

Nuclear Structure and Saturation Properties Around ⁴⁸Ca

Andrea Gottardo

INFN-LNL, Italy

On behalf of the E786S collaboration

ECT 2024

→•(-)

Index

- Saturation properties of nuclei
 - liquid drop, charge radii
 - charge density bubbles
- The puzzling case of ⁴⁶Ar
 - N=28
 - small B(E2)
 - Coulex and (p,p')
- The direct proton transfer reaction ⁴⁶Ar(³He,d)⁴⁷K
 - motivation
 - AGATA-MUGAST-VAMOS-HeCTOR
 - data analysis
- Results compared to theoretical models
- Future perspectives

Daniele Brugnara PhD work Recipient of the 2023 INFN Villi Award for the best thesis in nuclear physics in Italy

Nuclear Saturation properties and shell structure

ARTICLES

³⁴Si nucleus

A saturated nuclear density ?

- Liquid-drop model dating back to 1929 •
- Saturated nuclear matter •
- First evidence for a bubble in ³⁴Si •
- Renewed interest in nuclear radii: ٠ large charge radii
- Shell structure <-> radii and bubbles •

r (fm)

Phys. Rev. C 89, 017304 (2014)

⁴⁶Ar: close to stability, but do we understand its structure ?

The N=28 shell closure

- The N=28 weakens below ⁴⁸Ca
- In ⁴⁶Ar almost one neutron in $p_{3/2}$
- Empirical shell-model Hamiltonians like SDPF-U reproduce the neutron observables very well

Do we understand physics at N=28, Z=18?

Neutron observables understood

Excellent theory for neutron-space related quantities:

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valance-core neutrons interaction very well

Large discrepancy in B(E2)

Large discrepancy with the measured B(E2) value at N=28:

problem with the proton E2 contribution ?

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

Do we understand physics at N=28?

Neutron observables understood

Excellent theory for neutron-space related quantities:

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valance-core neutrons interaction very well

Large discrepancy in B(E2)

Large discrepancy with the measured B(E2) value at N=28:

problem with the proton E2 contribution ?

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

ECT 2024

ECT 2024

Problem with the predicted proton wave

function (?)

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

L. A. Riley et al., PRC 72, 024311 (2005)

 Similar discrepancy in ⁴⁴S, located –2p with respect to ⁴⁶Ar

- Intermediate-energy Coulomb excitation measurements in agreement with the SDPF-U results up to ⁴²S
- Effect of polarization charges on B(E 2) calculations is found not sufficient to justify the discrepancy in ⁴⁶Ar and ⁴⁴S

B. Longfellow et al., PRC 103, 054309 (2021)

6/26

Need to probe the proton wave function predicted by SDPF:

Example: πs_{1/2} almost full or empty in ⁴⁶Ar to decrease B(E2) to exp. value

Smaller effect from N=28 quenching: with $vp_{3/2}$ almost full, B(E2)_{up} in ⁴⁶Ar still ~ 350 e²fm⁴

Direct proton transfer in inverse kinematics

d laboratory angular distribution

⁴⁶Ar predicted wave function

Direct proton transfer in inverse kinematics @ GANIL Spiral 1

AGATA-MUGAST-VAMOS-HeCTOR

[1] F.Galtarossa et al., NIM A 165830 (2021)

Setup for a complete measurement of reaction-related observables

- HeCTOr: Cryogenic (6 K) ³He target, 3 mm thick 1 mg/cm²
- AGATA: γ -ray tracking array, 40 crystals, 10% efficiency
- MUGAST: array of high-granularity DSSD detectors for light ejectiles
- VAMOS: mass spectrometer
- CATS2: beam tracking gas detectors

ECT 2024

⁴⁶Ar(³He,d)47K

ECT 2024

10/26

AGATA - VAMOS

Mass and Z identification in VAMOS Z identification • 110 100 100 through IC 90F 10² 80 70 -Z = 19 10 60 -Z = 18 50 - Noise 250 300 Energy [MeV] 100 200 150 O 20 19 Mass identification • 17 16 15 10 14 13 12 Beam monitoring ٠ 10^E 2.4 2.8 3.8 M/Q 2.6 З 3.2 3.4 3.6

