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Why do we need light sources?

Harnessing sun’s light New materials and fusionFuture electronics

• Understand photo-synthesis
• Control chemical reactions

• Control magnetism and electronics
• Ultra-fast computers

• Matter under extreme conditions
• Explore interior of stars

Adapted from https://lcls.slac.stanford.edu/overview

https://lcls.slac.stanford.edu/overview
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(superradiant) Free electron lasers are the brightest x-ray sources

Pellegrini et al. RMP 88 015006 (2016).
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Start micro-bunching at 
radiation wavelength

Electrons in each micro bunch 
radiate in phase

incoherent 
I ∝ N

coherent 
I ∝ N2

N electrons radiate out 
of phase

Superradiance: what is it and how it works?

Pellegrini et al. RMP 88 015006 (2016).
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What is a plasma accelerator?

drivere- plasma oscillation

accelerated e-s
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Betatron radiation
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Figure 3 |Measurement and modelling of the X-ray spectrum and modelling of the X-ray profile. a, The modelled, normalized betatron spectrum agrees
well with the experimentally measured spectrum obtained within one standard deviation. Inset: The experimental spectrum is inferred from measurements
of the X-ray yield through various filters with known transmission. b, The angularly and spectrally resolved X-ray flux displays a peak on axis at 10 keV and a
tail extending to ≃100 keV. c, The spectrally integrated X-ray beam profile shows an elliptically elongated beam profile in the direction of laser polarization.

not significantly larger than that of a single-shot measurement, the
r.m.s. pointing stability is 5mrad in the horizontal and vertical
direction, similar to the pointing stability of the electron beam.

To give an indication of the X-ray source size, microscopic
objects were backlit with the X-ray beam. Figure 1c–h shows X-ray
radiographic images of wire triplets of various sizes and of a
resolution test target. Figure 1i,j gives photographic images of the
smallest wire triplet and the test target. Even the smallest features
of size 3 µm are resolved, indicating that the betatron X-ray source
is ∼<3 µm, smaller than the size of the plasma wave in which the
radiating electronswere trapped and oscillate (≃20 µmdiameter).

To quantify the source size more precisely, a half-plane was
backlit with the X-ray beam. A typical intensity distribution on
the detector looks like a half-shadow (Fig. 2a inset), whose details
convolve information about the X-ray source and half-plane.
The half-plane was a 0.25-mm-thick cleaved InSb crystal (<6%
transmission below 20 keV) and resembles an ideal step function.

To accurately model the shape of the intensity distribution,
it is necessary to use Fresnel diffraction (see Methods), where
the details of the diffraction pattern depend on the spatial and
spectral intensity distribution of the source and the dimensions of
the set-up. Figure 2a shows a close-up of a typical experimental
and several modelled intensity distributions based on a Gaussian
intensity profile and synchrotron spectrum. For the solid red curve
in Fig. 2a, Ecrit = 8 keV and a 1/e2 intensity radius wx = 1 µm
was assumed, which best reproduced both the sharp rise and the
amplitude and width of the first fringe. Changing wx or Ecrit under
or overestimates the height and/or width of the overshoot and/or
the rise, as shown by the other curves in Fig. 2.

To obtain a 95% confidence interval for the source size, a
least-squares fit based on the Fresnel model was carried out with the
measured intensity distributions (see Methods). Figure 2a shows
exemplarily that the agreement between model and data depends
only weakly on the critical energy. This was confirmed by inde-
pendent measurements of the spectrum at identical experimental
conditions, which found Ecrit = 6–10 keV, as discussed later. To
accurately acknowledge the small uncertainty in critical energy and
also possible deviations from aGaussian source profile, the parame-
ter space of the Fresnel model includes spectra with critical energies
6–10 keV and spatial profiles of (super-)Gaussian to top-hat type.

Figure 2b shows a series of experimental intensity distributions
for which the source size was determined in this way. By changing
the plasma density, we have some level of control over the
source size. As the source size increases the visibility of the
first Fresnel fringe decreases. This is in accordance with the
modelling, from which it is expected that the fringes disappear for
a source size wx ∼> 5 µm.

