Enrico Vigezzi INFN Milano

NUCLEAR FIELD THEORY AND THE SPECTROSCOPY OF HALO NUCLEI

In collaboration with
F. Barranco (Sevilla)
G. Potel (LLNL)

ECT*, Trento, Towards a consistent approach for nuclear structure and reactions: microscopic optical potentials, 19/6/2024

In 1997 Kuo et al predicted that in halo nuclei core polarizaion would be supprressed, and that the fundamental nucleon-nucleon interaction could be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei....

Normal Nucleus

Halo Nucleus
T.T.S. Kuo et al, PRL 78 (1997) 2708
... But experiments demonstrated that the core dynamics plays an important role...

S. Fortier et al. Phys. Lett. B461 (1999)22
J.S. Winfield et al., Nucl.Phys. A683 (2001)48

J.S. Winfield et al., Nucl.Phys. A683 (2001)48

A careful analysis of transfer reactions is needed to estimate phonon admixtures in the wavefunctions

$$
\left|{ }^{11} \mathrm{Be}_{\mathrm{gs}}\right|=\alpha\left|{ }^{10} \operatorname{Be}\left(0^{+}\right) \otimes 2 s\right\rangle+\beta\left|{ }^{10} \operatorname{Be}\left(2^{+}\right) \otimes 1 \mathrm{~d}\right\rangle
$$

Good agreement with $2+$ cross sections is obtained in DWBA with $\beta^{2}=0.17$ considering the coupling effects on the transfer from factor; using β as a simple spectroscopic factor one finds $\beta^{2}=0.28$

Can we obtain a description of thee systems in terms of elementary modes of excitation including some core degrees of freedom ?

Independent Particles Collective Phonons

Particle-vibration coupling

Hartree-Fock mean Field

Random Phase Approximation

The Nuclear Field Theory shows how to construct an exact solution of the many body problem for a given two-body force acting between fermions, in terms of a series expansion for each observable, and based on
1.Fermions: HF
2.Bosons: RPA phonons (particle-hole + pair addition/removal)
3. A linear Particle-Vibration Coupling

$$
\begin{gathered}
H_{N F T}=H_{p}+H_{c}+H_{2}+H_{P V C} \\
H_{p}=\sum \epsilon_{j} c_{j}^{+} c_{j} \\
H_{2}=\frac{1}{4} \sum_{j_{1} j_{2} j_{3} j_{4}}<j_{1} j_{2}|V| j_{3} j_{4}>c_{j_{1}}^{+} c_{j_{2}}^{+} c_{j_{4}} c_{j_{3}} \\
H_{P V C}=\sum_{\lambda j_{1} j_{2}}\left[h\left(j_{1}, j_{2} \lambda\right) \Gamma_{\lambda}^{+} c_{j_{2}}^{+} c_{j_{1}}+h\left(j_{1}, j_{2} \lambda\right) \Gamma_{\lambda} c_{j_{1}}^{+} c_{j_{2}}\right] \\
h\left(j_{1}, j_{2} \lambda\right)=\sum_{j j^{\prime}}<j_{1} j|V| j_{2} j^{\prime}><0\left|c_{j}^{+} c_{j^{\prime}}\right| \lambda>
\end{gathered}
$$

$$
H_{p}=\sum \epsilon_{j} c_{j}^{+} c_{j} \quad H_{c}=\sum_{\lambda} \hbar \omega_{\lambda} \Gamma_{\lambda}^{+} \Gamma_{\lambda}
$$

D.R. Bes et al, NPA 260 (1976) 1
P.F. Bortignon et al, Phys. Rep. 30 (1977) 305
D.R. Bes Phys. Scr. 91 (2016) 063010

A set of diagrammatic rules is introduced to take into account the overcompleteness of the basis and the Pauli principle. The solution is then the same as for the original fermion problem.

The expansion parameter is $1 / \Omega$, where Ω is the effective degeneracy available for the construction of the bosons.

