Inclusive cross-section of deformed ${ }^{24} \mathrm{Mg}$ from the Generator Coordinate Method

Jennifer Boström
Jimmy Rotureau Andrea Idini
Jimmy Ljungberg Gillis Carlsson

Division of Mathematical Physics, Lund University, Sweden

Modeling optical potential

Phenomenological methods widely used to interpret experiment

- Lacks proper account of correlations
- Must be fitted to experiment

Possibilites of microscopic methods

- Predictive power
- Exotic nuclei
- Neutron-rich
- Radioactive beams
- Shell effects
- Spectroscopic factor shows the degree of single-particle behaviour

Using microscopic methods

- Nuclear structure calculation
- Calculate spectra
- Construct optical potential

Method summary

- Method includes
- Collective modes
- Correlations
- Particle-hole excitations
- Explores the huge complete Hilbert space in a systematic way
- Gives wavefunction from which observables can be calculated
- Can be extended

Generator Coordinate Method

- Generate a basis from one or more generator coordinates

$$
\left|\phi\left(x_{1}, x_{2}, \ldots\right)\right\rangle
$$

- Use a linear combination as ansatz

$$
\int f\left(x_{1}, x_{2}, \ldots\right)\left|\phi\left(x_{1}, x_{2}, \ldots\right)\right\rangle \mathrm{d} \vec{x}
$$

(discretized)

- Solve the Hill-Wheeler equation

$$
H h=E O h
$$

Overview of method

- Fit an effective Hamiltonian to the results of an Energy Density Functional (SLy4)
- Solve the effective Hamiltonian in mean field with pairing (HFB) with constraints as generator coordinates
- Introduce randomized particle-hole excitations (similar to temperature)
- Project the resulting HFB states to good quantum numbers
- Solve the resulting Hill-Wheeler equation

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)

Effective Hamiltonian

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{Q}+\hat{H}_{P}
$$

- \hat{H}_{0} - Single particle part
- \hat{H}_{Q} - Generalized quadrupole interaction
- \hat{H}_{P} - Uniform seniority pairing

Effective Hamiltonian fit (${ }^{24} \mathrm{Mg}$)

Generator coordinates

- We proceed by solving a constrained HFB equation
- Generator coordinates used:
- deformation β, γ
- pairing strengths G_{n}, G_{p}
- cranking j_{x}
- Results in a basis of HFB states
- Randomized particle-hole excitations

Projection

- HFB breaks symmetries, e.g.
- Particle number
- Angular momentum
- Restore using projection

- Particle number

$$
P^{N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{i(\hat{\mathrm{~N}}-N) \theta} \mathrm{d} \theta
$$

- Angular momentum

$$
P_{M K}^{I}=\frac{2 I+1}{8 \pi^{2}} \int D_{M K}^{I}{ }^{*}(\Omega) \hat{\mathrm{R}}(\Omega) \mathrm{d} \Omega
$$

Hill-Wheeler equation

- Finally, the Hill-Wheeler equation is solved

$$
\sum_{j} H_{i j} h_{j}^{n}=E_{n} \sum_{j} O_{i j} h_{j}^{n}
$$

- Which gives the final wavefunctions

$$
\left|\Psi_{n}^{A}\right\rangle=\sum_{a, K} h_{a K}^{n} P_{M K}^{I} P^{Z} P^{N}\left|\phi_{a}\right\rangle
$$

- We can now evaluate matrix elements between these states

Method summary

- Solution in terms of linear combination of projected HFB states
- Includes
- Collective modes through generator coordinates
- Correlations through projection and mixing
- Particle-hole excitations through temperature
- Explores the Hilbert space through choice of generator coordinates
- Gives wavefunction from which observables can be calculated

Odd case

- Single quasiparticle excitation on each HFB state
- Then do the same thing:
- Project the resulting HFB+1qp states
- Same effective Hamiltonian
- Solve the resulting Hill-Wheeler equation

Gives $\left|\Psi_{k}^{ \pm}\right\rangle$for $A \pm 1$

- Spectroscopic factors ${ }^{1}$

$$
\left\langle\Psi_{k}^{+}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}\right\rangle
$$

[^0]
Green's function

Calculate the Green's function

$$
G_{\alpha, \beta}^{I}(E)=\sum_{i} \frac{\left\langle\Psi_{0}\right| a_{\alpha}\left|\Psi_{i}^{+I}\right\rangle\left\langle\Psi_{i}^{+}\right| a_{\beta}^{\dagger}\left|\Psi_{0}\right\rangle}{E-\left(E_{i}^{+I}-E_{0}\right)+i \eta}+\text { holes }
$$