γ -ray spectra from AGATA

- Doppler corrected γ -ray spectra in coincidence with 47 K in VAMOS
- Compared with Geant4 simulations of the AGATA response function for different level (lifetime) population. HeCTOr geometry taken into account

⁴⁶Ar(³He,d)47K

ECT 2024

10/26

AGATA - VAMOS

Mass and Z identification in VAMOS Z identification • through IC 100 90F 102 80 70 Z = 1910 60 -Z = 18 50 Noise 250 300 Energy [MeV] 100 150 200 O 20 Mass identification • 10 12 Beam monitoring ٠ 10^t 3.8 M/Q 2.4 2.6 2.8 З 3.2 3.4 3.6

γ -ray spectra from AGATA

- Doppler corrected γ-ray spectra in coincidence with ⁴⁷K in VAMOS
- Compared with Geant4 simulations of the AGATA response function for different level (lifetime) population. HeCTOr geometry taken into account

- 3 mm nominal thickness
- ► $T \approx 6$ K, $P \leq 1$ bar $\Rightarrow 1.2$ mg/cm²
- Havar windows of 3.8 μ m thickness
- 16 mm diameter
- Angles close to 90° are not accessible, no elastic scattering measurements

Ice deposition over time monitored with VAMOS

MUGAST [M. Assié et al., NIM A 1014, 165743 (2021)]

- First step of the GRIT project (together with Must2)
- 5 trapezoidal detectors, 1 annular detector placed at backwards angles
- Each trapezoid is segmented for position resolution with 128 X-strips and 128 Y-strips
- Particle discrimination with E-TOF using Cats2, a position-sensitive beam tracker

Geant4 Monte-Carlo simulation returns efficiency performance of the array

HeCTOr, MUGAST (towards GRIT)

- 3 mm nominal thickness
- ► $T \approx 6$ K, $P \leq 1$ bar = $\Rightarrow 1.2$ mg/cm²
- Havar windows of 3.8 μ m thickness
- 16 mm diameter
- Angles close to 90° are not accessible, no elastic scattering measurements

Ice deposition over time monitored with VAMOS

MUGAST [M. Assié et al., NIM A 1014, 165743 (2021)]

- First step of the GRIT project (together with Must2)
- 5 trapezoidal detectors, 1 annular detector placed at backwards angles
- Each trapezoid is segmented for position resolution with 128 X-strips and 128 Y-strips
- Particle discrimination with E-TOF using Cats2, a position-sensitive beam tracker

Geant4 Monte-Carlo simulation returns efficiency performance of the array

MUGAST-AGATA: particle and γ -ray spectra

Particle spectra from MUGAST-VAMOS coinc.

40

30

20

10

- Z identification through E-TOF
- Strong ⁴⁶Ar(³He,pn)⁴⁷K channel

Excitation energy recalculated with energy loss corr.

-2

0

2

Shifted Protons

4 6 8 10 Excitation energy [MeV]

10

⁴⁷K in VAMOS **AND** deuterons in Mugast

GRC 2023

12/26

MUGAST-AGATA: particle and γ -ray spectra

Particle spectra from MUGAST-VAMOS coinc.

- Z identification through E-TOF
- Strong
 ⁴⁶Ar(³He,pn)⁴⁷K
 channel

 Excitation energy recalculated with energy loss corr.

γ -ray spectra from AGATA-MUGAST-VAMOS

 Doppler corrected γ-ray spectra in coincidence with ⁴⁷K in VAMOS AND deuterons in Mugast

Data analysis: Monte Carlo-simulation based approach

Data analysis: angular distributions

The ⁴⁷K-*d* optical potential

- Elastic scattering of the ⁴⁷K(d,d)⁴⁷K reaction at 7.52 MeV/u Paxman, C. and the e793s collaboration., Priv. Comm
- The incoming optical potential (⁴⁶Ar-³He) could not be assessed due to the impossibility of measuring the elastic scattering

The ⁴⁸Ca(*d*, ³He)⁴⁷K direct reaction (I)

