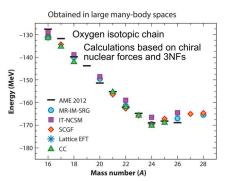
Diagrammatic Monte Carlo for Atomic Nuclei Towards a consistent approach for nuclear structure and reactions: microscopic optical potentials

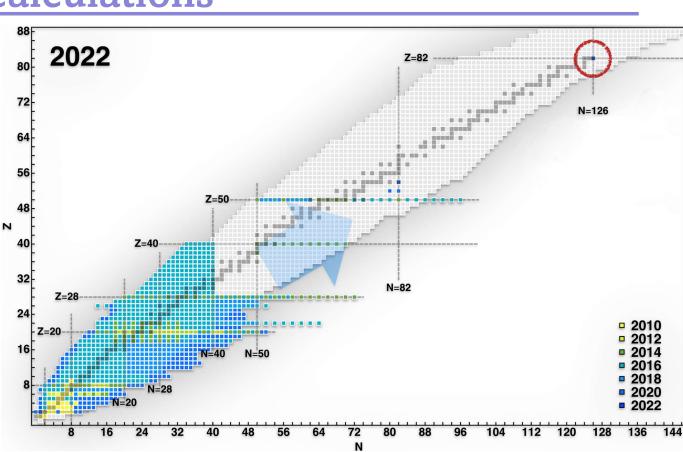
<u>Stefano Brolli^{1,2}, Carlo Barbieri^{1,2}, Enrico Vigezzi²</u>

¹Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy. ²INFN, Sezione di Milano, Milan, Italy.

Ab initio structure calculations

- Medium-light mass nuclei are well described.
- Most of the uncertainty comes from the Hamiltonian.
- Many-body methods (SCGF, NCSM, MBPT, IMSRG, CC, ...) agree on ground state structure.
- More recently: push for heavy and deformed nuclei.

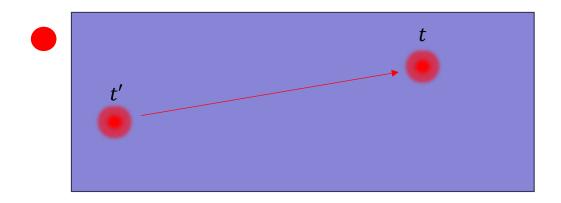




Hergert, A Guided Tour of ab initio Nuclear Many-Body Theory, Front. Phys. 8 (2020)

The Green's function

The Green's function describes the propagation of a particle (hole) in the system.



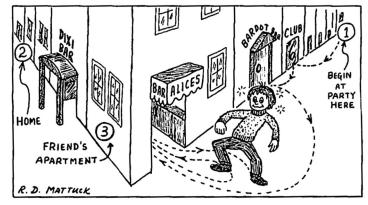


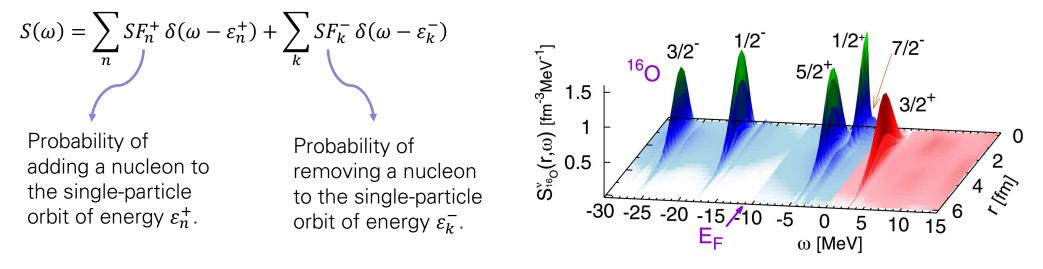
Fig. 1.1 Propagation of Drunken Man

Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (1992)

Spectral function

$$G_{\alpha\beta}(\omega) = \sum_{n} \frac{(\chi_{\alpha}^{n})^{*} \chi_{\beta}^{n}}{\omega - \varepsilon_{n}^{+} + i\eta} + \sum_{k} \frac{\mathcal{Y}_{\alpha}^{k} \left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega - \varepsilon_{k}^{-} - i\eta} \qquad \qquad (\chi_{\alpha}^{n})^{*} = \langle \Psi_{0}^{A} | c_{\alpha} | \Psi_{n}^{A+1} \rangle \qquad \mathcal{Y}_{\alpha}^{k} = \langle \Psi_{k}^{A-1} | c_{\alpha} | \Psi_{0}^{A} \rangle$$
$$\varepsilon_{n}^{+} = E_{n}^{A+1} - E_{0}^{A} \qquad \varepsilon_{k}^{-} = E_{0}^{A} - E_{k}^{A-1}$$

The Green's function contains the full one-particle addition and removal spectroscopy



Cipollone et al., Phys. Rev. C, 92, 014306 (2015)

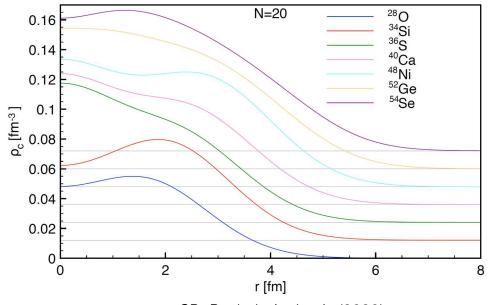
Nuclear structure

$$G_{\alpha\beta}(\omega) = \sum_{n} \frac{(\mathcal{X}_{\alpha}^{n})^{*} \mathcal{X}_{\beta}^{n}}{\omega - \varepsilon_{n}^{+} + i\eta} + \sum_{k} \frac{\mathcal{Y}_{\alpha}^{k} \left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega - \varepsilon_{k}^{-} - i\eta}$$

$$(\mathcal{X}^{n}_{\alpha})^{*} = \langle \Psi^{A}_{0} | c_{\alpha} | \Psi^{A+1}_{n} \rangle \qquad \mathcal{Y}^{k}_{\alpha} = \langle \Psi^{A-1}_{k} | c_{\alpha} | \Psi^{A}_{0} \rangle$$
$$\varepsilon^{+}_{n} = E^{A+1}_{n} - E^{A}_{0} \qquad \varepsilon^{-}_{k} = E^{A}_{0} - E^{A-1}_{k}$$

