Towards a consistent approach for nuclear structure and reactions: microscopic optical potentials, ECT, Trento, June 17 – 21, 2024*

Relativistic ab initio description of nucleon-nucleus elastic scattering in the full Dirac space

Sibo Wang (王锶博)

Department of Physics, Chongqing University, China <u>sbwang@cqu.edu.cn</u>

P. Qin, <u>S. Wang</u>*, H. Tong, Q. Zhao, C. Wang, Z.P. Li, and P. Ring, Phys. Rev. C 109, 064603 (2024), Editor's Suggestion

Contents

□ Introduction

- **D** Theoretical framework
 - ✓ Relativistic Brueckner-Hartree-Fock theory
 - \checkmark Local density approximation
- **D** Results and discussion
 - ✓ Relativistic microscopic optical potential RBOM
 - ✓ Description of elastic scattering observables

□ Summary

Nucleon-nucleus scattering

□ Nuclear reaction——An important branch of nuclear physics

- ✓ Revealing NN interactions, structural and dynamic properties of nuclei
- \checkmark Understanding the evolution of the stars and the origin of the elements
- \checkmark Applications on medical therapy, nuclear power, national security, etc.

□ Nucleon-nucleus scattering—One of the simplest processes of nuclear reaction

✓ Exact solution of the A + 1 many-body problem is hard to achieve → **optical model**: complex mean field (optical potential)

$$U(r,E) = V(r,E) + iW(r,E)$$

Elastic scattering Inelastic channels

Phenomenological optical potential

□ Nonrelativistic: volume, surface, and spin-orbit terms

✓ KD03: 1 keV ≤ E ≤ 200 MeV, 24 ≤ A ≤ 209 Koning and Delaroche, NPA 713, 231 (2003)

□ Relativistic: spin-orbit terms are naturally included

✓ GOP: $20 \le E \le 1040$ MeV, $4 \le A \le 208$ Hama, Clark, Cooper *et al.*, PRC (1990, 1993, 2006, 2009)

Microscopic optical potential

□ Folding method: NN scattering amplitudes folded with densities of the target

Watson, Phys. Rev. 89, 575 (1953), Kerman, McManus, and Thaler, Ann. Phys. 8, 551 (1959)

$$U(r,\varepsilon) = \int V(\boldsymbol{r},\boldsymbol{r}',\varepsilon) \cdot \rho(\boldsymbol{r}') \, d\boldsymbol{r}$$

- T matrix folding: Elster, Cheon, Redish, and Tandy, Phys. Rev. C 41, 814 (1990)
- G matrix folding: Furumoto, Sakuragi, and Yamamoto, Phys. Rev. C 78, 044610 (2008)

□ Local density approximation (LDA): optical potentials equivalent to single-particle potentials in nuclear matter Bell and Squires, PRL 3, 96 (1959), Jeukenne, Lejeune, and Mahaux. PRC 16, 80 (1977)

$$U_{\rm LDA}(r,\varepsilon) = U_{\rm NM}(\varepsilon,\rho(r),\alpha(r))$$

- Brueckner-Hartree-Fock (BHF): Bauge, Delaroche, and Girod, Phys. Rev. C 58, 1118 (1998)
- Many-body perturbation theory: Whitehead, Lim, and Holt, Phys. Rev. Lett. 127, 182502 (2021)
- Relativistic BHF (RBHF): R. Xu, et al., Phys. Rev. C 94, 034606 (2016), G.Q. Li and Y.Z. Zhuo, Nucl. Phys. A 568, 745 (1994)

Relativistic microscopic optical potential – – CTOM

CTOM: *Optical Model by co-operation between China Nuclear Data Center* & *Tuebingen University*

- $E \leq 200 \text{ MeV}$, ${}^{12}\text{C} {}^{208}\text{Pb}$ Minor adjustments in the low-density region
- (Improved) LDA+RBHF (negative-energy states neglected) R. Xu, et al. PRC 94, 034606 (2016)

Importance of the negative-energy states

□ Negative-energy states (NESs) are indispensable for the completeness of a basis.

Attention: considering NESs dose NOT mean to avoid the no-sea approximation.

