## **GFT: Connecting the Optical Potential with reaction observables.**

**Gregory Potel Aguilar** 

Trento, June 20 2024



LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



### Features of nuclear spectra probed by nuclear reactions







### Which reaction theories, and where?





### The Optical Potential is a projection of the many-body Hamiltonian on the elastic channel



- The "optical reduction" transforms a many-body operator into a one-body operator
- It is a well-defined, in principle exact, mathematical operation

### **Nuclear reaction theorist's roadmap**





### **Nuclear reaction theorist's roadmap**













































same as for x-A scattering!









 $\langle \chi_b(\mathbf{r}_b;\mathbf{k}_b) | \Psi_0(\mathbf{r}_{xA},\mathbf{r}_b) = \langle \chi_b(\mathbf{r}_b;\mathbf{k}_b) | \left( F(\mathbf{r}_a)\phi_a(\mathbf{r}_{xb}) + G(E-E_b)\mathcal{P}(\mathbf{r}_b) \left[ \mathcal{V}(E-E_b) + U_b(\mathbf{r}_b) \right] F(\mathbf{r}_a)\phi_a(\mathbf{r}_{xb}) \right)$ 

project over **b** state to get **x**-A wavefunction







 $\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} | \text{Im} \mathcal{V}(E) | G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$ 















 $\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} | \text{Im} \mathcal{V}(E) | G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$ 







 $\sigma_{i0}^{DWBA} \sim |\langle \psi_i | V | \psi_0 \rangle|^2 \qquad \sigma_R^{GFT}(E) \sim \langle G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} | \text{Im}\mathcal{V}(E) | G(E) \left( \mathcal{V}(E) + U_b \right) \psi^{HM} \rangle$ 



$$G(E) = (E - T - \mathcal{V}(E))^{-1}$$

- Consistency between structure and reactions
- Same ingredients as **x**-A scattering
- Need for tools for inverting Hamiltonians with non-local potentials





- Absorption of the neutron as a function of excitation energy and spin computed with GFT formalism
- We used the phenomenological Koning-Delaroche OP









- γ rays observed in coincidence with protons
- transitions from both <sup>95</sup>Mo and <sup>96</sup>Mo are identified

LAWRENCE Livermore National Laboratory





Lawrence Livermore National Laboratory



#### PHYSICAL REVIEW LETTERS 122, 052502 (2019)

#### Towards Neutron Capture on Exotic Nuclei: Demonstrating $(d,p\gamma)$ as a Surrogate Reaction for $(n,\gamma)$

A. Ratkiewicz,<sup>1,2,\*</sup> J. A. Cizewski,<sup>2</sup> J. E. Escher,<sup>1</sup> G. Potel,<sup>3,4</sup> J. T. Burke,<sup>1</sup> R. J. Casperson,<sup>1</sup>
M. McCleskey,<sup>5</sup> R. A. E. Austin,<sup>6</sup> S. Burcher,<sup>2</sup> R. O. Hughes,<sup>1,7</sup> B. Manning,<sup>2</sup> S. D. Pain,<sup>8</sup>
W. A. Peters,<sup>9</sup> S. Rice,<sup>2</sup> T. J. Ross,<sup>7</sup> N. D. Scielzo,<sup>1</sup> C. Shand,<sup>2,10</sup> and K. Smith<sup>11</sup>



- The obtained Hauser-Feshbach parameters are used to calculate (n,γ)
- We found an excellent agreement with the direct measurement.



#### PHYSICAL REVIEW LETTERS 122, 052502 (2019)

#### Towards Neutron Capture on Exotic Nuclei: Demonstrating $(d,p\gamma)$ as a Surrogate Reaction for $(n,\gamma)$

A. Ratkiewicz,<sup>1,2,\*</sup> J. A. Cizewski,<sup>2</sup> J. E. Escher,<sup>1</sup> G. Potel,<sup>3,4</sup> J. T. Burke,<sup>1</sup> R. J. Casperson,<sup>1</sup>
M. McCleskey,<sup>5</sup> R. A. E. Austin,<sup>6</sup> S. Burcher,<sup>2</sup> R. O. Hughes,<sup>1,7</sup> B. Manning,<sup>2</sup> S. D. Pain,<sup>8</sup>
W. A. Peters,<sup>9</sup> S. Rice,<sup>2</sup> T. J. Ross,<sup>7</sup> N. D. Scielzo,<sup>1</sup> C. Shand,<sup>2,10</sup> and K. Smith<sup>11</sup>





Eur. Phys. J. A (2017) 53: 178

#### THE EUROPEAN Toward a complete theory for predicting inclusive deuteron **PHYSICAL JOURNAL A**







is <sup>61</sup>Ca bound?







