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@ Feshbach formalism: Beauty and The Beast

0 Microscopic Optical model paradigm. 1979-

© Microscopic Coupled channels paradigm. 1983-

@ Imaginary potentials: What do we know about the beast?

e Microscopic determination of the dynamic polarization potential for
particular state

@ Scattering experiments of halo nuclei

@ Neutron removal experiments at intermediate energies: Eikonal theory
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Feshbach formalism: Beauty and The beast

U = PVP+PVQG(E +i)QVP
~ V(E,r)+iW(E,r)
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@ P is the projector on the g.s. of projectile and target, or alternatively,
on a set of low lying states of projectile and target.

@ The optical potential U is a complicated operator which is approxi-
mated by V(E,r) + iW(E,r), a local, L-independent potential ob-
tained by fitting the elastic differential cross section.

@ The hope is that the elastic wave functions, solutions of U, will be
similar to those obtained form the solutions of V(E,r) 4+ iW (E,r),
which only contain information on the asymptotic part of the elastic
wavefunction.
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Microscopic Optical model paradigm. 1979-

@ Microscopic calculations using the M3Y effective nucleon-

c} nucleon interaction ?. Real potential as a folding potential.
AdSh V(E,r) = /d377pd3ﬁpp(rp)pt(rt)u(|f'f Tp + T¢])
| OPEP + 1n " — 0y B
u(s) = + V2 028 — U3 435 — Uez (E)6°(5)

o Imaginary potential as a phenomenologic Woods-Saxon
fitted to elastic differential cross sections. ry ~ 1.2 — 1.3
fm. aw ~0.5—0.6 fm. W(R,)/V(Rs) = 0.6.

@ Successes: Good results, in general, for nucleus-nucleus and
nucleon-nucleus elastic scattering with renormalization N, ~
1.1+£0.1. Sound basis for DWBA calculations of inelastic and
transfer.

N\

@ Limitations: ®Li, "Li and ?Be weakly bound stable nuclei re-
quire renormalization N, ~ 0.6. Extrapolation to exotic nu-
clei unreliable.

2G. R. Satchler and W. G. Love, Phys. Reports 55 (1979) 183
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Microscopic Coupled Channels paradigm. 1983-

e Extend Beauty P: projector on low-lying states. Coupling 4
potentials calculated by double folding with transition densi- ?
ties.

pif(F) = (@ |Z53 5= 7))

@ Successes: SLi, “Li differential cross sections with N, ~ 1 2.
Fusion enhancement through the barrier. Spin polarization ﬁ
observables. Neutron transfer effects beyond DWBA. ? ,

o Limitation: Nuclear coupling potentials are found to
be complex. A general microscopic theory of the nucleus-
nucleus imaginary potential is missing. We cannot estimate
the value of the imaginary potentials for unknown exotic nu-
clei.

2JGC, M Lozano, M.A.Nagarajan Phys Lett B161 (1985)39-42. Nuclear
Physics A440 (1985) 543-556. H.Nishioka, R.C. Johnson (Cluster Folding).
M. Kamimura et al (CDCC calculations)

bFusion enhancement, Dasso et al, scattering of polarized 6,71, 23Na, JGC
and Johnson, 1604-298Pb scattering, Thompson and Nagarajan
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Imaginary potentials: What do we know about the beast?

o PVQG(E+ie)QV P: Separate contributions as Q projects compound
nucleus or direct channels. W(E,r) = Won(E,r) + Wp(E,r).

2 )

or(E) = > /ddﬂ\p(m?W(E,r) =ocn(E) +op(E).

@ Beast Wcy: Volume type. Radial dependence (rw,aw)) is not
very critical. The depth of Wen can be obtained from ooy (E).
Statistical models applicable, extrapolable to exotic nuclei.

e Beast Wp: Surface type. Strongly dependent on reaction mecha-
nism. Radial dependence is critical. Sharp energy dependence, as
thresholds are crossed.

@ Dispersion relations ! :

E/ /

IMahaux, Ngo, Satchler Nucl.Phys.A 449 (1986) 354-394
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Microscopic determination of the dynamic polarization

potential

@ Electric quadrupole excitation to rotational states:> A long range

. 8nZ2e? B(E2,0T -2t
absorption W (r, E) ~ =222 ( —= )

@ Electric dipole excitation to break-up states 3. Beauty hidden in the
beast !

_47th¢22 B(FE1,g9s — d)
9hw r(r —ag)?

U(r,§) = (if(r,€) + 9(r,€))

o f(r,£),g(r,&) are analytic Bessel-type functions, linked by dispersion

relations. For large 7, f(r,&) ~ exp (-W)

@ Halo nuclei have low energy dipole states, generating long-range imag-
inary potentials (a; ~ 2 — 4fm) producing the phenomenon of long-
range absorption.