Structure information:

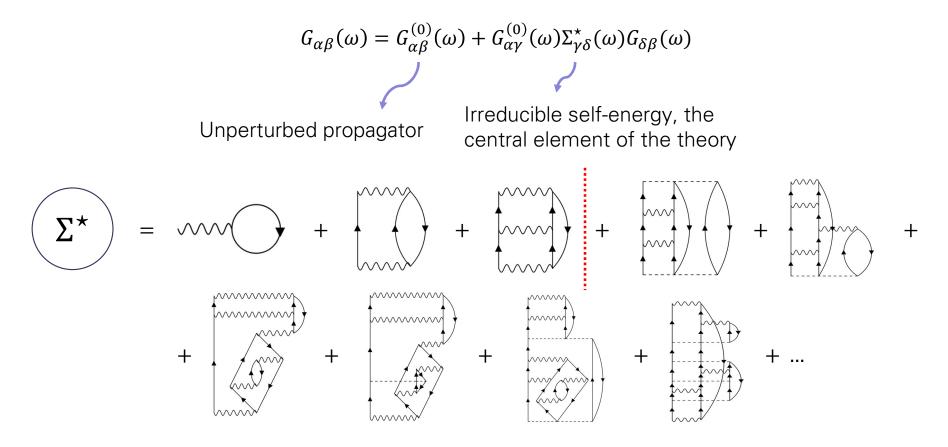
- All one-body observables (e.g. charge and point-matter densities and radii).
- Ground state energy.
- Single-particle energies and spectroscopic factors.



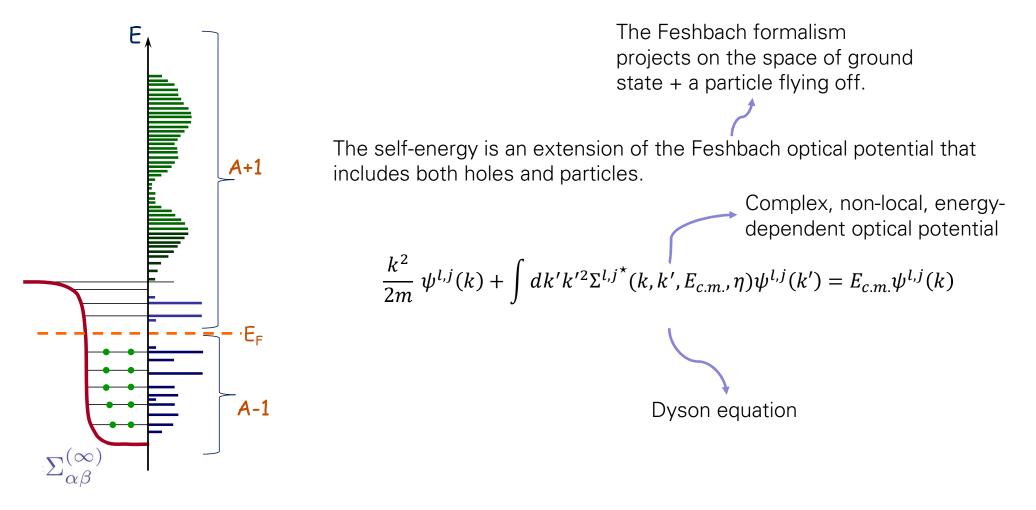
SB, Bachelor's thesis (2020)

