

Nuclear structure-based optical potentials for the era of rare isotope beams

Grigor Sargsyan

FRIB Theory Fellow

Michigan State University <u>sargsyan@frib.msu.edu</u>

Towards a consistent approach for nuclear structure and reactions: microscopic optical potentials ECT*, Trento, Italy 19 June 2024 MICHIGAN STATE

Science

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance award DE-SC0013617.

The era of rare isotope beams

Our current knowledge of optical potentials (OP) is very limited

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Different strategies for calculating the nucleon-nucleus optical potential (OP)

coupled-cluster ab initio with non-zero η parameter

- Phenomenological fits are widely used, but are disconnected from the structure, and extrapolation away from stability is risky
- Microscopic theories often struggle to get absorption right
- Ab initio approaches are mainly feasible for light or near closed-shell nuclei

Embedding nuclear structure information within OP

Feshbach formalism

$$V(\mathbf{r}, \mathbf{r}', E) = U_0(\mathbf{r}) + V_{PO}(\mathbf{r}, \mathbf{r}', E - E_i)$$

= $U_0(\mathbf{r}) + \sum_i U_{0i}(\mathbf{r})G_i(\mathbf{r}, \mathbf{r}', E - E_i)U_{0i}(\mathbf{r}')$
Static,
energy-independent
potential
Static Requires input from
nuclear structure

Embedding nuclear structure information within OP

Feshbach formalism

$$V(\mathbf{r}, \mathbf{r}', E) = U_0(\mathbf{r}) + V_{PO}(\mathbf{r}, \mathbf{r}', E - E_i)$$

= $U_0(\mathbf{r}) + \sum_i U_{0i}(\mathbf{r})G_i(\mathbf{r}, \mathbf{r}', E - E_i)U_{0i}(\mathbf{r}')$
Static, Polarization potential:
energy-independent Requires input from
nuclear structure
Can be applied to any mass range
as long as nuclear structure
calculations are available

Embedding nuclear structure information within OP

1st ingredient for constructing OP: shell model input

Around 600 intrinsic states

Shell model calculations with PSDPF potential M Bouhelal, *et al.*, Nucl. Phys. A 864 (2011)

2nd ingredient: static potential and couplings

$$V(r, r', E) = U_0(r) + \sum_i U_{0i}(r)G_i(r, r', E - E_i)U_{0i}(r')$$

- static potential U₀: real, local Woods-Saxon adjusted to reproduce binding energy of ²⁵Mg
- couplings U_{0i}: same real Woods-Saxon, but adjusted to each E_i and multiplied by spectroscopic factor Si from shell model

3rd ingredient: iterative scheme for self consistent OP

$$V(r, r', E) = U_0(r) + \sum_i U_{0i}(r)G_i(r, r', E - E_i)U_{0i}(r')$$

- $G(\mathbf{r},\mathbf{r}',E) = [E T V(r,r',E)]^{-1}$
- > Start with U_0 and obtain $V^{(1)}$
- > Plug back in $V^{(1)}$ and obtain $V^{(2)}$
- > Repeat until the volume integral converges $J^{(n)} = \int \mathcal{V}^{(n)}(\mathbf{r}, \mathbf{r}') d\mathbf{r} d\mathbf{r}',$

OP is complex, energy-dependent, dispersive, and non-local

Accurate prediction without parameters fitted to experimental scattering data!

Sargsyan, et al., in preparation

No phenomenological imaginary terms

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Potential volume integral convergence

Ingredients for constructing neutron+²⁴Mg OP

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Quantify uncertainties in the structure parameters that define OP

Can also be used to constrain the underlying chiral forces if we use ab initio inputs

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Elusive ground state of ⁹He

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

See Gregory's talk tomorrow for GF transfer!