2Love Teresawa and Satchler, Phys Rev Lett 39 (1977) 6.
3Andres, JGC, Nagarajan, Nucl.Phys. A579 (1994) 273
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Coulomb dipole polarization potential:
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e Dipole Polarizability Halo nuclei have very important contributions
of the coulomb dipole polarization potential, that alter strongly the
elastic cross sections, even below the barrier.

@ The elastic cross sections of halo nuclei on heavy targets are strongly
affected by long range absorption due to dipole polarizability*, so

they give information about the B(E1) distribution: Case for Exper-
imental Proposals.

4Andres, JGC, PRL82 (1999) 1387

Optical potentials: From stable to exotic nuclei



SHe scattering experiments: Louvain la Neuve, 2006-2008

@ SHe is a 2n Halo nucleus, Bs,, = 0.973 MeV. 7 = 807 ms.

@ Long range absorption effects are seen in SHe scattering on 2°%Pb 5,
partly due to Coulomb dipole polarizability.
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5Sanchez et al, Nuclear Physics A803 (2008), 30-45



Optical Model Approach

@ Parameter free, analytic Coulomb po-
larization potential can be used with a
standard short-range nuclear potential.

@ Long-range complex nuclear potentials,
consistent with dispersion relations, can
be extracted from the data, but uncer-
tainties are large.

V,(E) (MeV)

@ Long range absorption kill the rainbow
and make cross sections rather insensi-
tive to optical potentials.
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Coupled Channels approach:

e SHe can be described microscopically with a bound gs and the

3-body continuum.

@ Parameter free phenomenological interactions of *He and n with the

target.

@ 4 body CDCC calculations® including dipole excitation, reproduce

elastic cross sections fairly well.
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6Acosta et al PRC84 (2011) 044604
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11Li scattering experiments. TRIUMF 2011-2013

e 'Liis a 2n Halo nucleus, By, = 0.295 MeV. 7 =8 ms. '

e Elastic scattering and break-up of ''Li on 2°8Pb below and just above
the Coulomb barrier.

@ 4B-CDCC calculations using °Li+ 298Pb and n 4 208Pb optical po-
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"Cubero et al, PRL109 (2012), 262701; Fernandez-Garcia PRL110 (2013 142701
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11Be scattering experiments: TRIUMF 2017

e 'Beis a 1n Halo nucleus, B,, = 0.503 MeV. 7 = 13,8 s. 8

e Elastic scattering, inelastic scattering and break-up of ''Be on 97Au
below and just above the Coulomb barrier.

@ X-CDCC calculations including core excitation using '°Be+ °7Au and
n + 7Au optical potentials.
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8Pesudo et al, PRL118 (2017) 152502
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Eikonal theory

Ve Closure property of core-valence states at all
) energies (valid for real core-valence) interaction

X with no bound states)

(F2|pgly) = )

JBE ($OFR)) vk ) =

83 (7 — 7).

e Stripping probability:
PR (b) =
J &7 |6g(7)?1Ser (ber)? (1 = [SVr(byr)?) -
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Tostevin-Gade Plot:

J. A. Tostevin and A. Gade Phys.Rev.C10 (2021) 054610
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Core removal by interaction with the valence:

@ The valence particle can interact, and
eventually break. the core, through an
optical potential ?

@ The explicit evaluation of (7|py|71) is
done, leading to the breaking of closure,
and a reduction of the stripping proba-
bilities for some nuclei.

@ The global dispersive nucleon-nucleus
potentialb is used, corrected to discount
compound elastic scattering.

@ The global nucleon-nucleus potential,
fitted to stable nuclei (n + 39K), is as-
sumed to be valid for exotic nuclei (n+
39Si, p + 39Al).

aGomez-Ramos, JGC, Moro, PLB847 (2023)

138284
bMorillon, Romain PRC76 (2007) 044601.
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AS dependence of stripping cross sections is explained, to a large
extent
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Take home messages

o Complex optical potentials are a key ingredient to extract structure
information from measured cross sections.

@ The imaginary part of the optical potentials must, still, be obtained
phenomenologically from elastic and reaction cross section data.

@ Scattering of halo nuclei require CDCC calculations, using fragment-
target optical potentials. No safe Coulomb for halo nuclei!

@ The interpretation of nucleon removal experiments require nucleon-
core optical potentials. The “removed " nucleon still interacts!

@ It is very important to complete data of elastic and reaction cross
sections of nucleons with exotic nuclei. Are global potentials (i.e.
Morillon) extrapolable for exotic nuclei?
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