Dyson equation

The Green's function is the exact solution of the Dyson equation

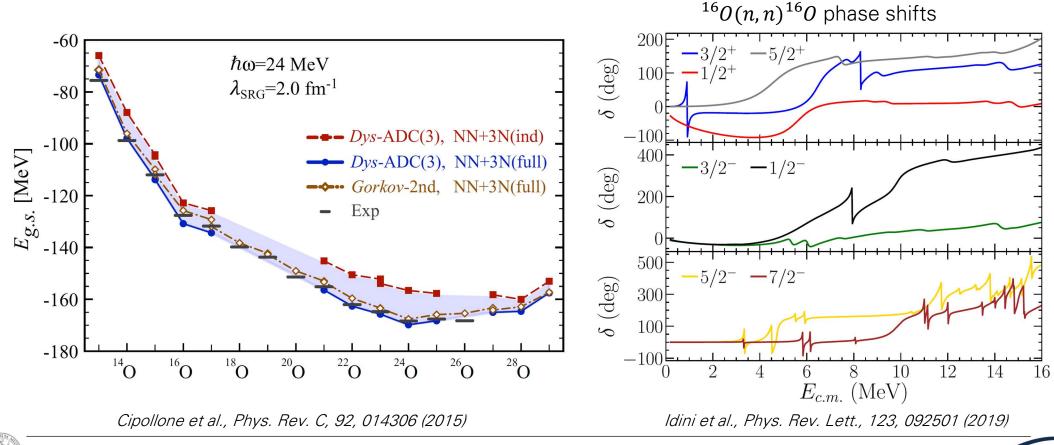


Microscopic optical potential

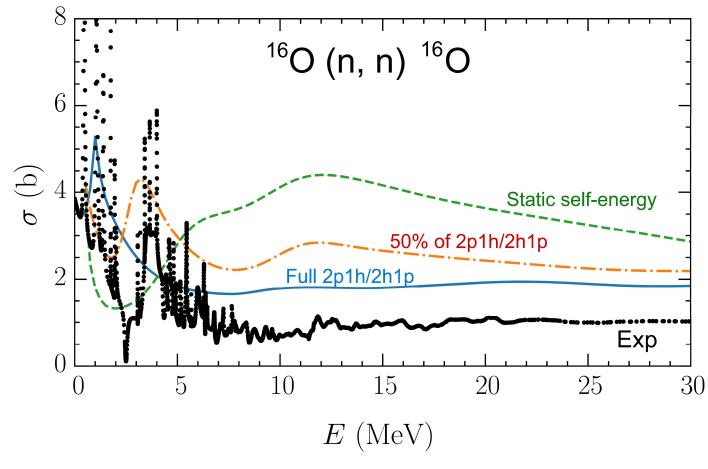


Structure AND Reactions

The Green's function naturally contains both structure and reaction information



Status of reactions

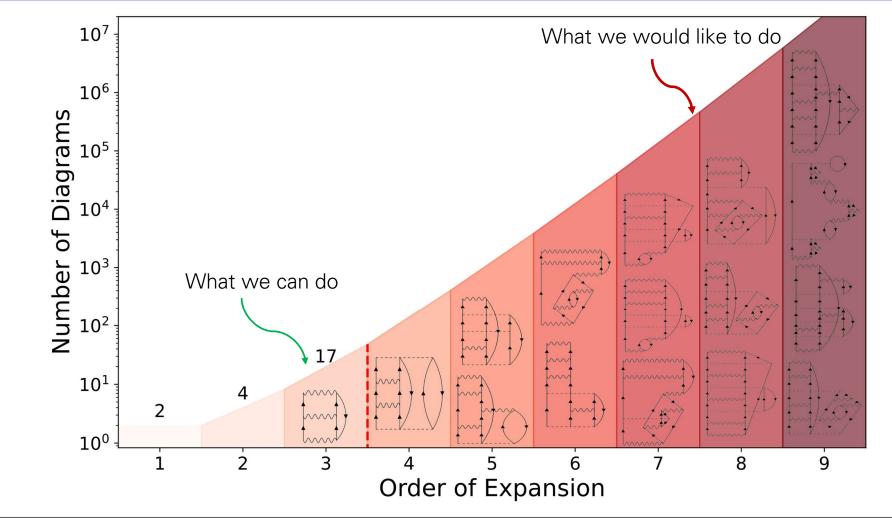


Idini et al., Phys. Rev. Lett., 123, 092501 (2019)

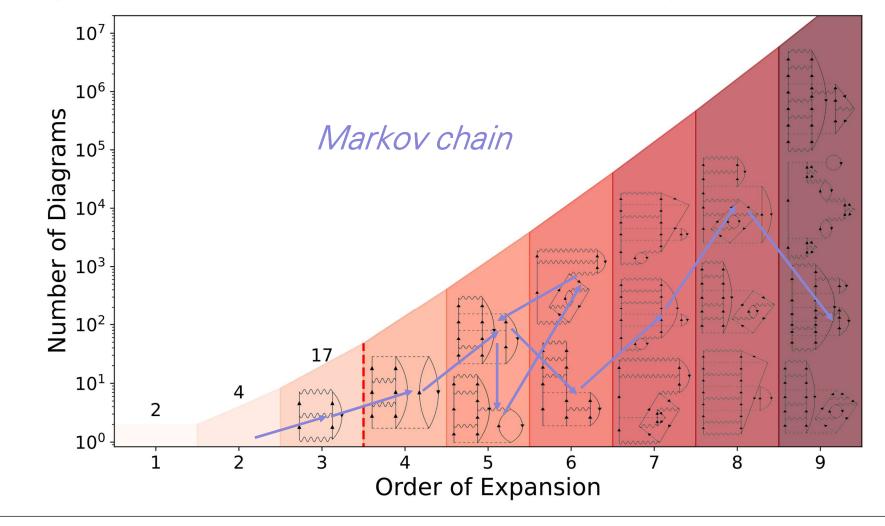
- We do not include ISCs beyond 2*p*1*h*.
- 3p2h (and beyond) configurations have an important absorption contribution.
- As a result the cross section is overestimated.
- We need to include high order diagrams (≫ 3).
- Diagrams at order 4 are already computationally unreachable.

What we have

What we want



Diagrammatic Monte Carlo sampling



Diagrammatic Monte Carlo

Diagrammatic Monte Carlo (diagMC) has been developed in the context of condensed matter physics.

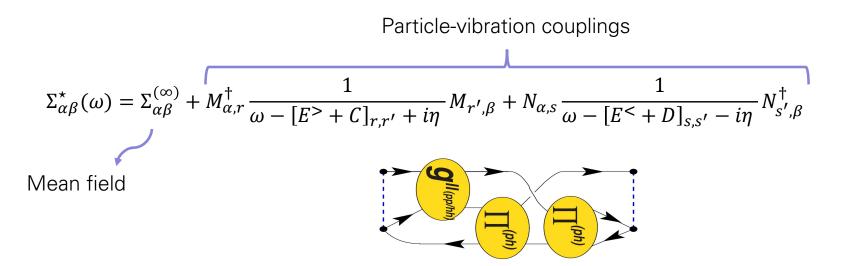
- It proved to be a reliable way to include contributions from high order Feynman diagrams in solid state systems¹.
- Designed for infinite systems in the finite temperature regime.

It has never been applied in nuclear physics systems, and it needs to be adapted to

- Handle discrete-level system at zero-temperature.
- Much more challenging *ab initio* nuclear interactions.
- DiagMC samples perturbation theory contributions, but the causality principle needs to be implemented non-perturbatively (Lehmann representation).

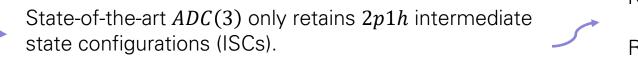
1. DiagMC included diagrams up to order 9 for the unitary Fermi gas, see K. Van Houcke et al., Phys. Rev. B., 99, 035140 (2019)

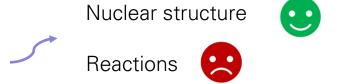
Lehmann representation of the self-energy



The Lehmann representation encapsulates the causality principle.