The order of a given diagram is $\quad \Omega^{N_{f}-N_{\Lambda} / 2-N_{b}}$
$\mathrm{N}_{\mathrm{f}}=$ Number of fermion loops
$\mathrm{N}_{\Lambda}=$ Number of particle-phonon vertices
$\mathrm{N}_{\mathrm{b}}=$ Number of two-body vertices

Example: renormalization of a phonon state at order Ω^{-1} $\Omega^{N_{f}-N_{\Lambda} / 2-N_{b}}$

$\begin{aligned} & N_{\mathrm{f}}=1 \\ & \mathrm{~N}_{\mathrm{N}}=4 \\ & \mathrm{~N}_{\mathrm{b}}=0 \end{aligned}$	$\begin{aligned} & N_{f}=1 \\ & N_{\wedge}=4 \\ & N_{b}=0 \end{aligned}$	3

Particle-vibration coupling on top of self-consistent density functional calculations has been mostly applied to heavy nuclei near closed shells. It provides a successful reproduction of the width of giant resonance modes

... although the situation is less clear concerning the centroids and the renormalization of single particle states

Renormalization of a particle at order Ω^{-1}
$\Omega^{N_{f}-N_{\Lambda}-N_{b}}$

Basic effect of particle-vibration coupling on the single-particle energies close to the Fermi energy

$$
\Sigma_{\gamma \delta}(\omega)=\sum_{p p^{\prime} h^{\prime} p^{\prime \prime} h^{\prime \prime}} V_{p p^{\prime \prime} h^{\prime \prime} \gamma} \sum_{f} \frac{X_{p^{\prime} h^{\prime}}^{f} X_{p^{\prime \prime} h^{\prime \prime}}^{f}}{\omega-\epsilon_{p}-\hbar \omega_{f}} V_{p p^{\prime} h^{\prime} \delta}
$$

A close connection with

$$
\begin{aligned}
\Sigma^{R P A}(\alpha, \beta: E)= & \frac{1}{2}\left\{\sum_{\mu>F, n \neq 0} \frac{\Delta_{\alpha \mu}^{A+, n *} \Delta_{\beta \mu}^{A+, n}}{E-\left(\varepsilon_{\mu}+\left(E_{n}^{A}-E_{0}^{A}\right)\right)+i \eta}\right. \\
& \left.+\sum_{\mu<F, m \neq 0} \frac{\Delta_{\alpha \mu}^{A-, m} \Delta_{\beta \mu}^{A-, m *}}{E-\left(\varepsilon_{\mu}+\left(E_{0}^{A}-E_{m}^{A}\right)\right)-i \eta}\right\}
\end{aligned}
$$

a)

c)

e)
with

$$
\Delta_{\alpha \mu}^{A+, n}=\sum_{\nu>F, \kappa<F ; \nu<F, \kappa>F}\langle\alpha \kappa| G|\mu \nu\rangle R_{\nu \kappa}^{A, n}
$$

and

$$
\Delta_{\alpha \mu}^{A-, m}=\sum_{\nu>F, \kappa<F ; \nu<F, \kappa>F}\langle\alpha \kappa| G|\mu \nu\rangle R_{\kappa \nu}^{A, m}
$$

b)

d)

f)
W. Dickhoff, D. Van Neck, Many-Body Theory Exposed!, p. 493

cPVC with effective Skyrme interaction SLy5

$$
\begin{aligned}
\Sigma_{l j}\left(r r^{\prime} ; \omega\right)= & \sum_{l^{\prime} j^{\prime}, L} \frac{\left.\left|\left\langle l j \| Y_{L}\right|\right| l^{\prime} j^{\prime}\right\rangle\left.\right|^{2}}{2 j+1} \\
& \times \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{\kappa(r)}{r^{2}} G_{0, l^{\prime} j^{\prime}}\left(r r^{\prime} ; \omega-\omega^{\prime}\right) \\
& \times \frac{\kappa\left(r^{\prime}\right)}{r^{\prime 2}} i R_{L}\left(r r^{\prime} ; \omega^{\prime}\right)
\end{aligned}
$$

$\mathrm{G}_{\mathbf{0}\left(\mathbf{r} \mathbf{r}^{\prime}\right)}$

The response function R and the interaction κ are derived consistently from the SLy5 interaction
${ }^{40} \mathrm{Ca}$