For the ringing to occur, the radiation needs to have an apprecia-
ble degree of spatial coherence at the place of the half-plane, which
is merely u = 50mm from the source. The van Cittert–Zernike
theorem states that even the radiation of uncorrelated emitters
with Gaussian intensity distribution can be spatially coherent19.
The transverse coherence length is given by Ltrans = λu/2πwx,y .
In our case the relevant radiation wavelength is λ ≃ 6× 10−10 m,
which is the peak of the product of the synchrotron spectrum
Ecrit ≃ 8 keV and detector response. For a source size of wx = 2 µm,
Ltrans ≃ 3 µm, which is enough to observe one Fresnel fringe. The
spectral width of the source also reduces fringe visibility, as the
temporal or longitudinal coherence length Llong=λ2/2#λ≃λ.

We have assessed the amount of coherence by calculating the ex-
perimental fringe contrast (Imax − Imin)/(Imax+ Imin) and comparing
it with the prediction from the modelling of a (super-) Gaussian to
top-hat source with Ecrit = 6–10 keV, as shown in Fig. 2c. From this
agreement we infer that the complex coherence factorµ of our beta-
tron source must be close to the theoretical upper limit ofµ= 0.88,
whichwould be achievable for aGaussian intensity distribution19.

The spectral properties of the betatron radiation were deter-
mined by measuring the X-ray transmission through a set of filters
(see the inset of Fig. 3a) with an X-ray CCD (charge-coupled
device) detector7. Assuming the spectrum is synchrotron-like, the
measured Ecrit is (29±13) keV for ne = (1.0±0.4)×1019 cm−3, and
the 5 mm nozzle (see Fig. 3a). With twice the density and half the
laser power, the measured Ecrit = 6–10 keV is found to be lower,
consistent with what can be inferred from the fringe measurement
(Ecrit=4–16 keV) that was carried out at these conditions.

Numerical modelling was carried out using electron trajectories
obtained from the fully relativistic particle-in-cell code OSIRIS.
The simulations were run in the boosted frame, which, because
of relativistic length contraction and time dilation, offers higher
resolutions for shorter run times. The trajectories were post-
processed to yield the characteristics of the betatron radiation
(see Methods). Figure 3b shows the modelled X-ray spectrum as
a function of energy and angle. The X-ray flux peaks on-axis at
10 keV and extends to ≃100 keV. A lineout taken on-axis, as would
be measured by our detector, is plotted in Fig. 3a, comparing well
with the measured spectrum. A total of 108 photons are predicted
between 1 and 84 keV.Wemeasure 106–108, depending on electron
charge and (albeit small) pointing fluctuation. As a result of the
difficulty in decoupling pointing and yield fluctuations, we take
conservatively 5× 107 photons, a 1/e2 source radius wx,y = 1 µm,
a divergence of 13× 4mrad2, a bandwidth of 100% and a pulse
duration of 30 fs (refs 20,21). This gives a maximum achieved peak
brightness of 1×1022 photons per second per mrad2 per mm2 per
0.1% bandwidth.

982 NATURE PHYSICS | VOL 6 | DECEMBER 2010 | www.nature.com/naturephysics

S. Kneip et al. Nat. Physics 6 980 (2010).

Tomographic reconstruction of a bone sample
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bright x-ray backlighters with energies above 25 keV to study 
high Z materials. White light (or Laue) x-ray diffraction uses 
a broadband x-ray source because the Bragg condition can be 
satisfied in multiple crystallographic planes in a single shot. 
Each plane results in a characteristic Laue spot, giving rise 
to a complex diffraction pattern. For dynamic compression 
experiments an implosion capsule x-ray source is typically 
used [291, 292], as well as layers of high Z-materials irradi-
ated at intensities up to 1015 W cm−2 [293]. In these experi-
ments at least 1012 photons/eV/Sr is required. This number is 
also 3–4 orders of magnitude higher than the current perfor-
mance of betatron x-ray sources.