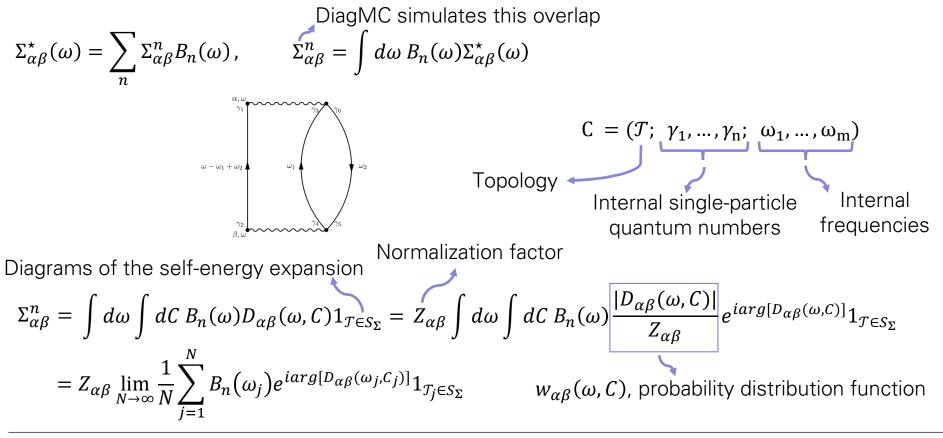
ADC(n) truncations were developed with the aim of preserving the Lehmann representation.





A bit of mathematical machinery (just a bit, I promise)

We can project the self-energy on a basis $B_n(\omega)$ (for us orthonormalized Legendre polynomials over a range $[\omega_{min}, \omega_{Max}]$).



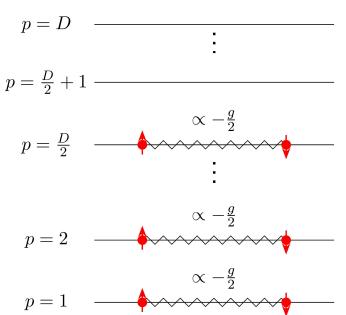
Proof of principle: Richardson pairing model

$$H^{(D)} = \sum_{p=1}^{D} \sum_{s=\uparrow,\downarrow} (p-1)c_{ps}^{\dagger}c_{ps} - \frac{g}{2} \sum_{p,q=1}^{D} c_{p\uparrow}^{\dagger}c_{p\downarrow}^{\dagger}c_{q\downarrow}c_{q\uparrow}$$

Energy level

Spin (up or down)

- *D* equally spaced energy levels.
- Particles of opposite spin on the same energy level interact with a constant interaction.
- We consider a half-filling situation of ^D/₂ pairs of nucleons (D is even).
- Simple but challenging due to a pure pairing interaction (we'll see that *ADC*(3) does not do well for this model).
- Exactly solvable: it has been used to benchmark many-body methods¹.

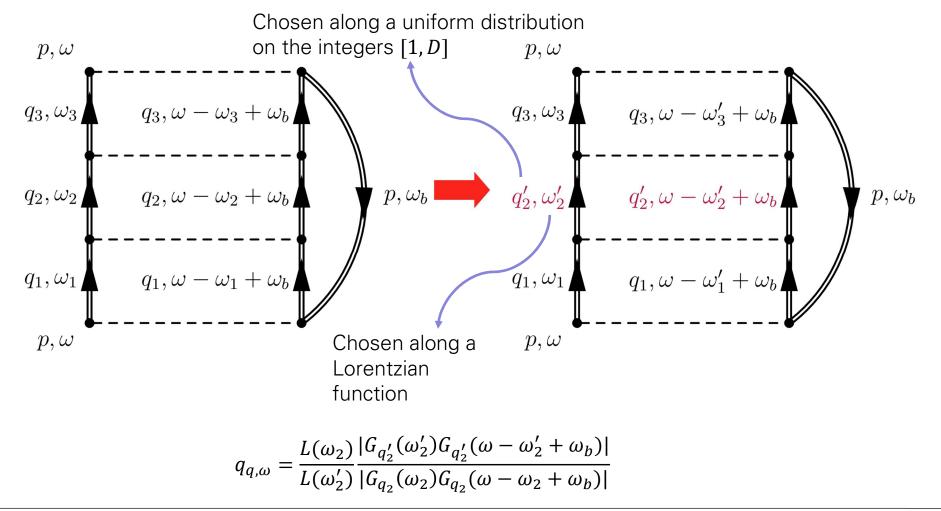


1. M. Hjorth-Jensen et al., An Advanced Course in Computational Nuclear Physics, Springer (2017)

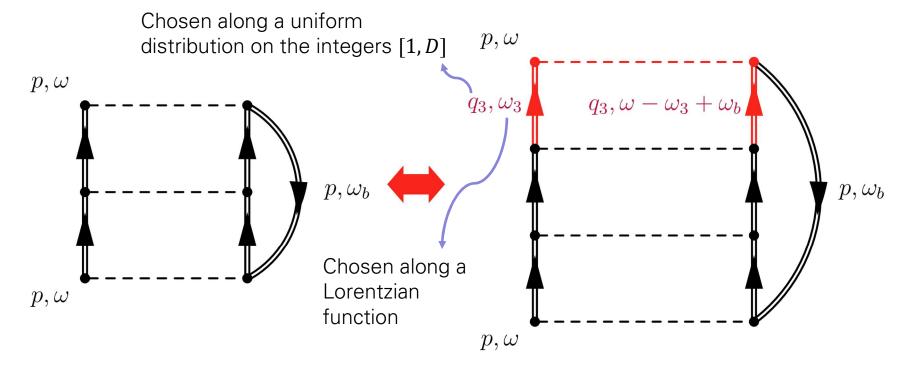
Sampling diagrams

- The self-energy expansion of the Richardson model is dominated by the ladder diagrams.
- We adopt the self-consistent formalism the self-energy is expressed as a function of G.
- To sample diagrams, we build a Markov chain with carefully tuned Metropolis-Hastings update ratios designed to reproduce the PDF $w_{\alpha\beta}(\omega, C)$.
- The Markov chain "moves" thanks to four possible updates
 - 1. Change ω
 - 2. Change internal frequencies
 - *3.* Change sp quantum numbers and frequencies
 - 4. Add/Remove Rung
- After the diagMC simulation, we fit the imaginary part of the self-energy as a function of Lorenzians to enforce the causality principle (i.e. the Lehmann representation).
- This is allowed only within the convergence radius of the self-energy expansion. The extension to non-perturbative regimes ($g \gg 1$) is a work in progress...