RBHF theory in the full Dirac space

Self-consistent solution of RBHF theory in the full Dirac space has been achieved for nuclear matter
Wang, Zhao, Ring, and Meng, PRC 103, 054319, PRC 106, L021305

> To describe nucleon-nucleus scattering with RBHF theory in the full Dirac space

Contents

□ Introduction

- **D** Theoretical framework
 - ✓ Relativistic Brueckner-Hartree-Fock theory
 - \checkmark Local density approximation
- **D** Results and discussion
 - ✓ Relativistic microscopic optical potential RBOM
 - ✓ Description of elastic scattering observables

□ Summary

Bonn potential

□ Our starting point of ab initio: the *one-boson-exchange* model R. Machleidt, ANP 19, 189 (1989)

$$\begin{array}{l}
\mathcal{L}_{s} = + g_{s} \bar{\psi} \psi \varphi^{(s)}, \\
\mathcal{L}_{s} = - \frac{f_{ps}}{m_{ps}} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \partial_{\mu} \varphi^{(ps)}, \\
\mathcal{L}_{ps} = - \frac{f_{ps}}{m_{ps}} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \partial_{\mu} \varphi^{(ps)}, \\
\mathcal{L}_{v} = - g_{v} \bar{\psi} \gamma^{\mu} \psi \varphi^{(v)}_{\mu} - \frac{f_{v}}{4M} \bar{\psi} \sigma^{\mu\nu} \psi (\partial_{\mu} \varphi^{(v)}_{\nu} - \partial_{\nu} \varphi^{(v)}_{\mu}).
\end{array}$$

→ most economical and quantitative phenomenology for describing the NN interaction R. Machleidt and D.R. Entem, Phys. Rep. **503**, 1 (2011)

Dirac equation in nuclear matter

 $\{\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta [M + \mathcal{U}(\boldsymbol{p})]\} u(\boldsymbol{p}, s) = E_p u(\boldsymbol{p}, s)$

Single-particle potential $\mathcal{U}(\mathbf{p}) = U_S(p) + \gamma^0 U_0(p) + \boldsymbol{\gamma} \cdot \hat{\boldsymbol{p}} U_V(p)$

scalar timelike spacelike

$$[\boldsymbol{\alpha} \cdot \boldsymbol{p}^* + \beta M_p^*] u(\boldsymbol{p}, s) = E_p^* u(\boldsymbol{p}, s)$$

Effective quantities $M_p^* = M + U_S$, $p^* = p + \hat{p}U_V(p)$, $E_p^* = E_p - U_0(p)$

Positive-energy
$$u(p,s) = \sqrt{\left(E_p^* + M_p^*\right)/2M_p^*} \left[1, \boldsymbol{\sigma} \cdot \boldsymbol{p}^*/\left(E_p^* + M_p^*\right)\right]^T \chi_s$$

Negative-energy
$$v(p,s) = \gamma^5 u(p,s)$$
$$\sum_s u(p,s) \, \bar{u}(p,s) - v(p,s) \, \bar{v}(p,s) = \mathbf{1}_{4\times 4}$$

Extract the single-particle potentials

• Nucleon-nucleon scattering equation in the nuclear medium

$$\begin{bmatrix} G^{++++} \\ G^{-+++} \end{bmatrix} (\mathbf{q}', \mathbf{q} | \mathbf{P}, W) = \begin{bmatrix} V^{++++} \\ V^{-+++} \end{bmatrix} (\mathbf{q}', \mathbf{q} | \mathbf{P}) + \int \frac{d^3 k}{(2\pi)^3} \begin{bmatrix} V^{++++}, 0 \\ V^{-+++}, 0 \end{bmatrix} (\mathbf{q}', \mathbf{k} | \mathbf{P}) \frac{Q(\mathbf{k}, \mathbf{P})}{W - E_{\mathbf{P}+\mathbf{k}} - E_{\mathbf{P}-\mathbf{k}}} \begin{bmatrix} G^{++++} \\ G^{-+++} \end{bmatrix} (\mathbf{k}, \mathbf{q} | \mathbf{P}, W)$$

• Matrix elements of the single-particle potential operator

$$\Sigma^{hh'}(p) = \langle \bar{h} | \mathcal{U}(p) | h' \rangle = \int \frac{d^3 p'}{(2\pi)^3} \frac{M_{p'}^*}{E_{p'}^*} \bar{G}^{h+h'+}(q, q | P, W), \qquad h, h' = +, -$$

