Workshop on "Towards a consistent approach for nuclear structure and reactions: microscopic optical potentials" ECT*, 17-21, June 2024

Extracting neutron skin from elastic proton-nucleus scattering with deep neural network

Guohao Yang(杨国浩)

School of Physical Science and Technology, Southwest University, China

G. H. Yang, Y. Kuang, Z. X. Yang⁺, and Z. P. Li⁺, arXiv:2311.11676

† zuxing.yang@riken.jp ‡ zpliphy@swu.edu.cn

含弘光大 维任闲来 特立西南 學灯天下

Introduction

- Theoretical framework
 - \checkmark Relativistic Impulse Approximation (RIA) theory
 - ✓ Back-propagation neural network
- Results and discussion
 - **Summary**

Study on neutron skin thickness

Measurement:

- R_n : parity-violating
- R_p : elastic electron scattering

C. J. Horowitz, et al., JPG 41, 093001 (2014).

Moreover :

.

• coherent pion-photo production

C. M. Tarbert, et al. PRL. 112, 242502 (2014).

• measurements of electric dipole polarizabilities

J. Piekarewicz, et al., PRC 85, 041302 (2012).

A.Tamii, et al., PRL. 107, 062502 (2011).

① 亚南大学

Study on nuclear density and neutron skin thickness

Based on elastic proton-nucleus scattering experiments:

•Glauber multiple scattering theory

Li, Kuang, Huang, Tu, Li, *et al.*, PRC 107, 064310 (2023). Zhang, Ma, Huang, Tu, *et al.*, PRC 108, 014614 (2023)

•Brueckner theory + g-matrix folding model

S. Karataglidis, et al., PRC 65, 044306 (2002).

.

.

S. Tagami, et al., Results in Physics 33, 105155 (2022).

- Relativistic Impulse Approximation (RIA) theory
- + two-parameter Fermi (2pF) model
- B. C. Clark, S. Hama, et al., PRL. 50, 1644 (1983).

D. P. Murdock and C. J. Horowitz, PRC 35, 1442 (1987)Terashima, Sakaguchi, Takeda, *et al.*, PRC 77, 024317 (2008).

Zenihiro, Sakaguchi, Murakami, et al., PRC 82, 044611 (2010).

Matsuda, Sakaguchi, Takeda, et al., PRC 87, 034614 (2013).

Zenihiro, Sakaguchi, Terashima, et al., arXiv (2018)

.

Two-parameter Fermi model is too simple.

Deep neural network

• Deep neural network is a very effective method to represent complex function. Nuclear charge radius, Nuclear mass, Nuclear half-life, fission yields.....

Combining deep neural network with RIA theory could help overcome limitations in previous studies.

To combine RIA and deep neural network to infer the density distribution and extract neutron skin thickness.

Introduction

- □ Theoretical framework
 - ✓ Relativistic Impulse Approximation (RIA) theory
 - ✓ Back-propagation neural network
- Results and discussion
 - **Summary**

Relativistic Impulse Approximation (RIA) theory

Relativistic Impulse Approximation (RIA) theory

The RIA forward process

nucleon-nucleon interaction

 a_i and $\overline{a_i}$ are free parameters to be determined.

The RIA forward process

Assuming the neutron density distribution

S. Terashima, et al., Phys. Rev. C 77, 024317 (2008).

$$\rho_n = \rho_p$$

13

The RIA forward process

The ratio of scalar to vector density is 0.975

S. Terashima, et al., Phys. Rev. C 77, 024317 (2008).

 $ho_{p,s} = 0.975
ho_p$ $ho_{n,s} = 0.975
ho_n$

14

Back-propagation neural network

Relativistic Hartree-Bogoliubov : DD-ME2,PC-PK1,DD-PK1 Relativistic mean field : PK1 Skyrme-Hartree-Fock : 24 Sets parameters

Contour plot of the training set observations for χ^2 .

$$\chi^2 = \sum \left[(x_{\text{exp.}} - x_{\text{theo.}}) / \Delta x_{\text{exp.}} \right]^2$$

where $x_{exp.}$, $\Delta x_{exp.}$, and $x_{theo.}$ are the experimental data, the errors in the data, and the calculation results, respectively.