${ }^{40} \mathrm{Ca}$					
Holes			Particles		
J^{π}	$S_{l j}\left({ }^{39} \mathrm{Ca}\right)$		J^{π}	$S_{l j}\left({ }^{41} \mathrm{Ca}\right)$	
	Exp.	Theory		Exp.	Theory
$d_{3 / 2}$	0.88	0.80	$f_{7 / 2}$	0.74	0.66
$s_{1 / 2}$	0.84	0.80	$p_{1 / 2}$	0.80	0.81
$p_{3 / 2}$	2.9×10^{-3}	0.05	$p_{3 / 2}$	0.73	0.79
$d_{5 / 2}$	0.73	0.75	$d_{5 / 2}$	0.11	0.04
			$f_{5 / 2}$	0.88	0.77
			$g_{9 / 2}$	0.28	0.36
${ }^{208} \mathrm{~Pb}$					
Holes			Particles		
J^{π}	$S_{l j}\left({ }^{207} \mathrm{~Pb}\right)$		J^{π}	$S_{l j}\left({ }^{209} \mathrm{~Pb}\right)$	
	Exp.	Theory		Exp.	Theory
$p_{1 / 2}$	1.07	0.82	$g_{9 / 2}$	0.76	0.77
$p_{3 / 2}$	1.50	0.84	$s_{1 / 2}$	0.87	0.47
$f_{5 / 2}$	1.07	0.84	$d_{3 / 2}$	0.93	0.52
$f_{7 / 2}$	1.02	0.84	$d_{5 / 2}$	0.85	0.75
$h_{9 / 2}$	1.06	0.86	$g_{7 / 2}$	0.90	0.74
$h_{11 / 2}$	0.39	0.39	$i_{11 / 2}$	0.82	0.82
$i_{13 / 2}$	0.90	0.87	$j_{15 / 2}$	0.54	0.71

${ }^{208} \mathrm{~Pb}$

$$
\bar{\rho}_{l j}(\omega)=\frac{ \pm 1}{\pi} \int d r \operatorname{Im}\left[G_{l j}(r r, \omega)-G_{\text {Free }, l j}(r r, \omega)\right]
$$

| Nucleus | J^{π} | Theory (RPA) | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

SkM*

K. Mizuyama and K. Ogata PRC 86 (2012) 041603
$\mathrm{NNLO}_{\text {sat }}$

A. Idini, C. Barbieri and Navrátil, PRL 123 (2019) 092501

Adopting the effective separable interaction

$$
\begin{aligned}
V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=-\kappa_{\text {self }} r_{1} \frac{d V}{d r_{1}} r_{2} \frac{d V}{d r_{2}} \sum_{\lambda \mu} \chi_{\lambda} Y_{\lambda \mu}^{*}\left(\theta_{1}\right) Y_{\lambda \mu}\left(\theta_{2}\right) & \begin{array}{c}
\kappa_{\text {self }}=-\left[\int r \frac{\partial \rho}{\partial r} r \frac{\partial U}{\partial r} r^{2} d r\right]^{-1} \\
\beta_{\lambda} r \frac{\partial \rho}{\partial r}=\delta \rho
\end{array} \\
\mathrm{H}=\mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{p}}+\mathrm{H}_{\mathrm{PVC}} & \\
H_{c}=\sum_{\lambda \mu} \hbar \omega_{\lambda}\left[\Gamma_{\lambda \mu}^{+} \Gamma_{\lambda \mu}+1 / 2\right] & \longrightarrow \\
H_{p}=-\hbar^{2} / 2 m d^{2} / d r^{2}+V(r)+V_{l s}(r) & \longrightarrow \\
H_{P V C}=\sum_{\lambda \mu}-r d V / d r \beta_{\lambda} Y_{\lambda \mu}\left[\Gamma_{\lambda \mu}^{+}+(-1)^{\mu} \Gamma_{\lambda \mu}\right] & \longrightarrow
\end{aligned} \begin{aligned}
& \text { Collective }\left(\Gamma_{\lambda \mu}{ }^{+}\right. \text {creates a phonon) } \\
& \text { Def. parameter }
\end{aligned}
$$