National Nuclear Security Administration 31

Lawrence Livermore National Laboratory







Lawrence Livermore National Laboratory























Cavallaro *et al.*, PRL **118**, 012701 (2017)

Barranco, GP, Vigezzi, Broglia PRC 101, 031305(R) (2020)





### <sup>24</sup>Mg+n with shell model: connection with the statistical model

angular momentum 0.584066 parity 0.701 -0.716831 1.169 0.488705 -0.288311 2.033 0.318332 0.542416 0.0495903 -0.0298132 -1 -0.584623 -1 -0.651056 0.100777 0.0975601 4.816 0.516883 -0.0511968 -0.283037 -0.219064 -0.0103979 0.132477 0.069005 -1 0.094658 0.0353684 6.033 -1 -0.159821 6.12 -1-0.174362 6.243 6.35 0.122727 -1 0.182001 6.385 0.115995 6.417 0.100457 0.157325 6.739 -1 1 -1 0.419452

excitation energy  $E_i$ 

(G. Sargsyan talk yesterday)

spectroscopic factor *S<sub>i</sub>* 

~600 states from  $E_i=0$  to  $E_i=14.6$  MeV

Shell model calculations by K. Kravvaris with PSDPF interaction M Bouhelal, *et al.*, Nucl. Phys. A **864** (2011)

$$V(\mathbf{r}, \mathbf{r}'; E) = U_0(r) + \sum_i U_{0i}(\mathbf{r})G(E - E_i, \mathbf{r}, \mathbf{r}')U_{i0}(\mathbf{r}')$$
$$G(\mathbf{r}, \mathbf{r}', E) = (E - T - V(\mathbf{r}, \mathbf{r}'; E))^{-1}$$

- Iterate until convergence is achieved
- Consistency between potential and Green's function is achieved, as expressed by Dyson's equation:

 $G(\mathbf{r}, \mathbf{r}'; E) = G_0(\mathbf{r}, \mathbf{r}'; E) + G_0(\mathbf{r}, \mathbf{r}'; E)V(\mathbf{r}, \mathbf{r}'; E)G(\mathbf{r}, \mathbf{r}'; E)$  $G_0(\mathbf{r}, \mathbf{r}'; E) = (E - T - U_0(r))^{-1}$ 



### <sup>24</sup>Mg+n with shell model: connection with the statistical model



We can explicitly check the limits of the statistical model (Hauser-Feshbach approach)



## An equivalent expansion in powers of the couplings can shed light on direct, preequilibrium, and compound processes





### An equivalent expansion in powers of the couplings can shed light on direct, preequilibrium, and compound processes





### An equivalent expansion in powers of the couplings can shed light on direct, preequilibrium, and compound processes



















- If the broadening distribution is narrow, the T-matrix can be evaluated at the peak
- This is essentially the approximation made by Barker in Aust. J. Phys. 20 (341) 1967 for isolated resonances

$$T_{i0}^{I} = \int \sqrt{P_{i}(E_{k})P_{0}(E_{k})} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_{p} - E_{k})\delta_{pq} - \sum_{c}\gamma_{ic}\gamma_{jc}(S_{c}(E_{k}) + iP_{c}(E_{k})))} g(\mathbf{k}) d\mathbf{k}.$$

$$T_{i0}^{I} \approx \sqrt{P_{i}(E_{k}^{max})P_{0}(E_{k}^{max})} \sum_{pq} \frac{\gamma_{ip}\gamma_{0q}}{(E_{p} - E_{k}^{max})\delta_{pq} - \sum_{c}\gamma_{ic}\gamma_{jc}(S_{c}(E_{k}^{max}) + iP_{c}(E_{k}^{max})))} \int g(\mathbf{k}) d\mathbf{k}.$$

## An extension to holes: The Green's function knockout (GFK) and the asymmetry plot



awrence Livermore National Laboratory



## An extension to holes: The Green's function knockout (GFK) and the asymmetry plot

PHYSICAL REVIEW C 107, 014607 (2023)

#### Green's function knockout formalism

C. Hebborn  $\mathbb{D}^{1,2,*}$  and G. Potel  $\mathbb{D}^{2,\dagger}$ 

(talk by J. Gómez Camacho)



# Thank you!