6. Conclusion and outlook

In this paper, we have discussed potential applications of 
light sources driven by laser-wakefield accelerators. We pre-
sented five sources: betatron x-ray radiation, Compton scat-
tering radiation, bremsstrahlung, undulator radiation, and THz 
radiation. We have seen that they can enable significant appli-
cations in medicine, industry and defense, and high energy 
density science.

In this section, we summarize the performances of the 
sources, and their application space. A recent review paper pre-
sents a table of the relevant theoretical scaling parameters for 
betatron, Compton and undulator radiation, which is very use-
ful to design an experiment for an application with part icular 
requirements [5]. Here, in table  7 we list the actual source 

parameters that have been experimentally reported (with best 
outcome for each source). We refer the reader to section 2 for 
a description of each experiment and for theoretical properties 
and scaling laws of each source. Figure  13 shows the peak 
brightness of betatron, Compton and bremsstrahlung radiation 
from LWFA, and compares it with other conventional sources 
in the same energy range. In table 8, we report all the appli-
cations listed in this paper, and indicate the most appropri-
ate source for each. Betatron x-ray radiation, the most mature 
source, is emitted by electrons accelerated and wiggled by 
the wakefield, and is very similar to synchrotron radiation, 
with the following features: a broadband continuous spectrum 
(1–100 keV), a narrow divergence, a small source size (µm), 
a short pulse duration (fs) and a perfect synchronization with 
the laser that produces it.

Applications that have already been demonstrated include 
x-ray phase contrast imaging of biological objects [94, 98, 
191, 192] or HED plasmas, and time-resolved x-ray absorp-
tion spectroscopy. These should likely become routine appli-
cations for this source in a near future, where it can be coupled 
to high power and free electron lasers capable of driving mat-
ter to extreme states. Other techniques, such as scattering or 
diffraction in HED plasmas, will require at least 3 orders of 
magnitude more photons. Compton scattering is produced 
when relativistic LWFA electrons are wiggled in the field of a 
second laser pulse and emit Doppler-upshifted radiation. This 
mechanism possesses the same features as betatron radiation 
but, despite a small cross section, will be more efficient to 
produce photons beyond 100 keV. The highest photon energy 

Figure 13. Peak brightness of betatron, Compton and bremsstrahlung radiation from LWFA compared to other types of sources in the 
same energy range. Sources included in this plot are: The APS synchrotron U30 undulator for harmonics 1, 3 and 5 (Argonne National 
Laboratory, USA), the ALS synchrotron (Lawrence Berkeley National Laboratory, USA), the Spring8 synchrotron (RIKEN, Japan), x-ray 
tubes (Copper and Molybdenum αK ), the LCLS free electron laser (SLAC, USA), and high harmonics generation from laser-produced 
plasmas.

Plasma Phys. Control. Fusion 58 (2016) 103001F. Albert et al., PPCF 58 103001 (2016)

FEL temporally coherent
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bright x-ray backlighters with energies above 25 keV to study 
high Z materials. White light (or Laue) x-ray diffraction uses 
a broadband x-ray source because the Bragg condition can be 
satisfied in multiple crystallographic planes in a single shot. 
Each plane results in a characteristic Laue spot, giving rise 
to a complex diffraction pattern. For dynamic compression 
experiments an implosion capsule x-ray source is typically 
used [291, 292], as well as layers of high Z-materials irradi-
ated at intensities up to 1015 W cm−2 [293]. In these experi-
ments at least 1012 photons/eV/Sr is required. This number is 
also 3–4 orders of magnitude higher than the current perfor-
mance of betatron x-ray sources.

6. Conclusion and outlook

In this paper, we have discussed potential applications of 
light sources driven by laser-wakefield accelerators. We pre-
sented five sources: betatron x-ray radiation, Compton scat-
tering radiation, bremsstrahlung, undulator radiation, and THz 
radiation. We have seen that they can enable significant appli-
cations in medicine, industry and defense, and high energy 
density science.