Change sp quantum numbers and frequencies



Add/Remove rung

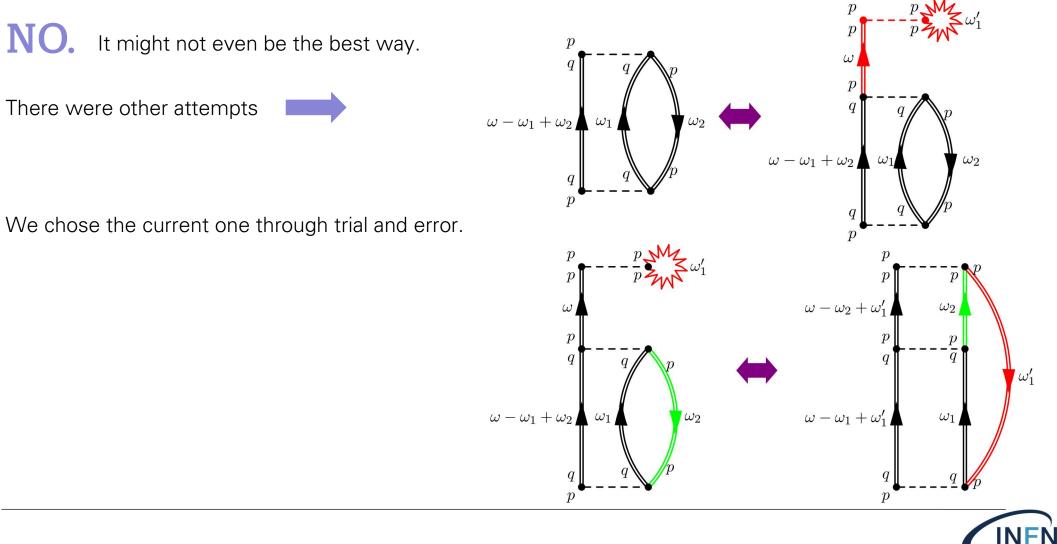


1

 q_{Add}

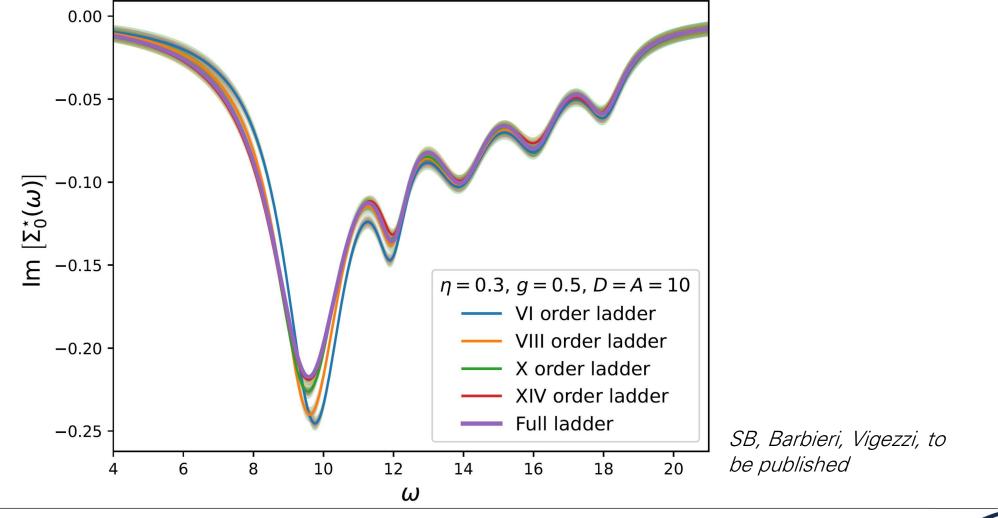
$$q_{Add} = \frac{|g|}{4\pi} \frac{D}{L(\omega_3)} \left| G_{q_3}(\omega_3) G_{q_3}(\omega - \omega_3 + \omega_b) \right| \qquad q_{Rem} =$$

Is this the only possible way to sample diagrams?