• Scalar and vector components of single-particle potential

$$U_{S}(p) = \frac{\Sigma^{++}(p) - \Sigma^{--}(p)}{2}$$

$$U_{0}(p) = \frac{E_{p}^{*}}{M_{p}^{*}} \frac{\Sigma^{++}(p) + \Sigma^{--}(p)}{2} - \frac{p^{*}}{M_{p}^{*}} \Sigma^{-+}(p)$$

$$No \ ambiguities!$$

$$U_{V}(p) = -\frac{p^{*}}{M_{p}^{*}} \frac{\Sigma^{++}(p) + \Sigma^{--}(p)}{2} + \frac{E_{p}^{*}}{M_{p}^{*}} \Sigma^{-+}(p)$$

Self-consistent treatment for the imaginary parts

□ Thompson equation within the *continuous choice* for particle and hole states

Application: Isospin splitting of Dirac mass

The long standing controversy is clarified. <u>Wang</u>, Tong, Zhao, Wang, Ring, and Meng, PRC 106, L021305 (2022)

Application: Isospin splitting of nonrelativistic effective mass

 $\rightarrow \left(M_{NR,n}^* - M_{NR,p}^*\right) / (M\alpha) = 0.187$

Wang, Tong, Zhao, Wang, Ring, and Meng, PRC 108, L031303 (2023)

Application: Neutron star structural properties

□ Mass, radius, and tidal deformability of neutron stars in the full Dirac space

 $R_{1.4\odot} = 11.97 \text{ km}, \qquad M_{\text{max}} = 2.43 M_{\odot}, \qquad \Lambda_{1.4\odot} = 376$

Tong, Wang, and <u>Wang</u>, ApJ 930, 137 (2022)

Qu, Tong, Wang, and <u>Wang</u>, Sci. China-Phys. Mech. Astron. 66, 242011 (2023)

Local density approximation

 \square LDA: Optical potential at distance r is locally related to nuclear matter

$$U_{\text{LDA}}(r,\varepsilon) = U_{\text{NM}}(\varepsilon,\rho(r),\alpha(r)) \qquad \begin{array}{l} \rho = \rho_n + \rho_p \\ \alpha = (\rho_n - \rho_p)/\rho \end{array}$$

□ Improved LDA (ILDA): consider finite range correction of nuclear forces

$$U_{\rm ILDA}(r,\varepsilon) = (t\sqrt{\pi})^{-3} \int U_{\rm LDA}(r',\varepsilon) \exp[-(r-r')^2/t^2] d^3r'$$

✓ JLMB: $t_{p-A} = 1.2$ fm, $t_{n-A} = 1.3$ fm E. Bauge *et al.*, PRC 58, 1118 (1998)

✓ CTOM: $t_{p-A} = 1.25$ fm, $t_{n-A} = 1.35$ fm R. Xu *et al.*, PRC **94**, 034606 (2016)

✓ WLH: $t_{cent} = 1.22$ fm, $t_{so} = 0.98$ fm T.R. Whitehead *et al.*, PRL **127**, 182502 (2021)

In this work t = 1.3 fm is adopted by default. Uncertainties are shown later.

Density profile: RMF theory with PC-PK1

Point-coupling Lagrangian density:

$$\begin{split} \mathcal{L} &= \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi \\ &- \frac{1}{2}\alpha_{S}(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi) \\ &- \frac{1}{2}\alpha_{TS}(\bar{\psi}\vec{\tau}\psi)(\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\alpha_{TV}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi) \\ &- \frac{1}{3}\beta_{S}(\bar{\psi}\psi)^{3} - \frac{1}{4}\gamma_{S}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{V}\left[(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)\right]^{2} \\ &- \frac{1}{2}\delta_{S}\partial_{\nu}(\bar{\psi}\psi)\partial^{\mu}(\bar{\psi}\psi) - \frac{1}{2}\delta_{V}\partial_{\nu}(\bar{\psi}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\gamma^{\mu}\psi) \\ &- \frac{1}{2}\delta_{TS}\partial_{\nu}(\bar{\psi}\vec{\tau}\psi)\partial^{\mu}(\bar{\psi}\vec{\tau}\psi) \\ &- \frac{1}{2}\delta_{TV}\partial_{\nu}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi) \\ &- \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\frac{1-\tau_{3}}{2}\bar{\psi}\gamma^{\mu}\psi A_{\mu}. \end{split}$$

Zhao, Li, Yao, and Meng, PRC 82, 054319 (2010)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (M_{\text{exp}}^{i} - M_{\text{theo}}^{i})^{2}}{N}} \quad (\text{MeV})$$

S.E. Agbemava, *et al.* PRC **89**, 054320 (2014) L. S. Geng, *et al.* PTP **113**, 785 (2005)

Best density functional description for nuclear masses so far.