In this section, we summarize the performances of the 
sources, and their application space. A recent review paper pre-
sents a table of the relevant theoretical scaling parameters for 
betatron, Compton and undulator radiation, which is very use-
ful to design an experiment for an application with part icular 
requirements [5]. Here, in table  7 we list the actual source 

parameters that have been experimentally reported (with best 
outcome for each source). We refer the reader to section 2 for 
a description of each experiment and for theoretical properties 
and scaling laws of each source. Figure  13 shows the peak 
brightness of betatron, Compton and bremsstrahlung radiation 
from LWFA, and compares it with other conventional sources 
in the same energy range. In table 8, we report all the appli-
cations listed in this paper, and indicate the most appropri-
ate source for each. Betatron x-ray radiation, the most mature 
source, is emitted by electrons accelerated and wiggled by 
the wakefield, and is very similar to synchrotron radiation, 
with the following features: a broadband continuous spectrum 
(1–100 keV), a narrow divergence, a small source size (µm), 
a short pulse duration (fs) and a perfect synchronization with 
the laser that produces it.

Applications that have already been demonstrated include 
x-ray phase contrast imaging of biological objects [94, 98, 
191, 192] or HED plasmas, and time-resolved x-ray absorp-
tion spectroscopy. These should likely become routine appli-
cations for this source in a near future, where it can be coupled 
to high power and free electron lasers capable of driving mat-
ter to extreme states. Other techniques, such as scattering or 
diffraction in HED plasmas, will require at least 3 orders of 
magnitude more photons. Compton scattering is produced 
when relativistic LWFA electrons are wiggled in the field of a 
second laser pulse and emit Doppler-upshifted radiation. This 
mechanism possesses the same features as betatron radiation 
but, despite a small cross section, will be more efficient to 
produce photons beyond 100 keV. The highest photon energy 

Figure 13. Peak brightness of betatron, Compton and bremsstrahlung radiation from LWFA compared to other types of sources in the 
same energy range. Sources included in this plot are: The APS synchrotron U30 undulator for harmonics 1, 3 and 5 (Argonne National 
Laboratory, USA), the ALS synchrotron (Lawrence Berkeley National Laboratory, USA), the Spring8 synchrotron (RIKEN, Japan), x-ray 
tubes (Copper and Molybdenum αK ), the LCLS free electron laser (SLAC, USA), and high harmonics generation from laser-produced 
plasmas.

Plasma Phys. Control. Fusion 58 (2016) 103001F. Albert et al., PPCF 58 103001 (2016)

FEL temporally coherent
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bright x-ray backlighters with energies above 25 keV to study 
high Z materials. White light (or Laue) x-ray diffraction uses 
a broadband x-ray source because the Bragg condition can be 
satisfied in multiple crystallographic planes in a single shot. 
Each plane results in a characteristic Laue spot, giving rise 
to a complex diffraction pattern. For dynamic compression 
experiments an implosion capsule x-ray source is typically 
used [291, 292], as well as layers of high Z-materials irradi-
ated at intensities up to 1015 W cm−2 [293]. In these experi-
ments at least 1012 photons/eV/Sr is required. This number is 
also 3–4 orders of magnitude higher than the current perfor-
mance of betatron x-ray sources.

6. Conclusion and outlook
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parameters that have been experimentally reported (with best 
outcome for each source). We refer the reader to section 2 for 
a description of each experiment and for theoretical properties 
and scaling laws of each source. Figure  13 shows the peak 
brightness of betatron, Compton and bremsstrahlung radiation 
from LWFA, and compares it with other conventional sources 
in the same energy range. In table 8, we report all the appli-
cations listed in this paper, and indicate the most appropri-
ate source for each. Betatron x-ray radiation, the most mature 
source, is emitted by electrons accelerated and wiggled by 
the wakefield, and is very similar to synchrotron radiation, 
with the following features: a broadband continuous spectrum 
(1–100 keV), a narrow divergence, a small source size (µm), 
a short pulse duration (fs) and a perfect synchronization with 
the laser that produces it.

