Speaker
Description
Laser-ion acceleration mechanisms provide a unique opportunity for generating radioactive tritium beams, which are currently not available at accelerator facilities. Few datasets exist of tritium-induced reactions involving light, neutron rich nuclei like 6He, 8Li and 11Be. However, these nuclei are of high interest for nuclear science because influence the r-process as “seed nuclei” [Ter01] and are also predicted to exhibit exotic structure [Qua18, Coc12, For05]. A new platform at the OMEGA-EP laser system at the University of Rochester (UR) Laboratory for Laser Energetics (LLE) is now in a position to support nuclear science experimentation [Sch22]. In a pilot study, 10x^13 tritons were accelerated to several MeV and directed onto a deuterated target, producing 108 fusion neutrons. Follow-up experiments using lithium and beryllium targets to measure the cross sections of di-neutron transfer reactions on these light nuclei will be discussed. This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] University of Rochester “National Inertial Confinement Fusion Program” under Award Number(s) DE-NA0004144.
[Coc12] Cockrell et al: “Lithium isotopes within the ab-initio no-core full configuration approach” Physical Review C 86 (2012)
[For05] Forssen et al: “Large basis ab initio shell model investigation of 9Be and 11Be”, Physical Review C 71 (2005)
[Qua18] Quaglioni et al: “Three cluster dynamics within the ab initio no-core shell model with continuum: How many-body correlations and a clustering shape 6He”, Physical Review C 97 (2018)
[Sch22] A. Schwemmlein et al: “First Demonstration of a Triton Beam Using Target Normal
Sheath Acceleration”, Nuclear Inst. and Methods in Physics Research B 522 (2022)
[Ter01] M. Terasawa et al: “New nuclear reaction flow during r-process nucleosynthesis in supernovae: Critical role of light, neutron-rich nuclei’, The Astrophysical Journal, 562 (2001)