The coupled equations (no ground state correlations):
Approximate the odd nucleon wavefunction as

$$
\Psi_{a}=\left[\psi_{a}^{x}+\left(\psi_{b}^{C} \otimes \Gamma_{\lambda}^{+}\right)_{j_{a}}+\ldots\right] \Phi_{G S}^{A}
$$

$$
\begin{array}{cc}
\psi_{a}^{x}=\left(R_{a}^{x}(r) / r\right) \Theta_{j_{a} m_{a}} & \left(\psi_{b}^{C} \otimes \Gamma_{\lambda}^{+}\right)_{j_{a}}=\left(R_{b}^{C}(r) / r\right)\left(\Theta_{j_{b}} \otimes \Gamma_{\lambda}^{+}\right)_{j_{a}} \\
\text { (particle part) } & \text { (phonon admixture) }
\end{array}
$$

Expanding over a HF basis in a box (only unoccupied levels, $\mathrm{e}_{\mathrm{ai}}>\mathrm{e}_{\mathrm{F}}$):

$$
R_{a}^{x}(r)=\sum_{i} x_{a_{i}} R_{a_{i}}^{H F}(r) . ; \quad R_{b}^{C}(r)=\sum_{i} C_{b_{i}} R_{b_{i}}^{H F}(r)
$$

one finds $\left\{\begin{array}{l}{\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{a}(r)+0 \hbar \omega_{\lambda}\right] R_{a}^{x}(r)+\Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) R_{b}^{C}(r)=E R_{a}^{x}(r)} \\ \Xi_{a, b \lambda}\left(-\beta_{\lambda} r d V / d r\right) R_{a}^{x}(r)+\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{b}(r)+1 \hbar \omega_{\lambda}\right] R_{b}^{C}(r)=E R_{b}^{C}(r)\end{array}\right.$
with the angular coupling :
$\left.\Xi_{a, b \lambda}=\left\langle\Theta_{j_{a} m_{a}}\right| \sum_{\lambda \mu} Y_{\lambda \mu}\left[\Gamma_{\lambda \mu}^{+}+(-1)^{\mu} \Gamma_{\lambda \mu}\right]\left|\left[\Theta_{j_{b}} \otimes \Gamma_{\lambda}^{+}\right]_{j_{a} m_{a}}\right\rangle=\quad-i^{l_{a}+\lambda-l_{b}}\left(\frac{1}{\sqrt{4 \pi}}\right)^{1 / 2}<j_{a} \frac{1}{2} \lambda 0 \right\rvert\, j_{b} \frac{1}{2}>$

Expand over the unoccupied states of a Saxon-Woods basis:

$$
\begin{aligned}
& R_{a}^{x}(r)=\sum_{i} x_{a i} R_{a i}^{W S}(r) \quad i \in \text { non }-o c c . \\
& R_{b}^{C}(r)=\sum_{i} C_{b i} R_{b i}^{W S}(r) \quad i \in \text { non-occ. } \\
& \left(\begin{array}{cccc}
e_{a 1} & 0 \ldots & h_{a 1, b 1 \lambda} & h_{a 1, b 2 \lambda} \cdots \\
0 & e_{a 2} \cdots & h_{a 2, b 1 \lambda} & h_{a 2, b 2 \lambda} \cdots \\
h_{a 1, b 1 \lambda} & h_{a 2, b 1 \lambda} \cdots & e_{b 1}+\hbar \omega & 0 \ldots \\
h_{a 1, b 2 \lambda} & h_{a 2, b 2 \lambda} \cdots & 0 & e_{b 2}+\hbar \omega \ldots
\end{array}\right)\left(\begin{array}{c}
x_{a 1} \\
x_{a 2} \cdots \\
C_{b 1} \\
C_{b 2} \cdots
\end{array}\right)=\tilde{E}\left(\begin{array}{c}
x_{a 1} \\
x_{a 2} \cdots \\
C_{b 1} \\
C_{b 2} \cdots
\end{array}\right) \\
& \left(\begin{array}{cc}
e_{a 1}+\Sigma_{11}(\tilde{E}) & \Sigma_{12}(\tilde{E}) \ldots \\
\Sigma_{21}(\tilde{E}) & e_{a 2}+\Sigma_{22}(\tilde{E}) \ldots
\end{array}\right)\binom{x_{a 1}}{x_{a 2} \ldots}=\tilde{E}\binom{x_{a 1}}{x_{a 2} \ldots} \\
& \Sigma_{i j}(\tilde{E})=\sum_{b k>e_{F}} \frac{h_{a i, b k \lambda} h_{a j, b k \lambda}}{\tilde{E}-\left(E_{b k}+\hbar \omega_{\lambda}\right)} \\
& h_{a, b \lambda}=\Xi_{a, b \lambda} \beta_{\lambda} \int d r r \frac{d V}{d r} \phi_{a}(r) \phi_{b}(r)
\end{aligned}
$$

