

1

EXPERIMENT AND OPTICAL POTENTIALS: A USER'S POINT OF VIEW

ECT* Alexandre Obertelli, TU Darmstadt

OUTLINE

- Direct reactions: needs and reality Aumann et al., PPNP (2021); Aumann et al., PRL (2017); Ponnath et al., PLB (2024)
- One nucleon transfer from ¹⁴O: a sensitivity study Flavigny et al., PRL (2013); Flavigny et al., PRC (2018)
- Quasifree scattering

Enciu et al., PRL (2022)

Uncertainties and energy dependence

Pohl et al., PRL (2023); Bertulani, PLB (2023); Gomez-Ramos et al., PLB (2023)

• Stripping from low-energy antiprotons Aumann et al. (PUMA collaboration), EPJA (2022)

WISHES AND REALITY

THE AIM OF DIRECT REACTIONS

Hebborn et al., JPG (2023), shown at Haloweek 2024

THE AIM OF DIRECT REACTIONS

Hagen, Duguet, PRC (2012)

 One nucleon pickup or stripping used to probe the structure of nuclear states through spectroscopic strength

 $S_{k}^{n\ell j,+} = |\langle \Psi_{k}^{A+1} | a_{n\ell j}^{\dagger} | \Psi_{0}^{A} \rangle|^{2} \qquad S_{k}^{n\ell j,-} = |\langle \Psi_{k}^{A-1} | a_{n\ell j} | \Psi_{0}^{A} \rangle|^{2}$

 Single-particle energies relate to physical state energies via the Baranger relation

$$e_{n\ell j} = \frac{\sum_{k} S_{k}^{n\ell j,+} (E_{k} - E_{0}) + S_{k}^{n\ell j,-} (E_{0} - E_{k})}{\sum_{k} S_{k}^{n\ell j} + S_{k}^{n\ell j}}$$

- Limitations:
 - Non observability of single particles and spectroscopic factors
 - Surface or asymptotic sensitivity of direct reactions
 - Reaction model approximations and undefined uncertainties
 - Experimental uncertainties and incomplete data sets

WISHES AND REALITY

TODAY'S REALITY

Reaching accuracy and precision of 10% would be a game changer

Aumann et al., Prog. Part. Nucl. Phys. (2021)

TU Darmstadt | Institut für Kernphysik | A. Obertelli

WISHES AND REALITY

SKINS FROM NEUTRON REMOVAL

- Sensitivity to symmetry term of EOS from neutron removal cross sections would require a 1% accuracy
- ¹²C-¹²C interaction cross section reproduced at 3% by Glauber

TRANSFER: AN EXAMPLE

SPIRAL beam: ¹⁴O at 18 MeV/nucleon Intensity: 5. 10⁴ pps Targets: CD₂ Reactions: (d,d), (d,t) and (d,³He), *fully exclusive measurements*

TRANSFER AND ELASTIC SCATTERING DIFFERENTIAL CROSS SECTIONS

Flavigny et al., PRL (2013)

TECHNISCHE UNIVERSITÄT

DARMSTADT

ONE-NUCLEON TRANSFER

ANALYSIS

• Coupled Reaction Channels (CRC) analysis (FRESCO code)

- Potentials
 - Entrance: Global N-nucleus + folding *ex.* Konig and Delaroche, NPA (2003)
 - Renormalised entrance potential on elastic scattering (V:1.1, W:0.8)
 - Exit: Global t/3He nucleus ex. Perey and Perey, ADNDT (1976)
- Form factors
 - WS, $r_0=1.31$ fm from (e,e'p) or $r_0=1.25$ fm and $a_0=0.65$ fm

	Notre	(e,e'p)[3]		
	$r_0 = 1.25 \text{ fm}$	$r_0 = 1.31 \text{ fm}$	$r_0 = 1.31 \text{ fm}$	
$C^2 S_{exp}$	1.5(3)	0.94(30)	1.17(7)	
$C^2 S_{th}$	1.51	1.51	1.51	
R_s	1.0(2)	0.62(20)	0.77(5)	

