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Ab initio structure calculations
• Medium-light mass nuclei are 

well described.

• Most of the uncertainty comes 
from the Hamiltonian.

• Many-body methods (SCGF, 
NCSM, MBPT, IMSRG, CC, …) 
agree on ground state structure.

• More recently: push for heavy 
and deformed nuclei.

Hebeler et al., Annu. Rev. Nucl. Part. Sci. (2015)

Hergert, A Guided Tour of ab initio Nuclear Many-Body Theory, Front. Phys. 8 (2020)



The Green’s function
The Green’s function describes the propagation of a particle (hole) in the system.

𝑡′

𝑡

Mattuck, A Guide to Feynman Diagrams in 
the Many-Body Problem (1992)



Spectral function

The Green’s function contains the full one-particle addition and removal spectroscopy

Probability of 
adding a nucleon to 
the single-particle 
orbit of energy 𝜀 .

Probability of 
removing a nucleon 
to the single-particle 
orbit of energy 𝜀 .

𝑆 𝜔 = 𝑆𝐹 𝛿 𝜔 − 𝜀 + 𝑆𝐹 𝛿 𝜔 − 𝜀

Cipollone et al., Phys. Rev. C, 92, 014306 (2015)

𝐺 𝜔 =
𝒳 ∗𝒳

𝜔 − 𝜀 + 𝑖𝜂
+

𝒴  𝒴
∗

𝜔 − 𝜀 − 𝑖𝜂

(𝒳 )∗ = Ψ 𝑐 Ψ 𝒴 = Ψ 𝑐 Ψ

𝜀 = 𝐸 − 𝐸 𝜀 = 𝐸 − 𝐸



Nuclear structure

𝐺 𝜔 =
𝒳 ∗𝒳

𝜔 − 𝜀 + 𝑖𝜂
+

𝒴  𝒴
∗

𝜔 − 𝜀 − 𝑖𝜂

(𝒳 )∗ = Ψ 𝑐 Ψ 𝒴 = Ψ 𝑐 Ψ

𝜀 = 𝐸 − 𝐸 𝜀 = 𝐸 − 𝐸

Structure information:

• All one-body observables
(e.g. charge and point-matter densities and radii).

• Ground state energy.

• Single-particle energies and spectroscopic factors.

SB, Bachelor’s thesis (2020)



Dyson equation
The Green’s function is the exact solution of the Dyson equation

𝐺 𝜔 = 𝐺 𝜔 + 𝐺 𝜔 Σ⋆ (𝜔)𝐺 (𝜔)

Irreducible self-energy, the 
central element of the theoryUnperturbed propagator

= + + + + +

+ + + + + …



Microscopic optical potential

The self-energy is an extension of the Feshbach optical potential that 
includes both holes and particles.
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The Feshbach formalism 
projects on the space of ground 
state + a particle flying off.

Complex, non-local, energy-
dependent optical potential
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The Green’s function naturally contains both structure and reaction information

Structure AND Reactions

𝑂(𝑛, 𝑛) 𝑂 phase shifts

Idini et al., Phys. Rev. Lett., 123, 092501 (2019)Cipollone et al., Phys. Rev. C, 92, 014306 (2015)



Status of reactions

Idini et al., Phys. Rev. Lett., 123, 092501 (2019)

• We do not include ISCs 
beyond 2𝑝1ℎ.

• 3𝑝2ℎ (and beyond) 
configurations have an 
important absorption 
contribution.

• As a result the cross section 
is overestimated.

• We need to include high 
order diagrams (≫ 3).

• Diagrams at order 4 are 
already computationally 
unreachable.



What we can do

What we would like to do

What we have What we want



Diagrammatic Monte Carlo sampling

Markov chain



Diagrammatic Monte Carlo

Diagrammatic Monte Carlo (diagMC) has been developed in the context of condensed matter physics.

• It proved to be a reliable way to include contributions from high order Feynman diagrams in 
solid state systems1.

• Designed for infinite systems in the finite temperature regime.

1. DiagMC included diagrams up to order 9 for the unitary Fermi gas, see K. Van Houcke et al., Phys. Rev. B., 99, 035140 (2019)

It has never been applied in nuclear physics systems, and it needs to be adapted to

• Handle discrete-level system at zero-temperature.

• Much more challenging ab initio nuclear interactions.

• DiagMC samples perturbation theory contributions, but the causality principle needs to be 
implemented non-perturbatively (Lehmann representation).