- Finite-range FRESCO calculation
- The j = 1/2 and j = 3/2 strengths appear with little fragmentation as only two states are observed, exhausting the SP strength in both cases
- The best-performing optical potential is the combination of [Becchetti et al., Polarization Phenomena in Nuclear Reactions (1971)] for the ³He and [Han et al., PRC 74, 044615 (2006)] for the d

Discussion

The ⁴⁸Ca(*d*, ³He)⁴⁷K direct reaction (II)

- Finite-range FRESCO calculation
- The j = 1/2 and j = 3/2 strengths appear with little fragmentation as only two states are observed, exhausting the SP strength in both cases
- The best-performing optical potential is the combination of [Becchetti et al., Polarization Phenomena in Nuclear Reactions (1971)] for the ³He and [Han et al., PRC 74, 044615 (2006)] for the d

The ⁴⁸Ca(*d*, ³He)⁴⁷K direct reaction (III)

- Finite-range FRESCO calculation
- The j = 1/2 and j = 3/2 strengths appear with little fragmentation as only two states are observed, exhausting the SP strength in both cases
- The best-performing optical potential is the combination of [Becchetti et al., Polarization Phenomena in Nuclear Reactions (1971)] for the ³He and [Han et al., PRC 74, 044615 (2006)] for the d

Discussion

The ⁴⁸Ca(*d*, ³He)⁴⁷K direct reaction (IV)

- Finite-range FRESCO calculation
- The j = 1/2 and j = 3/2 strengths appear with little fragmentation as only two states are observed, exhausting the SP strength in both cases
- The best-performing optical potential is the combination of [Becchetti et al., Polarization Phenomena in Nuclear Reactions (1971)] for the ³He and [Han et al., PRC 74, 044615 (2006)] for the d

The 46 Ar(3 He, d) 47 K direct reaction (I)

- Finite-range FRESCO calculation
- The position of the maxima of the distributions is affected minimally by the optical potential choice
- These calculations will serve as an input for the Geant4 Monte Carlo simulations

The 46 Ar(3 He, d) 47 K direct reaction (II)

- Finite-range FRESCO calculation
- The position of the maxima of the distributions is affected minimally by the optical potential choice
- These calculations will serve as an input for the Geant4 Monte Carlo simulations

The 46 Ar(3 He, d) 47 K direct reaction (III)

- Finite-range FRESCO calculation
- The position of the maxima of the distributions is affected minimally by the optical potential choice
- These calculations will are an input for the Geant4 Monte Carlo simulations

The 46 Ar(3 He, d) 47 K direct reaction (IV)

- Finite-range FRESCO calculation
- The position of the maxima of the distributions is affected minimally by the optical potential choice
- These calculations are the input for the Geant4 Monte Carlo simulations

Overlaps for cross section calculations

- Overlap from ab-initio and WS similar
- Difference possible in case of halo orbitals ?

Results

Particle spectra from MUGAST-VAMOS coinc.

5 20

25

30 35 Angle [deg

10 15

Spectroscopic factors

The SM (SDPF-U) fails the comparison with experimental data in terms of $C^{2}S$.

$C^{2}S[L]/C^{2}S[L = 0]$	3/2+ state	7/2 state
SDPF-U	0.63	2.6
Experiment		

• $\pi s_{1/2}$ empty, $\pi d_{3/2}$ full !

• The proton WF of the g.s. of ⁴⁶Ar is not correctly described

Results

Particle spectra from MUGAST-VAMOS coinc.

Elastic scattering of the ⁴⁷K(d,d)⁴⁷K reaction
 @ 7.52 MeV/u: tested on recent data acquired at the same setup [Paxman, C. and the e793s collaboration. Priv. Comm]

Spectroscopic factors

The SM (SDPF-U) fails the comparison with experimental data in terms of C^2S .

$\mathbf{C}^{2}\mathbf{S}[L]/\mathbf{C}^{2}\mathbf{S}[L=0]$	3/2+ state	7/2 state
SDPF-U	0.63	2.6
Experiment	$0.10^{+0.11}_{-0.10}$	$1.10^{+0.18}_{-0.15}$

• $\pi s_{1/2}$ empty, $\pi d_{3/2}$ full !