Derived by inserting $\mathrm{I}=\sum_{i}\left|\Psi^{ \pm}{ }_{i}\right\rangle\left\langle\Psi^{ \pm}{ }_{i}\right|$

Completeness

To insert $\sum_{i}\left|\Psi^{ \pm}{ }_{i}\right\rangle\left\langle\Psi^{ \pm}{ }_{i}\right|$

$$
a_{\alpha}^{\dagger}\left|\Psi_{0}\right\rangle=\sum_{i}\left|\Psi_{i}^{+}\right\rangle\left\langle\Psi_{i}^{+}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}\right\rangle
$$

No guarantee that this holds

Completing

At $E \rightarrow \infty$, correlations vanish \rightarrow should approach HF

$$
G_{\alpha, \beta}(E)=\sum_{i} \frac{\sigma_{i, \alpha}{ }^{*} \sigma_{i, \beta}}{E-\epsilon_{i}+i \eta}+\sum_{i}^{M} \frac{c_{i, \alpha}{ }^{*} c_{i, \beta}}{E-\epsilon_{i}^{\prime}+i \eta}
$$

$\left(\sigma_{i, \alpha}=\left\langle\Psi_{i}^{ \pm}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}\right\rangle\right)$
As few as possible while still giving HF at $E \rightarrow \infty$

- Completely determines spectroscopic factors and energies

Dyson equation

- Dyson equation for self-energy $\Sigma(E)$

$$
G(E)=G_{0}(E)+G_{0}(E) \Sigma(E) G(E)
$$

- Solved for $\Sigma(E)$ as

$$
\Sigma(E)=G_{0}(E)^{-1}-G(E)^{-1}
$$

Non-local optical potential

- Construct the potential

$$
V_{a, b}(E)=\Sigma_{a, b}^{\infty}+\Sigma_{a, b}(E)
$$

- Expressed in momentum-space

$$
V\left(k, k^{\prime}\right)=\sum_{a, b}^{N} V_{a, b} \psi_{a}(k) \psi_{b}^{*}\left(k^{\prime}\right)
$$

- Lippmann-Schwinger equation $T=V+V G_{\text {free }} T$
- Phase shifts and cross-sections

${ }^{24} \mathrm{Mg}$ spectra

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)
${ }^{25} \mathrm{Mg}$ spectroscopic factors (positive parity)

Preliminary ${ }^{24} \mathrm{Mg}$ inclusive neutron cross-section

Preliminary ${ }^{24} \mathrm{Mg}$ inclusive neutron cross-section

Summary

- Lack of important correlations in many cross-section calculations
- Major step towards including many-body correlations in deformed nuclei
- Paper in progress

Backbending for ${ }^{48} \mathrm{Cr}$

Ljungberg et al. Phys. Rev. C 106, 014314 (2022)
${ }^{24} \mathrm{Mg} 0^{+}$wavefunction beta-gamma plane

Related to probability amplitude

Preliminary ${ }^{24} \mathrm{Mg}$ inclusive neutron cross-section

Preliminary ${ }^{24} \mathrm{Mg}$ inclusive neutron cross-section

Preliminary ${ }^{24} \mathrm{Mg}$ inclusive neutron cross-section

Imaginary part

$$
\eta(E)=\frac{a}{\pi} \frac{\left(E-E_{\mathrm{F}}\right)^{2}}{\left(E-E_{\mathrm{F}}\right)^{2}+b^{2}}
$$

Spectroscopic factors

$$
\begin{gathered}
\left\langle\Psi_{k}^{+}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}\right\rangle= \\
\sum_{a b x K}\left(h_{a x K}\right)^{*} h_{b}\left\langle\Phi_{a}\right| \beta_{x} P^{A+1} P_{K M}^{I} a_{\alpha}^{\dagger} P_{00}^{0} P^{A}\left|\Phi_{b}\right\rangle= \\
\sum_{a b x K}\left(h_{a x K}\right)^{*} h_{b}\left\langle\Phi_{a}\right| \beta_{x} a_{\alpha K}^{\dagger} P_{00}^{0} P^{A}\left|\Phi_{b}\right\rangle \\
a_{\alpha K}^{\dagger}=\sum_{l}\left(U_{\alpha K, l}^{a}\right)^{*} \beta_{l}^{\dagger}+V_{\alpha K, l}^{a} \beta_{l}
\end{gathered}
$$

[^0]: ${ }^{1}$ Boström et al. J. Phys.: Conf. Ser. 2586012080 (2023)