Include ground state correlations with proper antisymmetrization

$$
\begin{aligned}
\Psi_{a} & =\left[\psi_{a}^{x}+\left[\psi_{b}^{C} \otimes \Gamma_{\lambda}^{+}\right]_{j_{a}}+\psi_{a}^{y}+\left[\psi_{c}^{D} \otimes \Gamma_{\lambda}\right]_{j_{a}}+\ldots\right] \Phi_{G S} \\
\psi_{a}^{y} & =\left(R_{a}^{y}(r) / r\right) \Theta_{j_{a}} \quad\left[\psi_{c}^{D} \otimes \Gamma_{\lambda}\right]_{j_{a}}=\left(R_{c}^{D}(r) / r\right)\left[\Theta_{j_{b}} \otimes \Gamma_{\lambda}\right]_{j_{a}}
\end{aligned}
$$

Extended set of radial equations:
$\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{a}(r)+0 \hbar \omega\right] R_{a}^{x}(r)+\Xi_{a, b \lambda}(-r d V / d r) R_{b}^{C}(r)+\Xi_{a, c \lambda}(-r d V / d r) R_{c}^{D}(r)=E R_{a}^{x}(r)$
$\Xi_{a, b \lambda}(-r d V / d r) R_{a}^{x}(r)+\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{b}(r)+1 \hbar \omega\right] R_{b}^{C}(r)+\Xi_{a, b \lambda}(-r d V / d r) R_{a}^{y}(r)=E R_{b}^{C}(r)$
$\Xi_{a, b \lambda}(-r d V / d r) R_{b}^{C}(r)+\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{a}(r)+0 \hbar \omega\right] R_{a}^{y}(r)-\Xi_{a, c \lambda}(-r d V / d r) R_{c}^{D}(r)=E R_{a}^{y}(r)$
$\Xi_{a, c \lambda}(-r d V / d r) R_{a}^{x}(r)-\Xi_{a, c \lambda}(-r d V / d r) R_{a}^{y}(r)+\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}}+V_{c}(r)-1 \hbar \omega\right] R_{c}^{D}(r)=E R_{c}^{D}(r)$

These radial wavefunctions can be used as form factors to calculate one-nucleon transfer reactions in DBWA

We now expand also over occupied states:

$$
\begin{aligned}
& R^{X}{ }_{a}(r)=\sum_{i} x_{a i} R_{a i}^{W S}(r) ; e_{a i}>0 \\
& R^{C}{ }_{b}(r)=\sum_{i} C_{b i} R_{b i}^{W S}(r) ; e_{b i}>0 \\
& R^{D}{ }_{c}(r)=\sum_{i} D_{c i} R_{c i}^{W S}(r) ; e_{c i}<0 \\
& \left(\left.\begin{array}{cc|cc|cc}
e_{a 1}-e_{F} & 0 \ldots & h_{a 1, b 1 \lambda} & h_{a 1, b 2 \lambda} \cdots & -h_{a 1, c 1 \lambda} & -h_{a 1, c 2 \lambda} \cdots \\
0 & e_{a 2}-e_{F \ldots} & h_{a 2, b 1 \lambda} & h_{a 2, b 2 \lambda} \cdots & -h_{a 2, c 1 \lambda} & -h_{a 2, c 2 \lambda} \cdots \\
\hline h_{a 1, b 1 \lambda} & h_{a 2, b 1 \lambda} \cdots & e_{b 1}-e_{F}+\hbar \omega & 0 \ldots & 0 & 0 \ldots \\
h_{a 1, b 2 \lambda} & h_{a 2, b 2 \lambda} \cdots & 0 & e_{b 2}-e_{F}+\hbar \omega \ldots & 0 & 0 \ldots \\
\hline-h_{a 1, c 1 \lambda} & -h_{a 2, c 1 \lambda} \cdots & 0 & 0 & e_{c 1}-e_{F}-\hbar \omega & 0 \ldots \\
-h_{a 1, c 2 \lambda} & -h_{a 2, c 2 \lambda} \cdots \cdots & 0 & 0 & 0 & e_{c 2}-e_{F}-\hbar \omega \ldots
\end{array} \right\rvert\,\left(\begin{array}{c}
x_{a 1} \\
x_{a 2} \cdots \\
C_{b 1} \\
C_{b 2 \ldots} \\
D_{c l} \\
D_{c 2} \cdots
\end{array}\right)=\tilde{E}\left(\begin{array}{c}
x_{a 1} \\
x_{a 2} \cdots \\
C_{b 1} \\
C_{b 22} \\
D_{c 1} \\
D_{c 2} \cdots
\end{array}\right)\right. \\
& \Sigma_{i j}(\tilde{E})=\sum_{b k>e_{F}} \frac{h_{a i, b k \lambda} h_{a j, b k \lambda}}{\tilde{E}-\left(E_{b k}+\hbar \omega_{\lambda}\right)}+\sum_{c k<e_{F}} \frac{h_{a i, c k \lambda} h_{a j, c k \lambda}}{\tilde{E}-E_{c k}+\hbar \omega_{\lambda}}
\end{aligned}
$$

Expressing the self-energy in coordinate space,

$$
\begin{aligned}
& \left(H_{p}-e_{F}\right) R_{a i}^{x}(r)+\int d r^{\prime}\left[\sum_{b k>e_{F}} \frac{\Xi_{a, b \lambda}^{2} \beta_{\lambda}^{2} R_{b k}^{W S}\left(r^{\prime}\right) R_{b k}^{W S}(r) f(r) f\left(r^{\prime}\right)}{\tilde{E}_{a i}-\left(E_{b k}+\hbar \omega_{\lambda}\right)}\right. \\
& \left.+\sum_{c k<e_{F}} \frac{\Xi_{a, c \lambda}^{2} \beta_{\lambda}^{2} R_{c k}^{W S}\left(r^{\prime}\right) R_{c k}^{W S}(r) f(r) f\left(r^{\prime}\right)}{\tilde{E}_{a i}-E_{c k}+\hbar \omega_{\lambda}}\right] R_{a i}^{x}\left(r^{\prime}\right)=\tilde{E}_{a i} R_{a i}^{x}(r) \\
& f(r) \equiv r d V / d r
\end{aligned}
$$

The self-energy is a non-local function which is then used as an optical potential to describe the neutron-core interaction.
See Potel's talk tomorrow, about its use in (d, p) reactions.

I will apply the NFT to build a model for the calculation low-lying excitations in light ($A \approx 10-15$) weakly bound nuclei containing a few phenomenological parameters, trying to correlate explicitly different experimental results.

- Only the coupling to the low-lying 2+ excitation will be included, taking the energy and deformation parameter from experiment.
- The mean field will be taken as a Woods-Saxon potential with parameters fitted on experimental data INCLUDING effects beyond mean field

> Parity inversion in $N=7$ isotones : the role of $p-n$ interaction
$1 \mathrm{~s}_{1 / 2}$
$-1 \mathrm{p}_{1 / 2}$

π

U
I. Talmi and I. Unna,

PRL 4, 469 (1961)

Parity inversion in $\mathrm{N}=7$ isotones is not reproduced by spherical mean field calculations, although the mean field includes the effect of the neutron-proton interaction

Typical spherical mean-field results
with Skyrme forces
(Sagawa,Brown,Esbensen
PLB 309(93)1)

A possible explanation of parity inversion: dynamical coupling between the core and the loosely bound neutron