Optical potential in relativistic framework

□ Schrödinger-like equation for the upper component of the Dirac spinor

$$\left[-\frac{\nabla^2}{2E} + V_{\text{cent}}(r) + V_{\text{so}}(r)\boldsymbol{\sigma} \cdot \boldsymbol{l} + V_{\text{Darwin}}(r)\right]\phi(r) = \frac{E^2 - M^2}{2E}\phi(r)$$

✓ Components of the optical potential

$$V_{\text{cent}}(r) = \frac{M}{E} U_S + U_0 + \frac{1}{2E} (U_S^2 - U_0^2)$$
$$V_{\text{so}}(r) = -\frac{1}{2rE} \left(\frac{D'}{D}\right)$$
$$V_{\text{Darwin}}(r) = \frac{3}{8E} \left(\frac{D'}{D}\right)^2 - \frac{1}{2rE} \left(\frac{D'}{D}\right) - \frac{1}{4E} \left(\frac{D''}{D}\right)$$
$$D = M + U_S + E - U_0$$

 \rightarrow Differential cross section $d\sigma/d\Omega$, analyzing power A_y , spin rotation function Q_{20}

Low-density extrapolation $\rho \leq 0.08 \text{ fm}^{-3}$ for U_S , U_0

 \square CTOM: values for U_S , U_0 at $\rho = 0.04$, 0.06 fm⁻³ are adjusted to n, p + 40Ca, ²⁰⁸Pb

□ In this work: $U_i = a_i \rho^2 + b_i \rho + c_i \rightarrow U_i|_{0.08}$, $U'_i|_{0.08}$, and $U_i|_0 = 0$, with i = S, 0

Contents

□ Introduction

- **D** Theoretical framework
 - ✓ Relativistic Brueckner-Hartree-Fock theory
 - \checkmark Local density approximation
- Results and discussion
 - ✓ Relativistic microscopic optical potential **RBOM**
 - ✓ Description of elastic scattering observables

□ Summary

Central term: comparison with GOP and CTOM

□ Central terms of RBOM potential in comparison with GOP and CTOM

GOP: PRC 80, 034605 (2009), CTOM (RBHF-projection + ILDA): PRC 94, 034606 (2016) 23

Spin-orbit term: comparison with GOP and CTOM

□ Spin-orbit terms of RBOM potential in comparison with GOP and CTOM

RBOM: Relativistic Mean Field with PC-PK1, CTOM: Hartree-Fock Bogoliubov with Gogny D1S 24

Differential cross section: $p + {}^{208}Pb$

Differential cross section: $p + {}^{120}$ Sn

Differential cross section: $p + {}^{90}$ Zr

Differential cross section: $p + {}^{48}Ca$

Differential cross section: $p + {}^{40}Ca$

Differential cross section: $n + {}^{208}$ Pb

Spin observables: $p + {}^{208}Pb$

 \square Analyzing power A_y and spin rotation function Q from RBOM potential

Uncertainty analysis for RBOM

□ Uncertainties for RBOM (RBHF + ILDA) have two sources:

- *Effective range parameter t* in ILDA: $1.25 \le t \le 1.35$ fm
- Realistic NN interactions: Bonn A, B, C

Performance of RBOM at high incident energies

□ The underestimation of cross section angular distributions at high energies is related to the large momentum dependence of single-particle potentials in nuclear matter

→ Weaker momentum dependence, better angular distributions

Cross sections: $p/n + {}^{208}Pb$

□ Proton reaction cross sections and neutron total cross sections from RBOM

Overall, cross sections from RBOM are close to experimental data
 Weaker momentum dependence improves neutron results at low energies

Fully self-consistent RBHF calculation for finite nuclei

Towards consistent nuclear structure and reactions

□ Angular distribution from RBOM with **self-consistent densities**

Summary

- □ We have developed a microscopic **RBOM** potential
 - ✓ Relativistic BHF with local density approximation
 - ✓ No ambiguities for single-particle potentials
 - ✓ No free parameter other than effective range t
- Satisfactory description for differential cross section, spin observables for p/n + spherical nuclei
- □ We anticipate **RBOM** potential could provide:
 - \checkmark reference for other optical potentials
 - ✓ reliable description for exotic nuclei

Angles (deg)

Qin, <u>Wang</u>*, Tong, Zhao, Wang, Li, and Ring, PRC 109, 064603 (2024), Editor's Suggestion