Applications that have already been demonstrated include 
x-ray phase contrast imaging of biological objects [94, 98, 
191, 192] or HED plasmas, and time-resolved x-ray absorp-
tion spectroscopy. These should likely become routine appli-
cations for this source in a near future, where it can be coupled 
to high power and free electron lasers capable of driving mat-
ter to extreme states. Other techniques, such as scattering or 
diffraction in HED plasmas, will require at least 3 orders of 
magnitude more photons. Compton scattering is produced 
when relativistic LWFA electrons are wiggled in the field of a 
second laser pulse and emit Doppler-upshifted radiation. This 
mechanism possesses the same features as betatron radiation 
but, despite a small cross section, will be more efficient to 
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Figure 13. Peak brightness of betatron, Compton and bremsstrahlung radiation from LWFA compared to other types of sources in the 
same energy range. Sources included in this plot are: The APS synchrotron U30 undulator for harmonics 1, 3 and 5 (Argonne National 
Laboratory, USA), the ALS synchrotron (Lawrence Berkeley National Laboratory, USA), the Spring8 synchrotron (RIKEN, Japan), x-ray 
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Plasma Phys. Control. Fusion 58 (2016) 103001F. Albert et al., PPCF 58 103001 (2016)
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Collective effects are critical to advanced light sources
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Collective effects: that’s what plasma physics is all about!
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What are the new radiation phenomena emerging from 
collective effects?

Single e- and wake trajectories are decoupled

Nonlinear plasma wakefields radiate
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Collective effects: that’s what plasma physics is all about!

•Wakefield moves forward in x at the driver velocity

•Plasma electrons travel sideways and forward/
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Radiation from collective modes

B. Malaca et al.
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Radiation from collective modes
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Can quasiparticles radiate as a finite-sized single-particle?

B. Malaca et al.
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4π2c3 ∫ dt 𝓢eiω[t−n⋅rc(t)/c] 2
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Collective motion (quasiparticle)

Single electron

𝓢 = ∫ dξ n × [n × j(ξ)]e−iωn⋅ξ/c
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1 GeV 10 GeV

Relativistic electron bunch in external B

Can quasiparticles radiate as a finite-sized single-particle?
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Relativistic electron bunch in external B

λ = 12.5 μm

λ

Can quasiparticles radiate as a finite-sized single-particle?

B. Malaca et al.



Jorge Vieira | New opportunities and challenges in nuclear physics with high power lasers | July 4, 2024

1 GeV 10 GeV

Relativistic electron bunch in external B

In
te

ns
ity

 a
t θ

 =
0.

01
 ra

d 
 [a

rb
. u

ni
ts

]

1000 200
Frequency [x 0.9 THz]

100

10-3

10-6

10-9

10-12

λ = 12.5 μm
1 GeV

10 GeV

λ = 12.5 μm

λ

Can quasiparticles radiate as a finite-sized single-particle?

B. Malaca et al.



Jorge Vieira | New opportunities and challenges in nuclear physics with high power lasers | July 4, 2024

1 GeV 10 GeV

Relativistic electron bunch in external B

λ = 6.25 μm
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A quasiparticle radiates like a a finite-sized single particle 
for radiation wavelengths longer than its size, regardless of microscopic e- trajectories
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Controlling the quasiparticle trajectory will allow us to obtain superradiance and 
temporal coherence in new conditions
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Can quasiparticles radiate as a finite-sized single-particle?

Illustration: Carin Cain

v > c
Cherenkov effect

Unlike single particles, quasiparticles can be subject to 
arbitrary accelerations and travel at any velocity

B. Malaca et al.

d2I
dωdΩ = ω2

4π2c3 ∫ dt 𝓢eiω[t−n⋅rc(t)/c] 2

d2I
dωdΩ = ω2

4π2c3 ∫ dt n × (n × v) eiω[t−n⋅rc(t)/c] 2

Collective motion (quasiparticle)