 The training dataset covers a wide range of neutron and proton radii.

⑧ 西南大学

Back-propagation neural network

Observable-to-density network (OTDN)

Loss function (Normalized flow of Pearson χ2 divergence (NPD))

NPD =
$$\left\langle \frac{\left[\mu\rho_{\text{pre }}(r) - \rho_{\text{tar }}(r)\right]^2}{\mu\rho_{\text{pre }}(r)} \right\rangle$$

$$\mu = \frac{N}{\int_0^\infty 4\pi \rho_{\rm pre}(r) r^2 dr}$$

\square μ is the normalization factor.

@ 亚南大学

Introduction

- □ Theoretical framework
 - ✓ Relativistic Impulse Approximation (RIA) theory
 - ✓ Back-propagation neural network
- Results and discussion
 - **Summary**

Bayesian model averaging (BMA)

Constructing the training set density

Theoretical scattering observations

Bayesian model averaging (BMA)

Eliminate the error caused by initializing weights

BMA model weights: $W_k = e^{-\frac{1}{2\sigma}\chi^2} (\sigma = 10)$

Predicted neutron density of 48Ca

0 < r < 3 fm : The predicted neutron density is larger than PC-PK1.

3 < r < 6 fm : The predicted neutron

density is smaller than PC-PK1.

6 < r < 14 fm : The predicted neutron density is larger than PC-PK1.

Examine the predicted neutron density of ⁴⁸Ca

Predicted neutron density improves the description at large scattering angles.

① 亚南大学

Prediction results of neutron skin thickness in ⁴⁸Ca

ab *initio* coupled-cluster (CC)

Hagen, Ekström, Forssén, et al., Nature Physics 12, 186 (2016).

▲ CREX collaboration

Adhikari, et al. (CREX Collaboration), PRL 129, 042501 (2022).

- ▼ E1 polarizability experiment (E1pE) Birkhan, Miorelli, Bacca, et al., PRL 118, 252501 (2017).
- Proton elastic scattering at 295 MeV (PES-295) Zenihiro, Sakaguchi, Terashima, *et al.*, arXiv (2018)
- Kyushu (chiral) *g*-matrix folding model (KFM)
 Tagami, Wakasa, *et al*, Results in Physics 33, 105155 (2022).
- Dispersion optical model (DOM)
 Mahzoon, Atkinson, Charity, *et al*, PRL 119, 222503 (2017).
- **48 reasonable energy density functionals (EDFs)** Mahzoon, Atkinson, Charity, *et al*, PRL 119, 222503 (2017).

The neutron skin thickness is larger than other studies, except DOM.

Introduction

□ Back-propagation neural network based on

relativistic impulse approximation theory

Results and discussion

□ Summary

- 🛞 亚南大学
- Considering density-dependent coupling constants in the NN interaction gives the RIA theory with medium effects.
- A back-propagation neural network (OTDN) based on RIA theory with medium effects is developed
 - ✓ The neutron density distribution of 48Ca is extracted, showing larger values for r < 3 fm and r > 6 fm compared to PC-PK1, and improving the description of observables at large scattering angles.
 - ✓ The neutron skin thickness is predicted to be $R_{skin}^{48Ca} = 0.219(37)$ fm.

DOI: https://doi.org/10.48550/arXiv.2311.11676 - 含弘充大 维任闲来 特之西南 學村天下 -

Appendix 1

Neural network parameters.