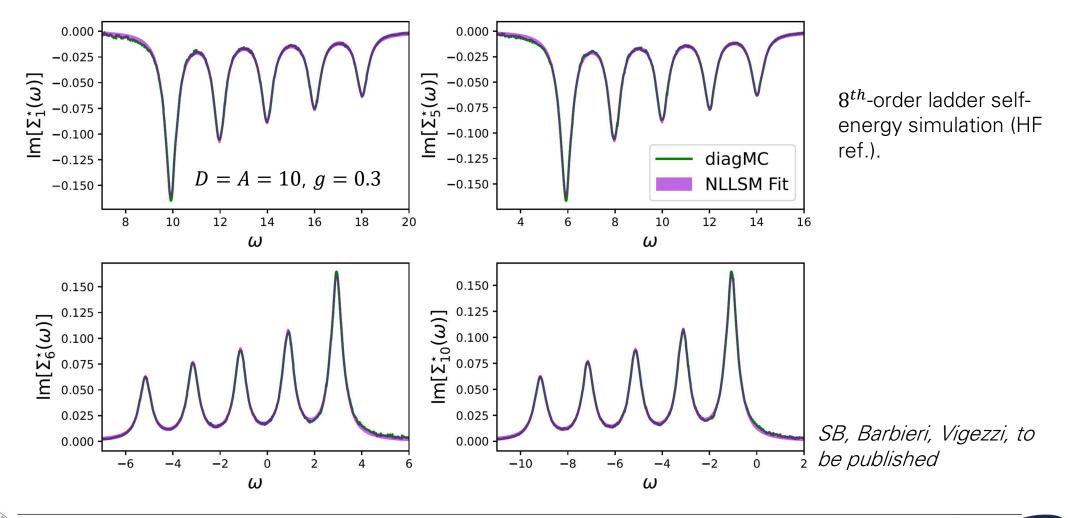


Some results

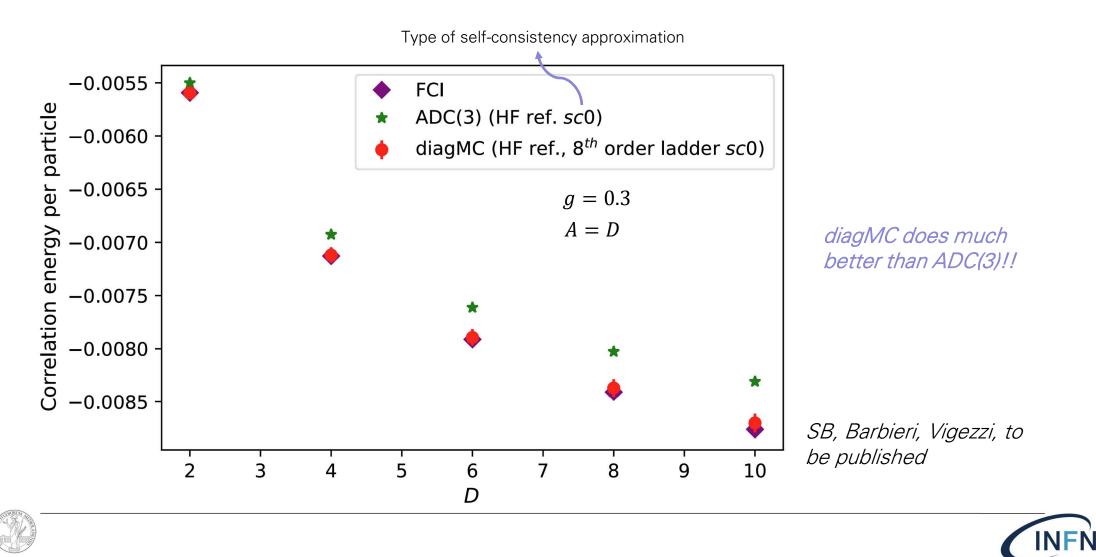
Sampling at very high orders



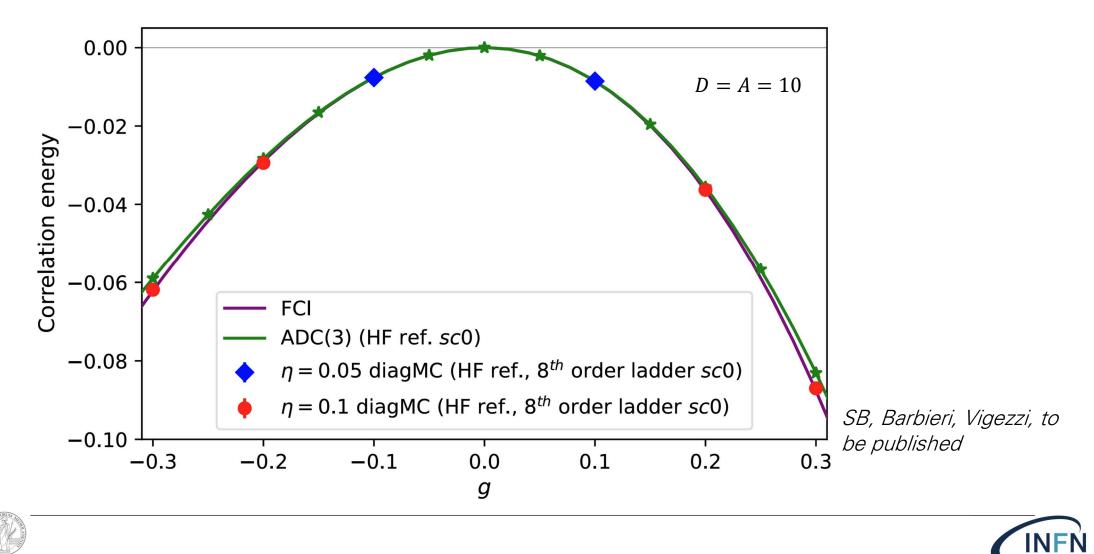
Results of the self-energy simulation



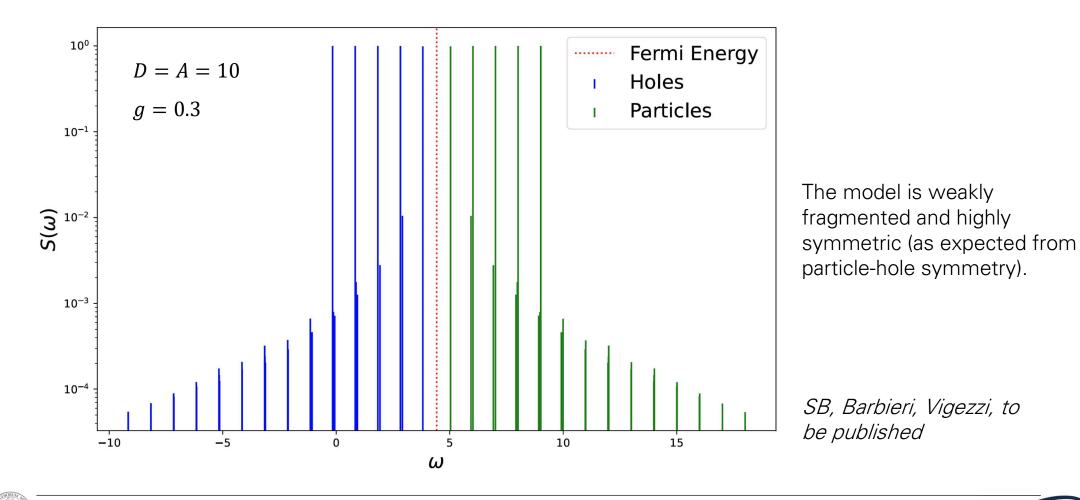
Benchmarking with FCI and ADC(3)



Benchmarking with FCI and ADC(3) (2)



