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In 1997 Kuo et al predicted that in halo nuclei core polarizaion would be supprressed, 
and that  the fundamental nucleon-nucleon interaction could be probed in a clearer 
and more direct way in halo nuclei than in ordinary nuclei….

T.T.S. Kuo et al,
PRL 78 (1997) 2708 
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The admixture of d5/2 x 2+ configuration
in the 1/2+ g.s. of 11Be is about 15%

… But experiments demonstrated that the core dynamics plays an important role…



J.S. Winfield et al., 
Nucl.Phys. A683 (2001)48

A  careful analysis of transfer reactions is needed 
to estimate phonon admixtures in the wavefunctions   

62 J.S. Winfield et al. / Nuclear Physics A 683 (2001) 48–78

Fig. 7. Theoretical angular distributions calculated under the DWBA obtained with single-particle
SE form factors for states in 10Be. The points are the experimental angular distributions.

calculation. The largest-angle points were not used in the extraction of spectroscopic
factors in Ref. [21], neither are they so used in the present paper.

5. Analysis of angular distributions

5.1. Optical-model potentials

Different combinations of optical potentials for the entrance and exit channels have been
tried in the calculations presented below, in order to test the sensitivity of the extracted
spectroscopic factors to the input parameters. All the optical potentials used in the present
analysis have the standard Woods–Saxon or Woods–Saxon derivative form.
For the entrance channel, three principal optical potentials have been used. The most-

recent global nucleon–nucleus optical parameterisation is the “CH89” one of Varner et
al. [44]. This has dependences on energy, mass and isospin, adjusted for a range of stable
nuclei from masses A = 40 to 209. However, data from recent proton elastic scattering
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1. Introduction

The nucleus 11Be is of especial interest for several reasons. As is well known, the
ground-state spin parity is 1/2+ in contradiction to the simple shell model and spherical
Hartree–Fock prediction of 1/2−. This “parity inversion” is correctly predicted by, for
example, recent psd-shell calculations of Brown [1]. The 2s1/2 intruder orbital is lowered
by the noncentral part of the particle–hole interaction [2]. Moreover, 11Be is often regarded
as the classic one-neutron halo nucleus: the small single-neutron separation energy of
505 keV together with an assumed s-wave nature of the valence neutron leads to a very
extended spatial distribution [3,4].
Several calculations of the 11Be ground-state structure have been performed. The

theoretical approaches include: the shell model [5,6], the variational shell model [7], the
Generator Coordinate model [8], and coupling of the neutron with a vibrational [9–11] or
rotational core [12,13]. Most of these models correctly reproduce the parity inversion and
high-energy reaction data, but make very different predictions about the degree of coupling
of an s1/2 neutron to the 10Be 0+ ground-state core relative to a d5/2 neutron coupled to
a 2+ excited core (the first excited state of 10Be at 3.368 MeV).
A direct test of the models for the structure of 11Begs may be made by measuring the

relative cross sections of one-neutron pick-up reactions feeding the 0+ and 2+ states
of 10Be. Transfer cross sections depend on the overlap between the wave functions
of the initial and final states through the radial neutron form factors ulj (r). Standard
distorted wave Born approximation (DWBA) analyses assume that these form factors are
proportional to single-particle wave functions U

sp
lj (r), so that one may calculate cross

sections independently of any prior assumption about the structure of initial and final states,
apart from an overall normalisation factor. The latter is the spectroscopic factor, which is
defined as the product of the overlap integral

∫
u2lj (r)r

2 dr and a factor (n+ 1) [14], where
n in the present case is the neutron occupation number of the 2s1d shell in 10Be. If one
expresses the wave function of the 1/2+ 11Be ground state as the sum of the single-particle
and core excited components

∣∣11Begs
〉
= α

∣∣10Be
(
0+)

⊗ 2s
〉
+β

∣∣10Be
(
2+)

⊗ 1d
〉
, (1)

the spectroscopic factors S(0+) and S(2+) for transfer to the ground and first excited
state of 10Be should be directly related to α2 and β2, respectively, assuming negligible
population of the 2s1d orbitals by 10Be core neutrons. 2 Table 1 gives spectroscopic factors
deduced from the various models cited above. These spectroscopic factors vary widely. For
example, the standard Shell Model [5,6] predicts S(0+) = 0.74 and S(2+) = 0.19, while

2 Strictly speaking, α and β should be equal to the fractional parentage coefficients, the squares of which add
up to unity. The relation between these and spectroscopic factors is given in Appendix A and Ref. [14].

Good agreement with 2+ cross sections is obtained 
in DWBA with β2 = 0.17 considering the coupling effects on 
the transfer from factor;  using β as a simple spectroscopic
factor one finds β2 = 0.28



Independent Particles Collective Phonons

Hartree-Fock mean Field Random Phase Approximation

Particle-vibration 
          coupling

PVC

Can we obtain a description of thee systems  in terms
of elementary modes of excitation including some core degrees of freedom ? 