The proton WF of the g.s. of ⁴⁶Ar is not correctly described

- Absolute cross sections are sensitive to the chosen optical potential
- Relative (ratio of) cross
 sections much less sensitive

Results sensitivity to optical potentials (II)

Ab-initio model NNLO_{sat}: shell structure

Ab-initio calculations

- Ab-initio calculations with the NNLOsat in ADC2 and ADC3 (C. Barbieri, S. Brolli, V. Somà)
- NNLO_{SAT} chosen because of its capability of reproducing radii (cross check with the NNLO_{Inl} in ADC2)
- 14 harmonic oscillator shells and $\hbar\Omega$ =22 MeV to optimize the convergence of binding energies
- BE and charge radii well in agreement with ⁴⁸Ca and ⁴⁶Ar data
- SF in ⁴⁶Ar in agreement with data

• NNLO_{SAT}: a $\pi d_{3/2}$ subshell closure and an empty $\pi s_{1/2}$

And the B(E2) ?

B(E2) puzzle solved ?

- Naive considerations: by closing the d_{3/2} shell the restricted proton space will return a small B(E2) -> confirmed by SM calculations
- Mapping the NNLOsat χEFT Hamiltonian into the effective meanfield orbits generated by SCGF ADC(3) *Phys. Rev. C 100, 024,317 (2019)*
- The Hamiltonian was then diagonalized, with Antoine adjusting SP energies to reproduce experimental ⁴⁶Ar, ⁴⁷K level schemes: B(E2, 2⁺→0⁺)= 30 e²fm⁴

Radii, bubble, island of inversion: a link ?

- large charge and matter radii in ⁵⁰⁻⁵²Ca
- island of inversion at N=28
- central charge density depletion in ⁴⁶Ar

- $\nu p_{3/2} \nu p_{1/2} \nu f_{5/2}$ neutrons displacing matter from the center of the nucleus because of oversaturation
- In Ca isotopes, the Z=20 shell closure prevents protons from moving away from the core, which then has to swell
- νp_{3/2} occupied by one neutron across N=28 in ⁴⁶Ar due to Island of inversion approaching -> oversaturation
- In ⁴⁶Ar, protons can move between $\pi s_{1/2}$ and $\pi d_{3/2}$

Phys. Rev. Lett. 124, 102501 (2020) Nat. Phys. 12, 594–598 (2016)

ECT 2024

⁴⁶Ar(³He,d)47K

ECT 2024

Future developments

A 4π DSSD: GRIT

 GRIT designed to be coupled with AGATA and CTADIR

AGATA campaign at LNL ongoing, direct reactions in the future

24/26

CONCLUSIONS

Evidence of charge density depletion along N=28 below ⁴⁸Ca: the case of ⁴⁶Ar

- Direct proton transfer reactions with cryogenic targets as ideal tools to explore the shell structure linked to saturation properties
- * $\pi s_{1/2}$ depletion in ⁴⁶Ar linked to shell evolution: other density "bubbles" to be expected in exotic nuclei \rightarrow electron scattering on unstable beams
- Improved tools for direct reactions
- Can ab-initio optical potentials and overlaps be tested against measured elastic scattering ? Observable to detect halo orbitals ?

Collaboration

Experimentalists:

Daniele Brugnara, Andrea Gottardo, Marlene Assié, Daniele Mengoni, Antoine Lemasson, S. Bottoni, Emmanuel Clement, Freddy Flavigny, Diego Ramos, Franco Galtarossa, Adrien Matta, Valerian Girard-Alcindor, Mathieu Babo, Dino Bazzacco, Didier Beaumel, Yorick Blumenfeld, Ushasi Datta, Giacomo de Angelis, Gilles de France, Jérémie Dudouet, Jose Duenas, Alain Goasduff, Eleonora Gregor, Fairouz Hammache, Andrés Illana, Louis Lalanne, Sylvain Leblond, Ivano Lombardo, Naomi Marchini, Bénédicte Million, Francesco Recchia, Kseniia Rezynkina, Marco Rocchini, Jennifer Sanchez Rojo, Marco Siciliano, Josè Javier Valiente-Dobòn, Irene Zanon and Magdalena Zielinska

Theoreticians:

C. Barbieri, S. Brolli, G. Colò, V. Somà, E. Vigezzi

AND A GREAT THANK TO THE GANIL AND IJCLab ORSAY ENGINEERS and TECHINCAL STAFF !