Lehmann representation of the self-energy

Σ⋆ (𝜔) = Σ + 𝑀 ,

1

𝜔 − 𝐸 + 𝐶 , + 𝑖𝜂 
𝑀 , + 𝑁 ,

1

𝜔 − 𝐸 + 𝐷 , − 𝑖𝜂 
𝑁

,

Mean field

The Lehmann representation encapsulates the causality principle. 

𝐴𝐷𝐶(𝑛) truncations were developed with the aim of preserving the Lehmann representation.

State-of-the-art 𝐴𝐷𝐶 3 only retains 2𝑝1ℎ intermediate 
state configurations (ISCs).

Nuclear structure

Reactions 

Particle-vibration couplings



A bit of mathematical machinery (just a bit, I promise)

C = (𝒯;  𝛾 , … , 𝛾 ;   ω , … , ω )

Topology
Internal single-particle 

quantum numbers
Internal

frequencies

We can project the self-energy on a basis 𝐵 (𝜔) (for us orthonormalized Legendre polynomials over a 
range 𝜔 , 𝜔 ).

Σ⋆ 𝜔 = Σ 𝐵 𝜔 , Σ = 𝑑𝜔 𝐵 𝜔 Σ⋆ 𝜔

DiagMC simulates this overlap

Σ =

Normalization factor

𝑤 𝜔, 𝐶 , probability distribution function

𝑑𝜔 𝑑𝐶 𝐵 𝜔 𝐷 𝜔, 𝐶 1𝒯∈ = 𝑍 𝑑𝜔 𝑑𝐶 𝐵 𝜔
|𝐷 (𝜔, 𝐶)|

𝑍
𝑒 [ ( , )]1𝒯∈

= 𝑍 lim
→

1

𝑁
𝐵 𝜔 𝑒 [ ( , )]1𝒯 ∈

Diagrams of the self-energy expansion



Proof of principle: Richardson pairing model 

𝐻( )  =  (𝑝 − 1)𝑐 𝑐  

↑,↓

−
𝑔

2
𝑐 ↑𝑐 ↓𝑐 ↓𝑐 ↑

,

Energy level Spin (up or down)

• 𝐷 equally spaced energy levels.

• Particles of opposite spin on the same energy 
level interact with a constant interaction.

• We consider a half-filling situation of ⁄ pairs of 
nucleons (𝐷 is even).

• Simple but challenging due to a pure pairing 
interaction (we’ll see that 𝐴𝐷𝐶 3 does not do 
well for this model).

• Exactly solvable: it has been used to 
benchmark many-body methods1. 1. M. Hjorth-Jensen et al., An Advanced Course in 

Computational Nuclear Physics, Springer (2017)



• The self-energy expansion of the Richardson model is dominated by the ladder diagrams.

• We adopt the self-consistent formalism – the self-energy is expressed as a function of 𝐺.

• To sample diagrams, we build a Markov chain with carefully tuned Metropolis-Hastings update ratios 
designed to reproduce the PDF 𝑤 𝜔, 𝐶 . 

• The Markov chain “moves” thanks to four possible updates

Sampling diagrams

1. Change 𝜔
2. Change internal frequencies
3. Change sp quantum numbers and frequencies
4. Add/Remove Rung

• After the diagMC simulation, we fit the imaginary part of the self-energy as a function of Lorenzians
to enforce the causality principle (i.e. the Lehmann representation).

• This is allowed only within the convergence radius of the self-energy expansion. The extension to 
non-perturbative regimes (𝑔 ≫ 1) is a work in progress...



Change sp quantum numbers and frequencies 
Chosen along a uniform distribution 
on the integers [1, 𝐷]

Chosen along a 
Lorentzian 
function

𝑞 , =
𝐿(𝜔 )

𝐿(𝜔 )

|𝐺 𝜔 𝐺 (𝜔 − 𝜔 + 𝜔 )|

|𝐺 𝜔 𝐺 (𝜔 − 𝜔 + 𝜔 )|



Add/Remove rung

𝑞 =
𝑔

4𝜋

𝐷

𝐿 𝜔
𝐺 𝜔 𝐺 𝜔 − 𝜔 + 𝜔 𝑞 =

1

𝑞

Chosen along a uniform 
distribution on the integers [1, 𝐷]

Chosen along a 
Lorentzian 
function



Is this the only possible way to sample diagrams?

NO. It might not even be the best way.

There were other attempts 

We chose the current one through trial and error.



Some results



Sampling at very high orders 

SB, Barbieri, Vigezzi, to 
be published



Results of the self-energy simulation

8 -order ladder self-
energy simulation (HF 
ref.).