The Nuclear Field Theory  shows how to construct an exact  solution of the many body problem
for a given two-body force acting between fermions,  
in terms of a series expansion for each observable,  and based on 

1.Fermions: HF
2.Bosons: RPA phonons ( particle-hole + pair addition/removal) 
3. A linear Particle-Vibration Coupling   

D.R. Bes et al, NPA  260 (1976) 1
P.F. Bortignon et al, Phys. Rep. 30 (1977) 305
D.R. Bes Phys. Scr. 91 (2016) 063010



The expansion parameter is  1/Ω,  where Ω is 
the effective degeneracy available for the construction 
of  the bosons.

The order of a given diagram is  
 Nf =  Number of fermion loops
N𝛬=  Number of particle-phonon vertices
 Nb = Number of two-body vertices
  

A set of diagrammatic rules is introduced  to take into account the overcompleteness
of the basis and the Pauli principle. The solution is then the same as for the original  fermion problem.   



Example: renormalization of a phonon state at order Ω-1

Nf= 1
NΛ = 4
Nb =0 

Nf= 1
NΛ = 4
Nb =0 

Nf= 1
NΛ = 2
Nb =1 



Particle-vibration  coupling on top of self-consistent density functional calculations 
has been  mostly applied to heavy nuclei near closed shells. It provides a successful
reproduction of the width of giant resonance modes .…

E. Litvinova, PRC 107 (2023) L041302Z.Z. Li, Y.F. Niu, G. Colò, PRL 131 (2023) 082501

… although the situation is less clear concerning the centroids and the renormalization of 
single particle states



Renormalization of a particle at order Ω-1

Nf= 0
NΛ = 2
Nb =0 

Nf= 0
NΛ = 2
Nb =0 

Nf= 1
NΛ = 2
Nb =1 

Nf= 1
NΛ = 4
Nb =0 
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Basic effect  of particle-vibration coupling on the 
single-particle energies close to the Fermi energy

h2(j,j’,𝝀)
= -------------------------- <  0

ej –(ej’ + ħωλ )

h2(j,j’,𝝀)
= ----------------- > 0  

(ej- ej’’ + ħωλ)

+

𝜆 

𝜆 



A close connection with 

W. Dickhoff, D. Van Neck, Many-Body Theory Exposed!, p. 493



cPVC with effective Skyrme interaction SLy5

K. Mizuyama et al, PRC 86 (2012) 034318

The response function R and the 
interaction  𝜅 are derived consistently
from the SLy5 interaction

G. Colò et al, PRC 82 (2010) 064307



40Ca 208Pb





n + 16O

K. Mizuyama and K. Ogata
PRC 86 (2012) 041603



SkM* NNLOsat

K. Mizuyama and K. Ogata
PRC 86 (2012) 041603

A. Idini, C. Barbieri and Navrátil,
PRL 123 (2019) 092501



H = Hc  + Hp + HPVC

1

The NFT Hamiltonian:

H = Hc +Hp +Hint. (1)
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where �
A

GS
is the ground state of the nucleus of even mass number A (we assume that it

can be described by a single Slater determinant), while �� denotes the wave function of an

excited state (phonon), calculated using the Tamm-Danco↵ approximation. Let us assume

the simple case of two channels, a and b⌦ �:
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where

Va(r) = V (r) + Vls(r) + Vcent(r) (11)

and

⌅a,b� = h⇥jama
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We can project these equations on a complete single-particle basis (labeled by quantum

Collective (   𝝘𝝺𝝻+ creates a phonon)

Single-particle

Linear interaction

Def. parameter

Adopting the effective separable interaction  



The coupled equations (no ground state correlations):

with the angular coupling :

Expanding over a HF basis in a box (only unoccupied levels, eai > eF):

2

numbers ai, i = 1...N , with energies eai), obtained by solving the Hartree-Fock equation

in a box. This basis is characterised by an e↵ective mass mk (Fock exchange potential) .

We expand the solutions on wave functions lying above Fermi energy, (eai and ebi > eF ):

R
x

a
(r) =

X

i

xaiR
HF

ai
(r) ; R

C

b
(r) =

X

i

CbiR
HF

bi
(r) (13)

obtaining
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where

hai,bj� = ⌅a,b�

Z
R

HF

ai
(r)(��rdV/dr)R

HF

bj
(r)dr (15)

This condition in fact makes the basis incomplete, and thus the found solution does not

strictly verifies the di↵erential equation. In some way the Pauli exclusion condition can be

thought as a repulsive interaction which inhibits to some extent the impinging particle to

penetrate the nuclear volume, a repulsion which in fact alters the waves.