Structure of Exotic Neutron-Rich Nuclei

Takaharu Otsuka, Nobuhisa Fukunishi, and Hiroyuki Sagawa
Department of Physics, Unicersity of Tokyo, Hongo, Bunkyo-ku, Tokyo, /13, Japan (Received 13 November 1992)
A new framework, the variational shell model, is proposed to describe the structure of neutron-rich unstable nuclei. An application to "Be is presented. Contrary to the failure of the spherical HartreeFock model, the anomalous $\frac{1^{+}}{}{ }^{+}$ground state and its neutron halo are reproduced with the Skyrme (SIII) interaction. This state is bound due to dynamical coupling between the core and the loosely bound neuinteraction. This state is bound due to dynamical coupling
tron, which oscillates between the $2 s_{1 / 2}$ and the $1 d_{s / 2}$ orbits.

The core: spherical or deformed? Important role of fluctuations expected We propose a dynamical description
N. Vinh Mau, Nucl. Phys. A 592 (1995) 43
G.F. Esbensen and H. Sagawa, Phys. Rev C 51 (1995)1274
F.M. Nunes and I. Thompson, Nucl. Phys. A 703 (2002) 593
G. Blanchon et al., Phys Rev. C 82 (2010) 034313

Myo et al, PRC 86 (2012) 024318
I. Hamamoto and S. Shimoura, J. Phys. G 34 (2007) 2715

How do we determine the mean field? Parameter optimization

We perform the many-body calculation starting from a Woods-Saxon potential,

The following parameters are fitted to obtain the best agreement of the renormalized energies with the experimental $1 / 2^{+}, 1 / 2^{-}$and $5 / 2^{+}$states in ${ }^{11} \mathrm{Be}$ and $3 / 2^{-}$in ${ }^{9} \mathrm{Be}$:

- Depth, diffuseness,radius, strength of spin-orbit coupling

	$\hbar \omega_{2^{+}}(\mathrm{MeV})$	β_{2}^{n}	$V_{W S}(\mathrm{MeV})$	$V_{l s}(\mathrm{MeV})$	$a_{W S}(\mathrm{fm})$	$R_{W S}(\mathrm{fm})$
${ }^{10} \mathrm{Li}$	3.37	0.68	64	14	0.75	2.10
${ }^{11} \mathrm{Be}$	3.37	0.71	72	18	0.72	2.14
${ }^{12} \mathrm{~B}$	3.80	0.57	77	22	0.78	2.18
${ }^{13} \mathrm{C}$	4.4	0.46	82	27	0.73	2.23

Strength of the dipole transition between $1 / 2+$ and $1 / 2$ - states

1.95 e fm

-0.26 e fm

-0.19 e fm
$B(E 1)$ (th.) $=0.11 \mathrm{e}^{2} \mathrm{fm}^{2}$
$B(E 1)(\exp)=.0.102 \pm 0.002 \mathrm{e}^{2} \mathrm{fm}^{2}$

Isotopic shift of the charge radius

$$
\left(\left\langle\mathrm{r}^{2}\right\rangle_{10 \mathrm{Be}}\right)^{1 / 2}=2.361 \pm 0.017 \mathrm{fm} \quad\left(\left\langle\mathrm{r}^{2}\right\rangle_{11 \mathrm{Be}}\right)^{1 / 2}=2.466 \pm 0.015 \mathrm{fm}
$$

Single-particle picture: $\mathrm{S}=1$
Many-body picture: S=0.83

$$
\left(\left\langle r^{2}\right\rangle\right)^{1 / 2}{ }_{1 s 1 / 2}=7.1 \mathrm{fm} \quad\left(\left\langle r^{2}\right\rangle\right)^{1 / 2}{ }_{1 p 1 / 2}=3 \mathrm{fm}
$$

$$
\begin{aligned}
& \left\langle r^{2}\right\rangle_{\text {loBe }}+\left(\frac{\left\langle r^{2}\right\rangle_{1 s 1 / 2}^{1 / 2}}{11}\right)^{2} \times S^{2}+\left(1-S^{2}\right) \times\left(\left(\frac{\left\langle r^{2}\right\rangle_{\text {ds/2 } 1 / 20}^{1 / 2}}{11}\right)^{2}+\left\langle r^{2}\right\rangle_{1 \text { OBe }} \frac{2}{4 \pi} \beta_{\pi}^{2}\right)
\end{aligned}
$$