Microscopic from SCGF theory

ONE-NUCLEON TRANSFER

SENSITIVITY STUDY

Flavigny et al., PRC (2018)

Global potentials fitted on data from stable nuclei, leading to nonestimated systematic errors from to isospin / binding energy dependence

THE EXAMPLE OF ⁵²CA(P,PN)⁵¹CA

- **RIBF, RIKEN**
- ⁷⁰Zn primary beam at 345 MeV/nucleon, 200 pnA
- ⁵²Ca(p,pn)⁵¹Ca at 230 MeV / nucleon

THE EXAMPLE OF ⁵²CA(P,PN)⁵¹CA

- DWIA single-particle cross sections: K. Ogata, K. Yoshida (see talk by K. Yoshida)
- Effect of OP for p-nucleus interaction estimated to 15% at 150 MeV/n (⁴⁸Ca), less than 5% above 200 MeV/n
- Folding potential with Melbourne G matrix: Amos et al., ANP (2000), DIRAC potential: Cooper et al., PRC (1993)

SENSITIVITY STUDY

- One proton removal from ¹⁶O (inclusive to 1/2ground state and 3/2- state in¹⁵N)
- Comparison of analysis from (e,e'p), transfer, quasifree scattering and light-ion induced knockout
- DWIA, eikonal DWIA and QTC (Quantum Transfer to the Continuum) compared: variations of Rs from 0.6 to 1, i.e. ~40%
- Effect of pA optical potential (QTC) : ~10%

DWIA
$$T_{p,pN} = \sqrt{S(lj)} \left\{ \chi_{\mathbf{k}'_{p}}^{(-)} \chi_{\mathbf{k}_{N}}^{(-)} | \tau_{pN} | \chi_{\mathbf{k}_{p}}^{(+)} \psi_{jlm} \right\}$$

QTC $\mathcal{T}_{if}^{3b} = \langle \Psi_{f}^{3b(-)} | V_{pN} + U_{pC} - U_{pA} | \phi_{CA} \chi_{pA}^{(+)} \rangle$

Aumann et al., Prog. Part. Nucl. Phys. (2021)

PROTON-INDUCED REMOVAL AT 94 MEV/U

- Nucleon removal from ¹⁴O on hydrogen, 94 MeV/nucleon. ¹⁴O: S_n = 23 MeV, S_p = 4.6 MeV.
- Interpreted with Quantum Transfer to the Continuum (QTC) and eikonal DWIA.

Residue	J^{π}	$\sigma_{ m exp}$	SF	Theory	$\sigma_{ m sp}$	$\sigma_{ m th}$	$R_{\rm s}$
		[mb]			[mb]	[mb]	
$^{13}N_{g.s.}$	$1/2^{-}$	10.7(16)	1.58	DWIA	5.2	8.8	1.22(18)
				Inelastic	-	9	
				Sum		17.8	0.60(9)
				QTC	7.0	11.9	0.90(13)
				Inelastic	-	9	
				Sum		20.9	0.51(8)
$^{13}O_{g.s.}$	$3/2^{-}$	16.7(24)	3.42	DWIA	6.3	23.2	0.72(10)
				Transfer	3	11	
				Sum		34.2	0.49(7)
				QTC	10.2	376	0.44(6)
				w/o transfer	10.2	51.0	0.44(0)
				QTC	13.5	49.7	0.34(5)

• See also: Bonnaccorso, Brink, PRC (1991), Flavigny et al., PRL (2013)

CORE DESTRUCTION IN KNOCKOUT

Letter

Isospin dependence in single-nucleon removal cross sections explained through valence-core destruction effects