People solving the di↵erential equation directly in r�space impose the orthogonality

condition < R
x

a
|RHF

i
>= 0, < R

C

a
|RHF

i
>= 0 for any of the i-occupied states, which is

exactly equivalent to our condition eai and ebi > eF in the R
HF

expansion.

Generalised CCC

This generalisation is required in order to take into account ground state correlations using

RPA rather than TDA, also in order to conserve the EWSR. In this case one introduces a

radial wave function R
D
expanded over the occupied states:

R
D

c
(r) =

X

i

DciR
WS

ci
(r); eci < eF (16)

and obtains
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Approximate the odd nucleon wavefunction as
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one finds 

(particle part) (phonon admixture)
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Expand over the unoccupied states of a Saxon-Woods basis: 
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Include ground state correlations with proper antisymmetrization
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RPA rather than TDA, also in order to conserve the EWSR. In this case one introduces a
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The new radial wave R
D

c
(r) accounts for the proper antisymmetrization when one uses

the RPA ground state. In fact the RPA ground state contains 2p-2h configurations, what

implies that the impinging particle will partially find Pauli inhibited states even above eF .

Antisymmetrization introduces corrections into the expression of  a:
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To be noted that the (anti-)Pauli condition eci < eF in (5) strongly influences the dif-

ferential equation. In fact far from the nucleus the R
D

di↵erential equation would imply
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These radial wavefunctions can be used as form factors 
       to calculate one-nucleon transfer reactions in DBWA
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We now expand also over occupied states: 
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The self-energy is a non-local function which is then used as an optical potential 
to describe the neutron-core interaction.
See Potel’s talk tomorrow,  about its use in (d,p) reactions. 

Expressing the self-energy in coordinate space,



I will apply the NFT to build  a model for the calculation low-lying excitations 
in light (A ≈ 10-15) weakly bound  nuclei containing a few phenomenological parameters, 
trying to  correlate explicitly  different experimental results.
 

- Only the coupling to the low-lying 2+ excitation will be 
included, taking the energy and deformation parameter 
from experiment. 

- The  mean field will be taken as a Woods-Saxon 
potential with parameters fitted on experimental data 
INCLUDING  effects beyond mean field 
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𝛖𝛑
C

I. Talmi and I. Unna,
PRL 4, 469 (1961) 6    7

Parity inversion in N=7 
isotones : the role
of p-n interaction

13



Typical spherical 
mean-field results
with Skyrme forces
(Sagawa,Brown,Esbensen 
PLB  309(93)1)

Parity inversion in N=7 isotones is not reproduced by spherical
mean field calculations, although the mean field includes the 
effect of  the neutron-proton interaction

8 MeV

5 MeV



A possible explanation of parity inversion: dynamical 
coupling between the core and the loosely bound neutron  

The core: spherical or deformed?
Important role of  fluctuations expected
We propose a dynamical description

N. Vinh Mau, Nucl. Phys. A 592  (1995) 43
G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274
F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593
G. Blanchon et al., Phys Rev. C 82 (2010) 034313
Myo et al, PRC 86 (2012) 024318
I. Hamamoto and S. Shimoura, J. Phys. G 34 (2007) 2715
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How do we determine the mean field? Parameter optimization

We perform the many-body calculation starting from a Woods-Saxon potential,

The following parameters are fitted to obtain the best agreement of the renormalized 
energies  with the experimental 1/2+,1/2- and 5/2+ states in 11Be and 3/2- in 9Be:

- Depth, diffuseness,radius, strength of spin-orbit  coupling



N=7 isotones 
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FIG. 2. (Upper box) Wavefunctions associated with the renormalised single-particle levels of 11Be. ((I), (II),(III)) (NFT)ren diagrams describ-
ing the processes responsible for the variety of components of the clothed states. Single-arrowed lines pointing up (down) describe particle
(hole) states, while wavy lines represent collective particle-hole (ph)vibrational states. Double arrowed lines pointing down describe the corre-
lated (hh) pair removal vibrational state. The dashed horizontal line ((IV),(b) and (d)) describes the two-body multipole, separable interaction
of self consistent strength. In intermediate states experimental and/or renormalised modes are used (bold face lines and curves). The diagrams
shown in (IV) take care of the Pauli principle violation of the two phonon states implicitly appearing in the intermediate state (I(a)). The label
(ba.) in (I) stands for bare.

