidence.

—> Smaller corrections, more reliable uncertainties.

BUQEYE Collaboration Clearly state your premises/assumptions — including naturalness.

Robust Estimate of Theory Truncation Errors & Correlations: probability densities.
Experimental Design: Which future data have likely biggest impact?
Model Mixing: Extrapolate between theories at different scales.

Emulators: Reduce CPU time by reduced-basis models, Eigenvalue Continuation,.. .trained on full results.

X
-
3

Annual ISNET workshops/conferences ~ Geal: Facilitate principled Uncertainty Quantification in Nuclear Physics ¢

ISNET PhyS G42n0.3 (201 5) Nodel Emulation ) [ — ] E Ret’
J. Phys. G 46 no. 10 (2019) BA.“'

Front. Phys. Res. Topics (2022)

Phy:

Mo
{fu(x:0)}

Observations
D =y ® Errors

Model Calibration
C ional Tool B

Likelihood
L = f1© 6

Prior

Model Mixing
Computational Tool C

An NSF CSSI Framework

Open Source Software (5 years until 2026)
Look to
. . A Potential Experimental Desi ||
Suites available * Computationsl Tool D ’ https://bandframework.
— ] github.io/ for papers,

talks, and software!
v0.3 released 10/23

bugeye.github.io o i

bandframework.github.io toput Toot &

Case Study Database BANDs

No more excuses: Trust only theorists who show effort to estimate theory/truncation errors — or apologise when not.



http://arxiv.org/abs/1506.01343
http://arxiv.org/abs/1511.01952
https://iopscience.iop.org/0954-3899/page/ISNET
https://iopscience.iop.org/journal/0954-3899/page/ISNET2
https://www.frontiersin.org/research-topics/28271/uncertainty-quantification-in-nuclear-physics/magazine
http://buqeye.github.io
http://bandframework.github.io

(d) Mind The Unknowns!

Scientific Approach

As we know,
there are known knowns.

There are things we know we know.

We also know

there are known unknowns.

That is to say
we know there are some things

we do not know.



(d) Mind The Unknowns!

Scientific Approach

As we know,
there are known knowns.

There are things we know we know.

We also know

there are known unknowns.

That is to say
we know there are some things

we do not know.

But there are also unknown
unknowns,
the ones we don’t know

we don’t know.

Donald Rumsfeld, 12 Feb 2002




2. Chiral Effective Field Theory

(a) Physical Models vs. Physical Theories

The Trouble With Nuclear Physics

In fact the trouble in the recent past has been a surfeit of different

models [of the nucleus], each of them successful in explaining the

behavior of nuclei in some situations, and each in apparent contradiction with
other successful models or with our ideas about nuclear forces.

Rudolph E. Peierls: “The Atomic Nucleus”, Scientific American 200 (1959), no. 1, p. 75; emphasis added

Model: Precise description tailored to one task (process/...). — No “fail” but “tuning”.

Theory: Comprehensive, prescriptive, predictive, accurate, Explain-All-To-Some-Degree. — Can fail.

Totalitarian Principle/Swiss Basic Law/
Weinberg’s “Folk Theorem”: Throw In the Kitchen Sink

As long as you let it be the most general possible Lagrangian consistent
with the symmetries of the theory, you’re simply writing down the most
general theory you could possibly write down.

Original: Weinberg: Physica 96A (1979) 327 — here 1997 version

“EFT = Symmetries 4+ Parametrisation of Ignorance"?? WHAT CAN POSSIBLY GO WRONG???




(b) Way Out: Ax Ap Z h, or What You See Is What You Get Weinberg: “folk lore theorem”

T e g‘\ afﬂ.

N

To probes with wavelength A, point-like for blurry for composed for
object of size R appears A >R, A ZR, A <R
. 21 ;
size R R~ 1A
e Example Radiation Multipoles: Pg; % Z aj () e.g. atoms: —————.
ang. mom. I wavelength A A ~ 5000A
) . target size R . error-estimate, space
Converges if| Separation of Scales Q = ——————— < 1 & g; of natural size | — .
resolution A for improvement

EFT Tenet: Short-distance physics does not have to be right for a good calculation,
because a low-energy process cannot probe details of the high-energy structure.