𝐷 = 𝐴 = 10, 𝑔 = 0.3

SB, Barbieri, Vigezzi, to 
be published



Benchmarking with FCI and ADC(3)
Type of self-consistency approximation

𝑔 = 0.3

𝐴 = 𝐷 diagMC does much 
better than ADC(3)!!

SB, Barbieri, Vigezzi, to 
be published



Benchmarking with FCI and ADC(3)  (2)

𝐷 = 𝐴 = 10

SB, Barbieri, Vigezzi, to 
be published



Spectral function and fragmentation

𝐷 = 𝐴 = 10

𝑔 = 0.3

The model is weakly 
fragmented and highly 
symmetric (as expected from 
particle-hole symmetry).

SB, Barbieri, Vigezzi, to 
be published



Towards ab initio potentials 

• To our knowledge diagMC calculations with such difficult potentials have never been attempted.

• They require a much more complicated updating scheme that can keep track of all the 
conservation laws at each vertex (to avoid sampling too many zero diagrams).

• We are in the early stages, however…



DiagMC calculation of a second order self-energy  

N3LO-srg (𝜆 = 1.8 fm )
ℏΩ = 20 MeV
[EMN(500)] 16O

𝑁 = 2

SB, Barbieri, Vigezzi, to 
be published



Outlook & An important comment

• Move to large model spaces

• Better way to retain causality 

• Higher order calculations

I only spoke of the Green’s function but DiagMC can be used in 
any expansion that involves diagrams (CC, MBPT, …)



THANK YOU!!





Error evaluation
The error due to a finite 𝜂
dominates.

We checked this by 
propagating the error on 
the parameters of the fit 
with a Monte Carlo 
simulation.



Change 
This new frequency is chosen along a 
uniform distribution

𝑞 =
|𝐺 𝜔 − 𝜔 + 𝜔 |

|𝐺 𝜔 |



Change internal frequencies

Chosen along 
a Lorentzian 
distribution

𝑞  =
𝐿(𝜔 )

𝐿(𝜔 ′)

|𝐺 𝜔 ′ |

|𝐺 𝜔 |

|𝐺 (𝜔 − 𝜔 + 𝜔 ′)|

|𝐺 (𝜔 )|



Change sp quantum numbers and frequencies 
Chosen along a uniform distribution 
on the integers [1, 𝐷]

Chosen along a 
Lorentzian 
function

𝑞 , =
𝐿(𝜔 )

𝐿(𝜔 )

|𝐺 𝜔 𝐺 (𝜔 − 𝜔 + 𝜔 )|

|𝐺 𝜔 𝐺 (𝜔 − 𝜔 + 𝜔 )|



Add/Remove rung

𝑞 =
𝑔

4𝜋

𝐷

𝐿 𝜔
𝐺 𝜔 𝐺 𝜔 − 𝜔 + 𝜔 𝑞 =

1

𝑞

Chosen along a uniform 
distribution on the integers [1, 𝐷]

Chosen along a 
Lorentzian 
function



Dealing with 

Σ = 𝑍 lim
→

1

𝑁
𝐵 𝜔 𝑒 [ ( , )]1𝒯 ∈

Normalization factor of the PDF of Feynman 𝑍 = ∫ 𝑑𝜔 ∫ 𝑑𝐶 |𝐷 (𝜔)| (i.e. their “weight”).

• 𝑍  is not known, however it can be estimated.

• If the weight of a subset 𝑆 of diagrams (called normalization sector) is known, we can use the number 
of times 𝑆 is visited (𝒩) to compute the normalization factor.

𝑍 = ∫ 𝑑𝜔 ∫ 𝑑𝐶 𝐷 𝜔
𝒯∈

lim
→

𝒩
=

We arrive at the fundamental equation of DiagMC

Σ = 𝑍 lim
→

1

𝒩
𝐵 𝜔 𝑒 [ ( , )]1𝒯 ∈



Normalization sector pt. 1/2 
• We computed the tadpole diagram (i.e. the first order or Hartree-Fock) diagram before the simulation.

• We replace the self-closing propagator with an unphysical one (and exclude it from the self-energy 
expansion). 

• This is needed because the HF diagram diverges without a convergence factor (difficult to handle 
numerically!).

Tunable parameters



Normalization sector pt. 2/2 

• The weight of the normalization sector becomes 𝑍 = 𝐴 𝜔 − 𝜔 .

• The result of the simulation is the dynamic (𝜔-dependent) self energy. To obtain the total one we 
simply combine the dynamic self-energy with the previously calculated Hartree-Fock diagram. 