sections and of the 5/2+ resonance decay width, in overall
agreement with experimental data. It will be shown that cru-
cial information concerning the nature of the 5/2+ resonance
and the role of the quadrupole mode in dressing the nucleons
moving around the Fermi surface is provided by the reactions
10Be(d,p)11Be(5/2+, 1.783 MeV) and 11Be(p,d)10Be(2+; 3.368
MeV) which forces, in this last case, a virtual state to become
observable. A fact that aside from shedding light on retarda-
tion mechanisms in clothing processes, implies that particle-
vibration coupled intermediate states which dress the single-
particle states have to be real states concerning both energy
and amplitude, as well as radial shape. Thus, (NFT)ren is not
a calculational ansatz but a quantal requirement. Within this
context, it is of notice that self consistency within (NFT)ren
implies that the renormalized ✏̃ j and �̃ j(r)(i) reproduce the
empirical input used for the intermediate states, while initial
states (energies and wave functions) of the di↵erent graphi-
cal contributions are solutions of the bare potential. In other
words, for each value of ✏̃ j there can exist more than one ra-
dial function, depending on whether the nucleon is moving
around the ground state ( i = gs) or around an excited state
(i = coll) of the core respectively. Technically, �̃ j(r)(i) are the
form factors associated with stripping and pickup reactions
around closed shells. For simplicity we will drop the super-
script i in what follows.

We are dealing with a single valence neutron moving out-
side a closed shell (10Be). In such a case, the corresponding
relative motion of a reduced mass particle is translational in-
variant, a property which is ensured in the calculation of the
E1-transition between the parity inverted states making use of
the e↵ective dipole charge Z/A (= 4/11, see below). Transla-
tional invariance is violated when discretizing the continuum
by placing the nucleus at the center of a spherical box of ra-
dius R. However, for the box used in the calculations (R = 30
fm), the zero point energy associated with CM motion is ap-
proximately 20 keV. While the core is spherically symmetric,
the large experimental value of the dynamical quadrupole de-
formation is rather large (�n

2 = 0.9, see Suppl. Mat., Sect. ),
underscoring the fact that the system is close to a quadrupole
sharp phase transition, a phenomenon closely connected with
↵�clustering in a light nucleus like 10Be.

Making use of this theoretical framework ([26] and refs.
therein, see also [27, 28]) we have calculated the variety of self
energy diagrams, renormalizing selfconsistently the motion of
the odd neutron of 11Be in both configuration- (Fig. 2) and
conformation 3D-space (Fig. 3). The energies ✏̃ j of the associ-
ated renormalised single-particle states (drawn with bold face
arrowed lines in Fig. 2) are shown in Fig. 1 (NFT)ren in com-
parison with the data (exp.), while the corresponding wave
functions �̃ j(r) are displayed in Fig. 3 in comparison with
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of self consistent strength. In intermediate states experimental and/or renormalised modes are used (bold face lines and curves). The diagrams
shown in (IV) take care of the Pauli principle violation of the two phonon states implicitly appearing in the intermediate state (I(a)). The label
(ba.) in (I) stands for bare.
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and the role of the quadrupole mode in dressing the nucleons
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(ẽs1−(ed5k+ℏωl))

∑
k

xn h(.2 l ; p3 , p1n)
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Figure 9: Main processes contributing to the dipole transition between the first excited state
and the ground state of 11Be.
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11Be(1/2+)(p,d)10Be(2+)

Test of the collective component RC
d5/2 of the many-body wavefunction

1

The NFT Hamiltonian:

H = Hc +Hp +Hint. (1)
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A

GS
is the ground state of the nucleus of even mass number A (we assume that it

can be described by a single Slater determinant), while �� denotes the wave function of an

excited state (phonon), calculated using the Tamm-Danco↵ approximation. Let us assume

the simple case of two channels, a and b⌦ �:
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d5/2 phase shift in the bare potential Renormalized 5/2+  phase shift
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! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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PVC Ab Initio

The critical description of the experimental results from     
complementary approaches can be of great interest
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10Be(2+)+n

• parity inversion 
shell model predicts  
g.s. to be J∏=1/2-

• Halo structure  
weakly bound J=1/2 states  

spectrum dominated by n-10Be

Angelo Calci 17March 27 2017

Neutron-rich halo Nucleus 11Be

•  Z=4, N=7 
–  In the shell model picture g.s. expected to be Jπ=1/2-  

•  Z=6, N=7 13C and Z=8, N=7 15O have Jπ=1/2- g.s. 
–  In reality, 11Be g.s. is Jπ=1/2+ - parity inversion 
–  Very weakly bound: Eth=-0.5 MeV 

•  Halo state – dominated by 10Be-n in the S-wave 
–  The 1/2- state also bound – only by 180 keV 
 

•  Can we describe 11Be  
     in ab initio calculations? 

–  Continuum must be included 
–  Does the 3N interaction play  
    a role in the parity inversion?  

    
 

Neutron-rich halo nucleus 11Be 
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Spectrum

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?
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The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.

DOI: 10.1103/PhysRevLett.117.242501

The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]

jΨJπT
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X
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Can ab initio theory 
describe this complicated 

system?

YES 

… and ab initio calculation turned out to be quite challenging 