— Effective Field Theories

Identify those degrees of freedom and symmetries which are
appropriate to resolve the relevant Physics at the scale of interest.

Systematic approximation of real world with estimate of theoretical uncertainties.




(c) The Low-Energy Method: Chiral Effective Field Theory

1
Lacp = qlid + g4 — mylq — Etr[F“vFﬂv] has few parameters: O(s -+ 6 masses.

Degrees of freedom 7, N,A(1232) + all interactions allowed by symmetries: Chiral SSB, gauge, iso-spin,. . .

—> | Chiral Effective Field Theory YEFT = low-energy QCD

-

D? = = 2
Lyerr = (Dun®)(D* %) —m3, n“:r“+---+NT[iD0+W+2gTA_ 0-Dr+...[N+Co (NTN> +...
Y

Controlled approximation — Model-independent, error-estimate.

0] My — M, m ical fact
Expandin — and § = AN~ TP 04 <1 (numerica .a_lc)
Ay Ay Ay Pascalutsa/Phillips 2002

E[MeV]  Nfm=10"" m]
p.n (940) 0.2

w,p (770)




Weinberg, Ordéfiez/Ray/van Kolck, Friar/Coon,
Kaiser/Brockmann/Weise, Epelbaum/Gléckle/MeiBner,
Entem/Machleidt, Kaiser, Higa/Robilotta, Epelbaum, ...

Long-Range: correct symmetries and IR degrees of freedom: Chiral Dynamics

(d) Few-Nucleon Interactions in yEFT

typ. momentum
breakdown scale

Short-Range: symmetries constrain contact-ints to simplify UV: Minimal parameter-set

Hierarchy: 2NI-effects > 3NI-effects > 4Nl-effects

N’LO N’LO
W TN h
\/ EE A ~
' N W N
2N ints — T =~ —_— —a— ——
v FAEY N A v
Voo L VoA et
(V) \_, N\ N\
o | — X
2 parameter S 47 parameter —+0 parameter +15 = 24 param.
2
dof innp 36.2 10.1 1.10  (AV 18: 1.04, 40 param.)
0
D —_— T
3N ints - - —— >?< —— —— T 7~ etc
: N ,/ H v/
2 parameter parameter-free, in progress
H \
4N ints —_ —_ —_ ) X etc.
parameter-free




(e) What Can Possibly Go Wrong??

Check assumptions:

- Pyp. /S AerT = Q £ 17
“EFTs carry seed of own destruction.” D. R. Phillips

— No separation/jungle of scales? e.g. N* at2 GeV

— Wrong constituents/degrees of freedom?
new d.o.f. e.g. QED at 100 GeV without W, Z
phase transition changes d.o.f. N, 7 — quarks, gluons

— Nature refuses to have assumed symmetry? RN, 4 .

'ﬁi
] -
i y

e.g. impose Parity in weak interactions

Check the Quantitatively Predicted Convergence Pattern:

— Convergence? Coefficients of Natural Size?
— Bayesian Statistics predicts 16 “error-bars”. — later

— Order by order smaller corrections.

3 3 N’ uG
— Order by order less cut-off/RScheme dependence. Weien Youn Best Just i’y Gooo Enowo.

Falsifiability: Convergence to Nature tests assumptions. — After theoretical uncertainties determined.




(f) The Promise of Being Systematic

The Three Big Lies of Nuclear Theory

Nuclear Power is Safe.

They have Weapons of Mass Destruction.



(f) The Promise of Being Systematic

The Three Big Lies of Nuclear Theory

Nuclear Power is Safe.

They have Weapons of Mass Destruction.

My Power-Counting is Systematic.