$\Delta\left\langle r^{2}\right\rangle^{1 / 2}{ }_{11 \mathrm{Be}}$ (th.) $=0.12 \mathrm{fm} / 0.07 \mathrm{fm}$
$\left.\Delta<r^{2}\right\rangle^{1 / 2}{ }_{11 \text { Be }}$ (exp.) $=0.11 \mathrm{fm}$

$$
{ }^{10} \mathrm{Be}(\mathrm{~d}, \mathrm{p})^{11} \mathrm{Be} \text { at } \mathrm{E}_{\mathrm{d}}=21.4 \mathrm{MeV}
$$

Test of the single-particle component of the many-body wavefunction

${ }^{11} \operatorname{Be}\left(1 / 2^{+}\right)(p, d)^{10} \operatorname{Be}\left(2^{+}\right)$

Test of the collective component $\mathrm{R}_{\mathrm{d} 5 / 2}$ of the many-body wavefunction

$$
\left(\psi_{b}^{C} \otimes \Gamma_{\lambda}^{+}\right)_{j_{a}}=\left(R_{b}^{C}(r) / r\right)\left(\Theta_{j_{b}} \otimes \Gamma_{\lambda}^{+}\right)_{j_{a}}
$$

d5/2 phase shift in the bare potential
Renormalized 5/2+ phase shift

${ }^{10} \mathrm{Li}$ and the ${ }^{9} \mathrm{Li}(\mathrm{d}, \mathrm{p}){ }^{10} \mathrm{Li}$ reaction

F. Barranco et al, Phys. Rev. C 101 (2020) 031305(R)

The critical description of the experimental results from complementary approaches can be of great interest

Ab Initio

A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)
... and ab initio calculation turned out to be quite challenging

PRL 117, 242501 (2016) PHYSICAL REVIEW LETTERS \quad| week ending |
| :---: |
| 9 DECEMBER 2016 |

Can $A b$ Initio Theory Explain the Phenomenon of Parity Inversion in ${ }^{11} \mathbf{B e}$?

A. Calci, P. Navrati, R. Roth, J. Dohet-Eraly, S. Quagioni, G. Hupin, PRL 117, 242501 (2016)

$$
\begin{gathered}
\Sigma_{\gamma \delta}=\sum_{p f} h(\gamma, p f) \frac{1}{e-e_{p}-\hbar \omega_{f}} h(\delta, p f) \\
h(\gamma, p f)=\sum_{p^{\prime} h^{\prime}} V_{\gamma h^{\prime}, p p^{\prime}} X_{p^{\prime} h^{\prime}}^{f} \\
h(\delta, p f)=\sum_{p^{\prime \prime} h^{\prime \prime}} V_{\delta h^{\prime \prime}, p p^{\prime \prime}} X_{p^{\prime \prime} h^{\prime \prime}}^{f} \\
\Sigma_{\gamma \delta}=\sum_{p f}\left[\sum_{p^{\prime} h^{\prime}} V_{\gamma h^{\prime}, p p^{\prime}} X_{p^{\prime} h^{\prime}}^{f}\right] \frac{1}{e-e_{p}-\hbar \omega_{f}}\left[\sum_{p^{\prime \prime} h^{\prime \prime}} V_{\delta h^{\prime \prime}, p p^{\prime \prime}} X_{p^{\prime \prime} h^{\prime \prime}}^{f}\right] \\
\Sigma_{\gamma \delta}=\sum_{p^{\prime} h^{\prime} p^{\prime \prime} h^{\prime \prime}} V_{\gamma h^{\prime}, p p^{\prime}}\left[\sum_{p f} X_{p^{\prime} h^{\prime}}^{f} \frac{1}{e-e_{p}-\hbar \omega_{f}} X_{p^{\prime \prime} h^{\prime \prime}}^{f}\right] V_{\delta h^{\prime \prime}, p p^{\prime}}^{\prime}
\end{gathered}
$$