THANK YOU FOR YOUR ATTENTION !

A speculation on the speculation: how is N=28 formed ? N=28

 N=28 is a non-HO magic number: spin-orbit or extruder-intruder ?

E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker Rev. Mod. Phys. **77**, 427 – Published 16 June 2005

- Is really 3-body force the origin of the f_{7/2} «self» binding ?
 A. P. Zuker, Phys. Rev. Lett. 90, 042502 (2003)
- Or maybe is the unbinding of the p_{3/2}p_{1/2} shells (halo-like) to create the N=28 magic number ?
 J. Bonnard and A. P. Zuker 2018 J. Phys.: Conf. Ser. 1023 012016

Ab-initio model NNLO_{sat}

⁴⁶Ar magic ?

- 3-point mass difference: $\Delta^{(3)} = -\frac{1}{2} [B({}^{47}K) - 2B({}^{46}Ar) + B({}^{45}CI)]$
- $\Delta_{\text{EXP}}^{(3)}$ = 4.830 MeV
- $\Delta_{NNLO_{SAT}}^{(3)} = 2.766 \text{ MeV}$
- In ⁴⁶Ar: $2\Delta^{(3)}$ = energy gap among a full $\pi d_{3/2}$ and an empty $\pi s_{1/2}$
- Large energy gap among proton shells in ⁴⁶Ar

Experiments Redefining Shell Structure at the Extremes GRC 2023

 $\frac{d\sigma_k}{d\Omega} = g \, \mathcal{C}^2 \mathcal{S}_k \, \frac{d\sigma_k^{SP}}{d\Omega}$

$\pi d_{3/2} - \pi s_{1/2}$: a reciprocal chase

A. Gade et al., PRC 74, 034322 (2006)

S. R. Stroberg et al., PRC 86, 024321 (2012):

in ⁴⁵Cl 3/2⁺ is maybe the fundamental state (forbidden M1 strength)

A measurement of $\pi s_{1/2}$ depletion in ⁴⁶Ar will help to assess a possible change in the $\pi s_{1/2}$ - $\pi d_{3/2}$ positions

Is there a strong $\pi s_{1/2}$ depletion in ⁴⁶Ar ?

Central density depletion linked to spin-orbit splitting reduction

L. Gaudefroy et al. PRL 97, 092501 (2006)

Inverse kinematics: H and He cryogenic target density

For reference: $\sigma = 1$ mbarn, beam = 10⁴ pps, ²H target= 1mg/cm²

260 reactions/day, 1800 reactions/week

	H semisolid	³ He cryogenic
Atoms/cm ²	4·10 ²⁰	4·10 ²⁰
mg/cm ²	0.7	2.1
Thickness (mm)	0.1	3

Neutron observables = \Rightarrow D_n

$$D_N(Z, A) = (-1)^{N+1} [S_n(Z, A + 1) - S_n(Z, A)]$$

D_n [Z. Meisel et al. PRL 114, 022501 (2015)]

- Mass measurements confirm the N=28 shell closure in ⁴⁶Ar and its breakdown in the S isotopes (by observing a peaked value of D_n at N=28 with a sudden drop for more neutron-rich ⁴⁶Ar isotopes)
- Experimental data and theory well in agreement (= ⇒ SDPF-U describes well the valence-core neutron interaction)

γ -rays in coincidence with ⁴⁷K in VAMOS

- AGATA is sensitive to the probability of populating different states
- Due to the long lifetime of the f7/2 state, the efficiency of the spectrometer changes drastically
- γ rays at 360 keV are consistent with the direct population of the 7/2⁻ state

Experimental Setup : Beam tracker

CATS2 [Ottini-Hustache, S. et al., NIM A 431, 476 (1999)]

- Overall effective area of (70 × 70) mm²
- Can withstand up to 10⁶ pps
- Timing information is obtained from the cathode with a resolution of 400 ps for the TOF selection of VAMOS and MUGAST
- Position resolution of < 0.5 mm</p>
- One detector present and located 2 m before the target position