Reactions for the studies of charge-exchange processes

 Charge-exchange reactions have been used to constrain (double) β-decay rates and neutrino-induced reactions

$$\frac{d\sigma}{d\Omega}(q\approx 0)\sim B(GT)$$

Taddeucci et al., Nucl. Phys. A469 (1987) 125-172

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Electron capture rates in astrophysical processes

FRIB PAC experiment "Constraining electron-capture rates in and near the N=20 island of inversion"

- Need isospin dependent optical potentials
- Use ab initio symmetry-adapted no-core shell model to provide input

Symmetry-adapted no-core shell model (SA-NCSM)

Ab initio Symmetry-adapted No-core Shell Model (SA-NCSM) 0.002 0.12 0.3 0.2 0.25 0.00 0.3 0.1 015

SU(3) and symplectic symmetry

SA-NCSM can reach intermediate mass nuclei

Ab initio SA-NCSM can provide input for OP

Sargsyan, et al. PRC 108, 054303 (2023)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Summary

- We develop a new code to build nucleon-nucleus optical potentials (OPs) for reliable calculations of nuclear reactions
- The method can be applied to any mass range as long as structure calculations are available
- First scattering results for ²⁴Mg based on shell model structure input are in good agreement with measurements
- We can use ab initio structure input to propagate nucleon-nucleon interaction uncertainties to scattering observables
- Calculations of n+⁸He scattering with different structure inputs can shed light on the possible parity inversion in ⁹He ground state
- We aim to extend the framework for charge-exchange reaction studies

Acknowledgements

Gregory Potel, Kostas Kravvaris, Jutta Escher

FRIB

Lawrence Livermore National Laboratory

Kevin Fossez

Kristina Launey

Wolfgang Mittig

Yassid Ayyad

Theory Alliance facility for rare isotope beams

Back up slide zone

Iterative scheme for self consistent V_{PO}

$$\mathcal{V}^{(0)} = V_{00},$$

$$\mathcal{V}^{(1)} = V_{00} + \lim_{\eta \to 0} \sum_{i} V_{0i}(r_n) \left(E - T - \mathcal{V}^{(0)}(E_i; \mathbf{r}_n, \mathbf{r}'_n) + i\eta \right)^{-1} V_{i0}(r'_n),$$

$$\mathcal{V}^{(n+1)} = V_{00} + \lim_{\eta \to 0} \sum_{i} V_{0i}(r_n) \left(E - T - \mathcal{V}^{(n)}(E_i; \mathbf{r}_n, \mathbf{r}'_n) + i\eta \right)^{-1} V_{i0}(r'_n),$$

$$J^{(n)} = \int \mathcal{V}^{(n)}(\mathbf{r}_n, \mathbf{r}'_n) \, d\mathbf{r} \, d\mathbf{r}',$$

$$\varepsilon = \left| \frac{J^{(n+1)} - J^{(n)}}{J^{(n+1)} + J^{(n)}} \right| \ll 1.$$

Volume integral convergence condition

. . .

Elastic and absorption cross sections can be calculated from the OP

$$V(r, r', E) = U_0(r) + V_{PO}(r, r', E - E_i)$$

$$(E - T - V(\mathbf{r}, \mathbf{r}', E))\phi = 0$$

elastic scattering cross sections from phase shifts

$$\sigma_{abs} \sim \langle \phi | Im(V_{PO}) | \phi \rangle = 0$$

Absorption cross section from imaginary part of the polarization potential

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

⁴⁰Ca + p elastic scattering with 10 states

Parameters for levels in ⁴⁰ Ca										
λ,π	1-	2*	2+	2+	3-	3-	4+	4+	5-	5-
E_n (MeV) $\beta_{\lambda}(n)$	18.0 0.087	3.9 0.143	8.0 0.309	16.0 0.250	3.73 0.354	15.73 0.380	8.0 0.254	20.0 0.457	4.48 0.192	16.48 0.653

Rao, et al., Nuclear Physics A207 (1973) 182-208.

Grigor Sargsyan

⁴⁰Ca + p elastic scattering at 30 MeV

Grigor Sargsyan

Neutron elastic scattering over ⁴⁰Ca at 30 MeV

Grigor Sargsyan