(g) NN yEFT Power Counting Comparison

prepared for Orsay Workshop by GrieBhammer 7.3.2013
based on and approved by the authors in private communications

Derived with explicit & implicit assumptions; contentious issue.
Proposed order Q" at which counter-term enters differs. =—> Predict different accuracy, # of parameters.

order Weinberg (modified) Birse Pavon Valderrama et al. | Long/Yang
PLB251 (1990) 288 etc. PRC74 (2006) 014003 etc. PRC74 (2006) 054001 etc. PRC86(2012) 024001 etc.
Qi1 LO OflS(),3sl,OPE
plus ’Dy, 3SD; plus 3Py, 2Dy plus 3Poa
Qfé none LO of 3P()’IQ, 3PF,, | LO of 3SD1, 3D1, none
3F,, 3D, PR, °F,
Q° none NLO of 'S
Q% none NLO of 3S;, 3Dy, 3SD; | none none
0 LO of 3SDy,'Py, LO of *SDy,'Py, Py,
none none
Py.1.2; NLO of 1Sy, *PF»; NLO of 3Sy, *Py,
35, 3P, N2LO of 'S
#atQ ! || 2 4 5 4
#at Q° +0 +7 +5 +1
#atQ! +7 +3 +0 +8
total at Q! || 9 14 10 13

With same Xz /d.o.f., the self-consistent proposal with least parameters wins: minimum information bias.
Still, use it pragmatically to develop numerics & first glimpses at final theory — with caveat on systematics!




3. Some Achievements and Targets

(a) The Nuclear Chart In the Ab-Initio High-Accuracy Era

ab initio: method to reliably extrapolate, in a controlled and systematic way, to regions outside the ones used for
inferring the model parameters. [...] a systematically improvable approach for quantitatively describing nuclei using
the finest resolution scale possible while maximizing its predictive capabilities. Ekstrém/...: Front. Phys. 11 (2023) 1129094
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(b) np Scattering Observables at £, = 50 & 200 MeV Epelbaumy/... 1412.0142
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Bands estimate theory uncertainties by higher-order effects: — NLO — N?LO —- N’LO now also available.



(c) 3N: Polarised Deuteron-Proton Scattering

do/dQ [mb/sr]

Epelbaum/. . . [arXiv:1802.08584]
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Bands estimate theory uncertainties by higher-order effects:
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arXiv.org/abs/1802.08584

(d) Isotopic Medium Mass Chains with Ab-Initio Methods
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Theory methods agree: numerics (largely) under control.



(e) Electromagnetic Properties of Light Nuclei: Theory Errors Shrink with Order
6T T T T T T : T T T T T T T
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https://doi.org/10.1103/PhysRevC.97.044318

(f) '°0 Formation in the Solar CNO Cycle (Teller’s “sett atmosphere on fire”)
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(g) Nuclear Chart for Nuclear Astrophysics
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(g) Nuclear Chart for Nuclear Astrophysics
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Cannot measure all nuclei & excitations. —> Train theory on judiciously chosen “doable but relevant” data.



(h) Nuclear Equations of State and Neutron Stars

Modern nucl-th
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(i) Constraining Neutron Equation of State by Neutron Skin Thickness Lattimer 2023
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Only indirect information on neutron matter & nuclear symmetry energy parameters.

Disputes whether data actually sensitive to neutron skin parameters.




4. A Few Issues | Need To Understand Better for Lasers: @ < 100 MeV

— Energy resolution; event-by-event fluctuations of beam intensity, energy profile,...

High-accuracy (< 3%) monitoring of beam intensity, energy spectrum, beam focussing, particle content?

Pile-Up? Event rate in “one shot’? Used to 1 every 1000 s, but now heavily pulsed beam. ..

How well can one separate signal (e.g. neutrons) from background (e.g. photons)?

Convolute theory with several well-defined beam profiles?
Optimisation problem: Which “experimentally doable” combination most sensitive?

— Secondary neutron or pion beams: pion scattering, neutron properties/r-process?

Direct measurement of neutron-neutron scattering length?
[—16.3+£0.4] fm Bonn 2000/2001

So far best is indirectly from d(n, pn)n, but tensions: an, = { (~18.740.7] fm TUNL 1999/2006
—18. 7] fm

Neutron matter explorations?

nnn — nnn?



The efficient person gets the job
done right. The effective person
gets the right job done.
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