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Ab initio structure calculations

* Medium-light mass nuclei are % ,
well described. wf 2022 Lo i e
. 72: : =l:l§-=.:-_-___.' '—— :
* Most of the uncertainty comes : PR o —
from the Hamiltonian. 64 T e
s6f b
* Many-body methods (SCGF, : N aiE L ERRR
NCSM, MBPT, IMSRG, CC, ...) _* L EHE
agree on ground state structure. 405 :
32f
* More recently: push for heavy r
and deformed nuclei. 24t —
Obtained in large many-body spaces i B 2012
-130 i bxygeln isotc;pic ch‘ain I 16: " 2014
; CaIcI:uIat]ions baseéirg'{}':chiral F i : gg}g
) —1a0 - g lucear orces an s B 8- = 2020
% o 8 = 2022
£ wof oz 3, b B S TR S R T R T R R R TR T 96 104 112 120 128 136 144
mf 5 =82
ol %Z«fcem Hergert, A Guided Tour of ab initio Nuclear Many-Body Theory, Front. Phys. 8 (2020)

Mass number (A)

Hebeler et al., Annu. Rev. Nucl. Part. Sci. (2015)




The Green’s function

The Green's function describes the propagation of a particle (hole) in the system.
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Spectral function
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The Green's function contains the full one-particle addition and removal spectroscopy
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Nuclear structure
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Dyson equation

The Green's function is the exact solution of the Dyson equation

Gap(@) = 6o (@) + G ()2} 5(w) Gap (@)

/ Irreducible self-energy, the
central element of the theory

Unperturbed propagator
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Microscopic optical potential

E — The Feshbach formalism
projects on the space of ground
state + a particle flying off.

/

The self-energy is an extension of the Feshbach optical potential that
| A+l includes both holes and particles.
Complex, non-local, energy-
dependent optical potential
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Structure AND Reactions

[he Green’s function naturally contains both structure and reaction information
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Status of reactions
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\We do not include ISCs
beyond 2p1h.

3p2h (and beyond)
configurations have an
Important absorption
contribution.

As a result the cross section
IS overestimated.

We need to include high
order diagrams (> 3).

Diagrams at order 4 are
already computationally
unreachable.
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What we have What we want
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Diagrammatic Monte Carlo sampling
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Diagrammatic Monte Carlo

Diagrammatic Monte Carlo (diagMC) has been developed in the context of condensed matter physics.

* |t proved to be a reliable way to include contributions from high order Feynman diagrams in
solid state systems’.

« Designed for infinite systems in the finite temperature regime.

It has never been applied in nuclear physics systems, and it needs to be adapted to

« Handle discrete-level system at zero-temperature.
* Much more challenging ab /nitio nuclear interactions.

« DiagMC samples perturbation theory contributions, but the causality principle needs to be
Implemented non-perturbatively (Lehmann representation).

1. DiagMIC included diagrams up to order 9 for the unitary Fermi gas, see K. Van Houcke et al., Phys. Rev. B., 99, 035140 (2019)
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Lehmann representation of the self-energy

Particle-vibration couplings
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|
Sap(w) =357 + MY,
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Mean field
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The Lehmann representation encapsulates the causality principle.

ADC(n) truncations were developed with the aim of preserving the Lehmann representation.

Nuclear structure g
State-of-the-art ADC(3) only retains 2p1h intermediate

state configurations (ISCs). / Reactions e
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A bit of mathematical machinery (just a bit, I promise)

We can project the self-energy on a basis B,,(w) (for us orthonormalized Legendre polynomials over a
range [Wmin, Wyaxl)-
DiagMC simulates this overlap
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Proof of principle: Richardson pairing model

D D
g
HD) = z z (0 — Dcjscps -3 C;Tcglcqlch
p=1s=T1 p,q=1
~ N
Energy level Spin (up or down) p=D
* D equally spaced energy levels.
p:§+1
« Particles of opposite spin on the same energy g
level interact with a constant interaction. b 2
p=3 $ ’*
- We consider a half-filling situation of 2/, pairs of
nucleons (D is even). ~ g
2

« Simple but challenging due to a pure pairing
interaction (we'll see that ADC(3) does not do x —§
well for this model). p=1 ¢ 4

« Exactly solvable: it has been used to

benchmark many-body methods' 1. M. Hjorth-Jensen et al., An Advanced Course in

Computational Nuclear Physics, Springer (2017)
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Sampling diagrams

« The self-energy expansion of the Richardson model is dominated by the ladder diagrams.
+ We adopt the self-consistent formalism — the self-energy is expressed as a function of G.

« To sample diagrams, we build a Markov chain with carefully tuned Metropolis-Hastings update ratios
designed to reproduce the PDF w,z(w, €).

* The Markov chain “moves” thanks to four possible updates

/. Change w

2. Change internal frequencies

3. Change sp quantum numbers and frequencies
4. Add/Remove Rung

« After the diagMC simulation, we fit the imaginary part of the self-energy as a function of Lorenzians
to enforce the causality principle (i.e. the Lehmann representation).

« This is allowed only within the convergence radius of the self-energy expansion. The extension to
non-perturbative regimes (g > 1) is a work in progress...