Single electron

𝓢 = ∫ dξ n × [n × j(ξ)]e−iωn⋅ξ/c

Quasiparticles suggest new forms of radiation

http://www.carincain.com/


Contents

Temporal coherence and superradiance from quasiparticles 
How to increase brightness of plasma accelerator based light sources

Coherence and superradiance from nonlinear plasma wakefields

RaDiO and the Role of GPUS 
Using GPU accelerator boards to ease radiation calculation load

Jorge Vieira | New opportunities and challenges in nuclear physics with high power lasers | July 4, 2024

Conclusions 



Quasiparticle velocity control with density ramps

Cherenkov radiation
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Optical shock at the 

Cherenkov angle

This requires , which is 
usually impossible :( 

But if we use quasiparticles…

vp > c

This scheme allows for broadband, single-cycle, 
off-axis photon bursts, relying on optical shocks 

of superluminal sources of radiation.
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Quasiparticle Cherenkov superradiance
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Optical shock at the 

Cherenkov angle

This requires , which is 
usually impossible :( 

But if we use quasiparticles…

vp > c

This scheme allows for broadband, single-
cycle, off-axis photon bursts, relying on optical 

shocks of superluminal sources of radiation.
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Quasiparticle Cherenkov superradiance
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Optical shock at the 

Cherenkov angle

This requires , which is 
usually impossible :( 

But if we use quasiparticles…
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Quadratic peak intensity growth at Cherenkov angle

B. Malaca et al.
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Quasiparticle undulator radiation
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Quasiparticle undulator radiation
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Figure 1. Experimental setup and formation of ionization IPG.
Figure (a) shows the experimental setup. Two identical pump pulses
(λ0 = 0.8 µm, τ ∼ 43 fs) intersect each other at an angle of 12.8◦ to
form the plasma grating. A frequency doubled (0.4 µm) probe pulse
is sent to the plasma grating at the Bragg angle. A photo of the spots
of all four beams on a white paper is shown. The scattered and
transmitted photon flux are measured simultaneously to determine
the scattering efficiency. The inset shows the coordinate system
used in (b) and (c). Figure (b) is an image of the plasma
fluorescence light taken using the top view camera which clearly
shows the grating grooves. Figure (c) shows a lineout of the
fluorescence image where the blue line is the data, I, and the red
dashed line is the estimated background I0. The relative intensity
modulation δI/I0 calculated as (I− I0)/I0 is shown in (d).

present, significant amount of probe photons were scattered
and collected using a low-noise scientific camera (PIXIS from
Princeton Instruments). In front of the camera, a 400 nm nar-
row band filter (10 nm bandwidth) was used to block the
scattered light with unwanted wavelengths and an f = 150 mm
spherical lens was used to reduce the beam size on the charge-
coupled device (CCD) to enhance signal to noise ratio. The
majority of the probe photons were transmitted and collected
by another CCD (Point Grey). In front of the camera, neutral
density filters and a color filter (BG-40) were used to attenuate
the transmitted probe and block the noise light, respectively,
and a f = 150 mm lens was used to reduce the probe beam size
on the CCD chip. Both cameras were calibrated such that the
number of scattered and transmitted photons can be deduced
from the measured signal counts and therefore the scattering
efficiency can be determined.

Once the plasma grating is formed, it can efficiently scat-
ter the probe pulse incident at the Bragg angle. The scatter-
ing has two contributions, one from the plasma and the other
from the unionized neutral gas acts as if it were a neutral
refractive index grating that is π out of phase with respect
to the plasma grating. The density modulation amplitude of

the plasma grating equals to the neutral gas grating and does
not depend on ionization degree. Since the refractive index of
neutral gas is much smaller than that of plasma, the contri-
bution of scattering from the neutral gas grating is negligible,
except at t0 when the refractive index of the neutral gas grat-
ing is significantly enhanced by the instantaneous n2 effect
induced by the pump lasers. Here t0 denotes the time when the
probe overlaps with the two pump pulses and n2 is the second-
order nonlinear refractive index.