Cell-1				
L	Type	D	g(x)	
	Input ₁	75		
1	Linear	128	ReLU	
2	Linear	256	ReLU	
	$Output_1$	256		
Cell-2				
L	Type	D	g(x)	
	Input ₂	69		
1	Linear	128	ReLU	
2	Linear	256	ReLU	
	Output ₂	256		
Cell-3				
L	Type	D	g(x)	
	$Input_3$	160		
1	Linear	128	ReLU	
2	Linear	256	ReLU	
	$Output_3$	256		
Cell-4				
L	Type	D	g(x)	
	$Output_1 \uplus Output_2 \uplus Output_3$	768		
1	Linear	768	ReLU	
2	Linear	1024	ReLU	
	$Output_4$	1024		
Cell-5				
L	Type	D	g(x)	
	$Output_4$	1024		
1	Linear	512	ReLU	
2	Linear	256	ReLU	
3	Linear	160	Sigmoid	
	$Output_5$	160		
Other hyperparameters		Values a	and Properties	
Numerie	cal Normalization Factor	10		
Loss Fu	nction	NPD		
Optimizer		Adam		
Epoch 0-1000		$lr = 1 \times$	10^{-2}	
Epoch 1000-2000		$lr = 1 \times 10^{-3}$		

Appendix 2

NN interaction parameters.

Real parameters									
Meson	Isospin	Coupling type	m	g^2	Λ				
σ	0	Scalar (S)	650	-8.3320	771.6				
ω	0	Vector (V)	782	7.0920	803.4				
t_0	0	Tensor (\mathbf{T})	1400	-0.6031	1486.0				
a_0	0	Axial vector (A)	1200	-0.5023	3488.0				
η	0	Pseudoscalar (P)	450	-14.32	450.1				
δ	1	Scalar (S)	500	-0.3646	4041.0				
ho	1	Vector (V)	770	0.3485	1149.0				
t_1	1	Tensor (\mathbf{T})	450	0.1044	595.6				
a_1	1	Axial vector (A)	800	-6.525×10^{-2}	820.0				
π	1	Pseudoscalar (P)	138	12.31	557.5				
Imaginary parameters									
Meson	Isospin	Coupling type	\overline{m}	\overline{g}^2	$\overline{\Lambda}$				
σ	0	Scalar (S)	1300	-4.5500	1553.0				
ω	0	Vector (V)	700	2.2100	1479.0				
t_0	0	Tensor (\mathbf{T})	550	-0.1078	709.3				
a_0	0	Axial vector (A)	750	-0.4360	751.0				
η	0	Pseudoscalar (P)	500	7.4180	632.7				
δ	1	Scalar (S)	500	0.1295	743.0				
ho	1	Vector (V)	500	$-6.6280 imes 10^{-3}$	531.5				
t_1	1	Tensor (\mathbf{T})	450	-1.1760×10^{-2}	1160.0				
a_1	1	Axial vector (A)	850	-0.1116	860.0				
π	1	Pseudoscalar (P)	450	2.2470	1246.0				

28

Appendix 3

SHF Parameter Settings

	$m^*/{ m m}$	Κ	J	\mathbf{L}	Ksym	Rskin-208	Rskin-48	Refs.
SIII	0.760	355.370	28.160	9.910	-393.730	0.137	0.125	[2]
SKP	1.000	200.970	30.000	19.680	-266.600	0.144	0.144	[3]
SGII	0.790	214.700	26.830	37.620	-145.920	0.136	0.147	[4]
UNEDF1		219.800	29.000	40.000	-179.400	0.158	0.159	[5]
$\rm SkM^*$	0.790	216.610	30.030	45.780	-155.940	0.170	0.155	[6]
SLy4	0.690	229.900	32.000	45.900	-119.700	0.162	0.152	[7]
SkT3	1.000	235.740	31.500	55.310	-132.050	0.182	0.173	[8]
SGI	0.610	262.000	28.300	63.900	-51.990	0.196	0.180	[4]
Ska	0.610	263.160	32.910	74.620	-78.460	0.214	0.190	[9]
SV-sym34	0.900	234.070	34.000	81.000	-79.080	0.227	0.198	[10]
SK255		254.960	37.400	95.000	-58.300	0.247	0.208	[11]
SkI5	0.580	255.800	36.697	129.300	159.500	0.272	0.214	[12]
12 other groups	[13] J.	Friedrich	and PG.	Reinhard	d, Phys. Re	ev. C 33 , 33	5 (1986).	[13]