Change sp quantum numbers and frequencies

Chosen along a uniform distribution

p,w on the integers [1, D] P, W
Q3,w3$ QB7WW3+WbR q3,w3$ qs, W w3+wbR
g2, W2 Q2, W — wWa + Wy p,wb- q5, Wo @5, W — Wy + W P, Wy
Q1,w1t q1,w — W1 + Wy %1t ql,wwl—l—wa
p,w Chosen along a p,w
Lorentzian
function

L Lwy) Gy (@G (@ = 0 + )
9 = L)) 16, @2)Gy, (@ — @y + wp)]
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Add/Remove rung

Chosen along a uniform
distribution on the integers [1,D] P %

________ D, W “/ D, W

Chosen along a

P, w Lorentzian
function === @ e
p,w
qadd = M— |G, (03)Gy, (0 — w3 + wp)| qrem = !
4 L(w3) ' %3 s " Quaa
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Is this the only possible way to sample diagrams?
NO It might not even be the best way. “'5*%

p
w
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There were other attempts ‘
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Some results




Sampling at very high orders
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Results of the self-energy simulation
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Benchmarking with FCI and ADC(3)

Type of self-consistency approximation

A
~0.0055 1 § e \
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Benchmarking with FCI and ADC(3) (2)
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Spectral function and fragmentation

e Fermi Energy
b=4=10 : I Holes
g=0.3 I Particles

10'1‘:
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vy
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Ll L
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w

The model is weakly
fragmented and highly
symmetric (as expected from
particle-hole symmetry).

SB, Barbieri, Vigezzi, to

be published
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Towards ab initio potentials

« To our knowledge diagMC calculations with such difficult potentials have never been attempted.

* They require a much more complicated updating scheme that can keep track of all the
conservation laws at each vertex (to avoid sampling too many zero diagrams).

* We are in the early stages, however...
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DiagMC calculation of a second order self-energy

200 1 == Exact second order
—— Second order DiagMC
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Outlook & An important comment

* Move to large model spaces
* Better way to retain causality

« Higher order calculations

[ only spoke of the Green’s function but DiaghC can be used in
any expansion that involves diagrams (CC, MBPT, ...)




THANK YOU
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Error evaluation

_o001Lf ® —*® ® ® | Theerror due to a finite n
® dominates.
—0.00850 -

—0.02 -
. . /
> —0.03 4 —0.008551{ ® _
o 0.03 We checked this by
~R— propagating the error on
GCJ 9% 7 -0.00860 @ e - the parameters of the fit
O _505- ' ' with a Monte Carlo
(_"-5‘ —— Exactg=0.1 simulation.
U _0.06 - —— Exactg =10.3
S e g = 0.1 (diagMC VIl Order sc0)
O —0.07- * g = 0.3 (diagMC VIII Order sc0)

—0.08 -

* * o
_0.09 L 1 I 1 I 1
0.05 0.10 0.15 0.20 0.25

n
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Change w

This new frequency is chosen along a
p,w D, W ~ uniform distribution

P, Wb - P, wp — w + W

- G, (wp — @ + @")]
o |G, (wp)]
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Change internal frequencies

p,w p, W Chosen along
________________ a Lorentzian
distribution

q3, W3 g3, W3 — Wp + Wy,
q2, W2 D, Wy - o, Wy — Wy + Wy D, Wy
q1, W1 g1, W1 — Wp + Wy,

D, W p,w

order—1

do o = L@) |Gy (@] [ Gy, () — @y + w3
w int L(wp") |Gp(a)b)| |qu(wj)|
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Change sp quantum numbers and frequencies

Chosen along a uniform distribution

p,w on the integers [1, D] P, W
Q3,w3$ QB7WW3+WbR q3,w3$ qs, W w3+wbR
g2, W2 Q2, W — wWa + Wy p,wb- q5, Wo @5, W — Wy + W P, Wy
Q1,w1t q1,w — W1 + Wy %1t ql,wwl—l—wa
p,w Chosen along a p,w
Lorentzian
function

L Lwy) Gy (@G (@ = 0 + )
9 = L)) 16, @2)Gy, (@ — @y + wp)]
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Add/Remove rung

Chosen along a uniform
distribution on the integers [1,D] P %

________ D, W “/ D, W

Chosen along a

P, w Lorentzian
function === @ e
p,w
qadd = M— |G, (03)Gy, (0 — w3 + wp)| qrem = !
4 L(w3) ' %3 s " Quaa
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Dealing with 7 oR

N
1 .
233 = Zap I\III—EEONZ Bn(wj)elarg[Daﬁ(wj,Cj)]17}652

A

Normalization factor of the PDF of Feynman Z,5 = [ dw [ dC |Dyp(w)] (i.e. their "weight”).

°© Zgp is not known, however it can be estimated.

« If the weight of a subset Sy of diagrams (called normalization sector) is known, we can use the number
of times Sy is visited (V') to compute the normalization factor.

ZNgp = [dw fTESN dC |Dyp ()| lim — = —+=

We arrive at the fundamental equation of DiagMC

N

1 : Ci

ZB = ZNaB J\IJI—I&ﬁZ Bn(wj)ezarg[Daﬁ(wJ,C,)]17}652
j=1
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Normalization sector pt. 1/2

* We computed the tadpole diagram (i.e. the first order or Hartree-Fock) diagram before the simulation.

pT* P
pT P

* We replace the self-closing propagator with an unphysical one (and exclude it from the self-energy
expansion).

Tunable parameters

N/

p p ]
G, (w1) = By - Wy - _idy

g 4 T+

« This is needed because the HF diagram diverges without a convergence factor (difficult to handle
numerically!).
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Normalization sector pt. 2/2

* The weight of the normalization sector becomes Zy = %A(wmx — Wmin)-

* The result of the simulation is the dynamic (w-dependent) self energy. To obtain the total one we
simply combine the dynamic self-energy with the previously calculated Hartree-Fock diagram.