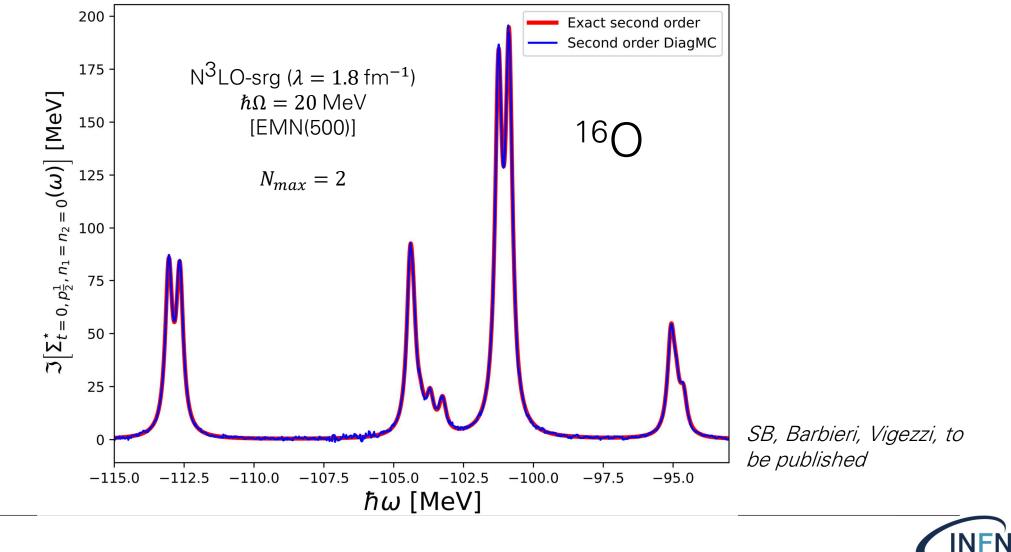
Spectral function and fragmentation



Towards ab initio potentials

- To our knowledge diagMC calculations with such difficult potentials have never been attempted.
- They require a much more complicated updating scheme that can keep track of all the conservation laws at each vertex (to avoid sampling too many zero diagrams).
- We are in the early stages, however...

DiagMC calculation of a second order self-energy



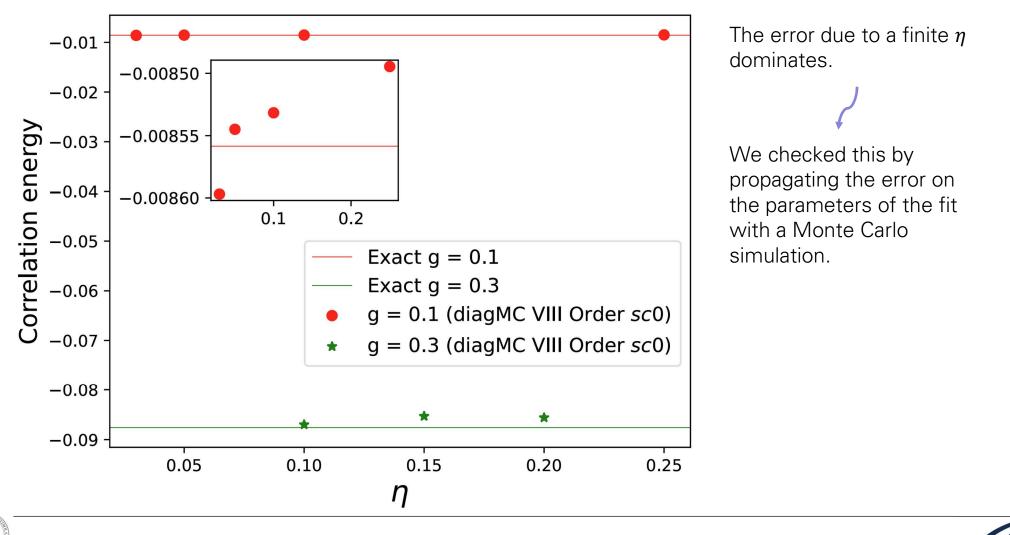
Outlook & An important comment

- Move to large model spaces
- Better way to retain causality
- Higher order calculations

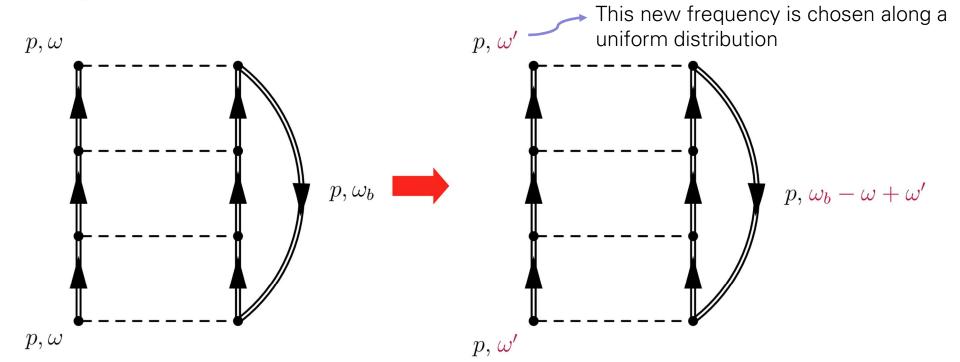
I only spoke of the Green's function but DiagMC can be used in any expansion that involves diagrams (CC, MBPT, ...)

THANK YOU!!