The Thomson scattered power of the probe beam [39] from
a periodic plasma grating is given by:

Ps

Pi
=

(
ne
nc

kd
4

)2

(2)

where Ps and Pi are the power of the scattered and incident
probe, ne and nc denote electron density and the critical dens-
ity for the probe beam, respectively, k is the wavenumber of
the probe beam and d is the thickness of the plasma grating
along the probe beam direction. Using this equation, the abso-
lute plasma density ne can be deduced from the measured scat-
tering efficiency Ps/Pi for a given scattering geometry where
k and d are known. The ionization degree ne/n0 can also be
calculated if the original gas density n0 is also known, for
instance, by inferring from the pressure of a static fill.

3. Dynamics of the plasma grating

Once an ionization IPG is formed, it can last for tens of ps or
longer [40]. Many different mechanisms can lead to the relax-
ation of the plasma grating, including the ambipolar expansion
of the plasma and collision-assisted free electron recombina-
tion [41]. In this section, we present measurements of dynam-
ics of the IPG in hydrogen to illustrate the role of plasma
expansion.

Figure 2 shows the evolution of the scattered probe signal
as a function of delay with respect to the pump beams. The
blue circles show the scattered probe signal when only the two
pump beams were used. The density modulation magnitude
is the largest when the plasma grating is just created. There-
after, the density modulation magnitude starts decreasing and
so does the scattered probe signal. The data shows an approx-
imately exponential decay with a damping constant of 11 ps.
The signal then drops to a very low level after 30 ps.

There are two possibilities for the fast damping of the ion-
ization IPG. One is the ambipolar expansion of the plasma.
Once released, the electrons start moving from the ionized to
neutral region of the grating driven by thermal pressure. The
charge separation then sets up an electric field which drags
the heavier ions. This means that both electrons and ions from
the ionized region move towards the neutral region on either
side reducing the amplitude of the density modulation of the
grating until it eventually vanishes. The other possibility is the
collision-assisted recombination. As the free electrons recom-
bine with the ions, the plasma grating structure also vanishes.

There is a distinguishable difference between these two
scenarios. In the first case, at the time when the scattered probe
signal disappears, the structure of the plasma-neutral mixture

3

C. Zhang et al., PPCF 63 095011 (2021)
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Coherent, narrowband radiation



Undulator radiation
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Quasiparticle undulator radiation
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But if we use quasiparticles…

vp > c
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Coherent, narrowband radiation
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Undulator radiation
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Undulator radiation with  is 
usually impossible :( 

But if we use quasiparticles…
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Quasiparticle undulator radiation
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Coherent, narrowband radiation
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Undulator radiation
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Undulator radiation with  is 
usually impossible :( 

But if we use quasiparticles…
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Quasiparticle undulator radiation
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Coherent, narrowband radiation
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Quasiparticles can accelerate Cherenkov angle spread limits brightness

eiω[t−n⋅rc(t)/c] 2

B. Malaca et al.

Peak brightness: practical limits

B [ph/s/mm2/0.1 % BW/mrad2] ≃ α(c[cm/s)]
4π2 × 1011 ( ω

ωp )
2

( c
ωp )

3

(nqp[cm−3])2(T[ω−1
p ])

2
(σ⊥[c/ωp])
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(σ∥[c/ωp]) sin2 θ
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Tuneable and bright superradiant source of radiation

B. Malaca et al.
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B. Malaca et al, submitted (2023); arXiv:2301.11082v1
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Tuneable and bright superradiant source of radiation

P. O’Shea, H.P. Freund, Science 292 1853 (2001)
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Conclusions

Thank you!

Radiation from quasiparticles 
Brings previously unexplored temporally coherent and superradiant emission mechanisms

New tool and algorithm for radiation calculations in PIC codes 
Suitable to analyse large number of simulation particles

Temporal coherence and superradiance in plasma accelerators 
Tuneable source from THz to XUV/soft x-rays

Miguel Pardal

Bernardo Malaca

Many other examples 

B. Malaca et al. Nature Photonics 18, 39–45 (2024)

M. Pardal, et al, Computer Physics Communications, 285, 108634 (2022)