AGATA: calibration

Hit pattern of the 39 crystals

¹⁵²Eu calibration

The ⁴⁶Ar(³He,*pn*)⁴⁷K reaction

- The weakly bound deuteron can breakup after the transfer of the proton
- This reaction is a three-body reaction, as a consequence no kinematic line is present
- Since the resolution in \u03c6 of VAMOS is limited, and/or the neutron is not detected, it is impossible to reconstruct the kinematics
- Nevertheless, the γ-rays are detected by AGATA

⁴⁷K in VAMOS and ¹H in MUGAST

³He equation of state: experimental data

[em3]⁻¹ 10⁻¹ * T = 3.33 K → T = 3.50 K × T = 3.75 K 10⁻² ─────────────────────── ──────────────────────────── ── T = 4.97 K <u></u> ★ T = 5.42 K ── T = 5.93 K * T = 6.94 K * T = 8.99 K 10^{-3} × T = 13.00 K 10^{3} 10⁴ P[mbar]

Density at different temperatures

Density at different pressures

The onset of deformation in ⁴⁴S

- Mean field potential energy surfaces computed in the Hartree–Fock– Bogolyubov framework as a function of the deformation parameter [Rodríguez-Guzmían et al., PRC 65, 024304 (2002)]
- The evolution along the N = 28 shell closure indicates a quick onset of deformation along the neutron rich side.

The optical potential

$$V(r) = V_{R}(r) + V_{SO}(r) + V_{C}(r) + i [W_{D}(r) + W_{S}(r) + W_{SO}(r)]$$

The terms consist in the Coulomb potential V_c, the real (imaginary) part of the potential well V_r (W_S), the real (imaginary) spin-orbit component V_{SO} (W_{SO}) and the surface absorption W_D.

$$V_{R}(r) = -\frac{V_{R}(E)}{1 + \exp \frac{r - R_{R}}{a_{R}}} W_{D}(r) = -4W_{D}(E) \left[\frac{\exp \frac{r - R_{D}}{a_{D}}}{1 + \exp \frac{r - R_{D}}{a_{D}}} \right]^{2}$$

$$V_{SO}(r) = -\frac{\hbar}{m_{\pi}c} \left[\vec{L} \vec{S} \right] \frac{V_{SO}}{a_{SO}r} \exp \frac{r - R_{SO}}{a_{SO}} \right]^{2}$$

Investigating the ⁴⁶Ar proton wave function with the ⁴⁶Ar(³He,d)⁴⁷K direct reaction

Ice layer uniformity

Sampled from the Landau distribution

$$\Delta x = \frac{1}{\pi c} \int_{0}^{r} dt e^{-t}$$
$$\cos t \frac{\overline{x - \mu}}{c} + \frac{2t}{\pi} \log \frac{t}{c} \int_{0}^{J} dt e^{-t}$$

MUGAST: Simulation

NPTOOL [A Matta et al, J. Phys. G: Nucl. Part. Phys. 43 045113]

Accounts for:

- Ice growth over time on the windows
- Target deformation
- Missing strips
- Thresholds
- Dead layer
- VAMOS acceptance
- Charge state distribution
- Change in FRESCO calculations due to slightly varying mid-target energy
- L value transferred

AGATA: Simulation

- Geant4 simulation necessary to simulate response to feeding on 3/2 and 7/2, which have very dissimilar lifetimes
- It accounts for the reaction, the presence of the shadow created by the cryogenic target, the presence of the reaction chamber and the crystal intrinsic properties

AGATA [E. Farnea et al, NIM A 621 1 331-343] + HECTOR

Simulation and source comparison

Angular distributions in the center of mass: comparison

Center of mass comparison with Fresco calculations

- The center of mass distribution, shows a remarkable agreement with the fit performed in the laboratory frame of reference.
- Different (global) optical potentials

have little effect on the distributions at angles close to zero

- Different parametrizations of the optical potential return a compatible ratio of $C^2S[L = 2]/C^2S[L = 0]$
- The peak of the L = 2 distribution is located in correspondence of the minimum of the overall distribution