Error evaluation

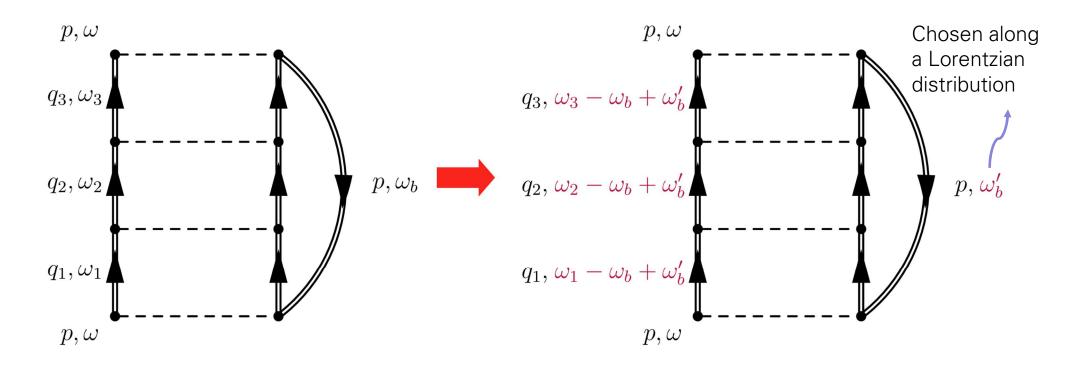


Change ω



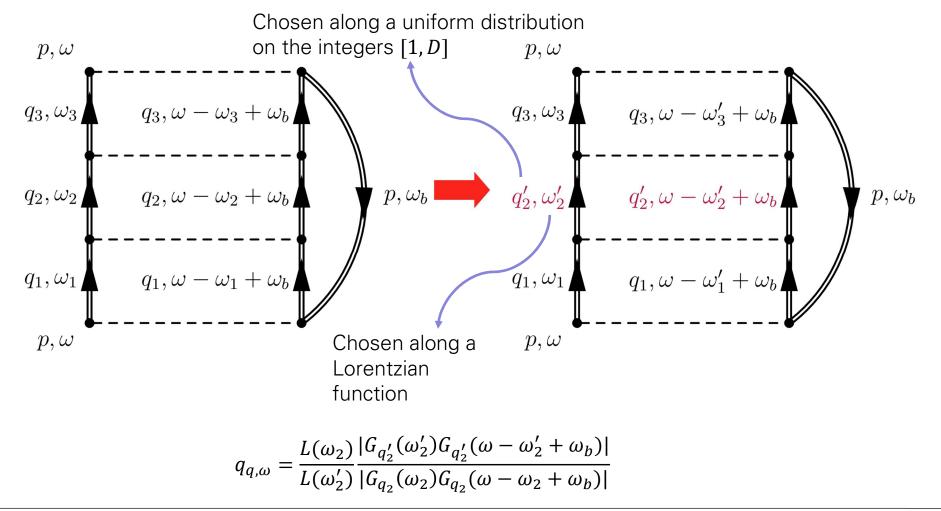
$$q_{C\omega} = \frac{|G_p(\omega_b - \omega + \omega')|}{|G_p(\omega_b)|}$$

Change internal frequencies

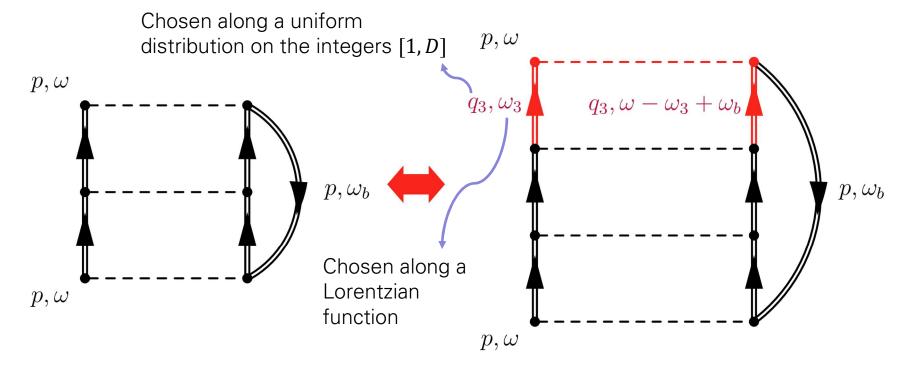


$$q_{\omega int} = \frac{L(\omega_b)}{L(\omega_b')} \frac{|G_p(\omega_b')|}{|G_p(\omega_b)|} \prod_{j=1}^{order-1} \frac{|G_{q_j}(\omega_j - \omega_b + \omega_b')|}{|G_{q_j}(\omega_j)|}$$

Change sp quantum numbers and frequencies



Add/Remove rung



1

 q_{Add}

$$q_{Add} = \frac{|g|}{4\pi} \frac{D}{L(\omega_3)} \left| G_{q_3}(\omega_3) G_{q_3}(\omega - \omega_3 + \omega_b) \right| \qquad q_{Rem} =$$

Dealing with $Z_{\alpha\beta}$

$$\Sigma_{\alpha\beta}^{n} = Z_{\alpha\beta} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{iarg[D_{\alpha\beta}(\omega_{j},C_{j})]} \mathbb{1}_{\mathcal{T}_{j} \in S_{\Sigma}}$$

Normalization factor of the PDF of Feynman $Z_{\alpha\beta} = \int d\omega \int dC |D_{\alpha\beta}(\omega)|$ (i.e. their "weight").

- $Z_{\alpha\beta}$ is not known, however it can be estimated.
- If the weight of a subset S_N of diagrams (called normalization sector) is known, we can use the number of times S_N is visited (\mathcal{N}) to compute the normalization factor.

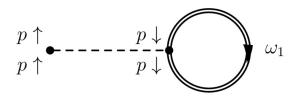
$$Z_{N\alpha\beta} = \int d\omega \int_{\mathcal{T} \in S_{N}} dC \left| D_{\alpha\beta}(\omega) \right| \qquad \lim_{N \to \infty} \frac{\mathcal{N}}{N} = \frac{Z_{N\alpha\beta}}{Z_{\alpha\beta}}$$

We arrive at the fundamental equation of DiagMC

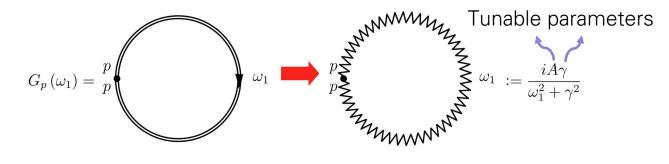
$$\Sigma_{\alpha\beta}^{n} = Z_{N_{\alpha\beta}} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} B_{n}(\omega_{j}) e^{iarg[D_{\alpha\beta}(\omega_{j},C_{j})]} \mathbb{1}_{\mathcal{T}_{j} \in S_{\Sigma}}$$

Normalization sector pt. 1/2

• We computed the tadpole diagram (i.e. the first order or Hartree-Fock) diagram *before* the simulation.



• We replace the self-closing propagator with an unphysical one (and exclude it from the self-energy expansion).



• This is needed because the HF diagram diverges without a convergence factor (difficult to handle numerically!).

Normalization sector pt. 2/2

- The weight of the normalization sector becomes $Z_N = \frac{|g|}{4}A(\omega_{Max} \omega_{min})$.
- The result of the simulation is the dynamic (ω -dependent) self energy. To obtain the total one we simply combine the dynamic self-energy with the previously calculated Hartree-Fock diagram.