M. Gómez-Ramos^{a,⁰,*}, J. Gómez-Camacho^{a,b}, A.M. Moro^{a,c}

^a Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain ^b Centro Nacional de Aceleradores (U. Sevilla, J. Andalucía, CSIC), Tomás Alva Edison, 7, 41092 Sevilla, Spain

$$\begin{split} P_{\rm str}(\vec{b}) &\simeq \int dx dy \, \rho^{(2) {\rm eff}}(x, y) \\ &\times |S_{CT}^0(b_{CT})|^2 \left(1 - |S_{VT}^0(b_{VT})|^2\right) \\ \rho^{(2) {\rm eff}}(x, y) &= \int d^3 \vec{r_1} \int d^3 \vec{r_2} \, \langle \vec{r_2} | \rho_f | \vec{r_1} \rangle \phi_g^*(\vec{r_2}) \phi_g(\vec{r_1}) \\ &\times \delta \left(x - \frac{x_1 + x_2}{2}\right) \delta \left(y - \sqrt{\frac{y_1^2 + y_2^2}{2}}\right), \end{split}$$

- Stripping from light ion target (⁹Be, ¹²C)
- Nucleon core interaction from rescaled global energydependent dispersive potential Morillon et al., PRC (2007)
- large impact on cross section and isospin dependence
- Conclusions at variance with Bertulani, PLB (2023)
- See also: Louchart et al., PRC (2011), Hebborn et al., PRC (2023)

 \mathbf{R}_{s}

CORE DESTRUCTION IN KNOCKOUT

(SLIDE ADDED AFTER TALK)

- Eikonal formalism
- Reduction as much as 9.5 % found
- No nucleon-binding-energy dependence found

Table 1

Theoretical values for one-nucleon-removal stripping cross sections for selected single-particle states. $\Delta S = S_n - S_p$ for neutron removal or $\Delta S = S_p - S_n$ for proton removal.

Reaction	E _{beam} MeV/nucleon	$S_p[S_n]$ MeV	∆ <i>S</i> MeV	$J^{\pi}(j)$ mb	σ_{str} mb	$\sigma_{str}^{rescatt}$	% change
⁹ B(⁷ Li, ⁶ He)	80	9.98	2.723	0 ⁺ (3/2)	20.49	19.01	-7.22
${}^{9}B({}^{7}Li,{}^{6}Li)$	120	7.25	-2.723	$1^+(3/2)$	24.23	22.16	-8.54
¹² C(⁸ B, ⁷ Be)	285	0.137	-12.690	$3/2^{-}(3/2)$	42.49	39.02	-8.17
$^{12}C(^{9}C,^{8}B)$	78	1.3	-12.925	$2^+(3/2)$	40.14	36.86	-8.17
¹² C(⁹ Li, ⁸ Li)	100	4.06	-9.882	$2^{+}(3/2)$	40.32	37.00	-8.23
⁹ Be(¹⁰ Be, ⁹ Li)	80	19.64	12.824	$3/2^{-}(3/2)$	35.33	32.47	-8.09
⁹ Be(¹⁰ Be, ⁹ Be)	120	6.812	-12.824	$3/2^{-}(3/2)$	77.62	70.68	-8.94
⁹ Be(¹⁰ C, ⁹ C)	120	21.28	17.277	$3/2^{-}(3/2)$	44.57	40.50	-9.31
$^{12}C(^{12}C,^{11}B)$	250	15.95	-2.764	$3/2^{-}(3/2)$	64.68	58.70	-9.55
$^{12}C(^{12}C,^{11}C)$	250	18.72	2.764	$3/2^{-}(3/2)$	74.16	67.10	-9.52
$^{12}C(^{14}O.^{13}N)$	305	1.531	-18.552	$1/2^{-}(1/2)$	37.45	33.99	-9.22
⁹ Be(¹⁴ O, ¹³ O)	53	3.234	18.552	$3/2^{-}(3/2)$	25.57	23.32	-8.80
¹² C(¹⁶ O, ¹⁵ N)	2100	22.04	-3.537	$3/2^{-}(3/2)$	46.90	42.48	-9.42
¹² C(¹⁶ O, ¹⁵ O)	2100	22.04	3.537	$3/2^{-}(3/2)$	44.46	40.26	-9.45

$$(1 - |S_n|^2)|S_c|^2 \to (1 - |S_n|^2)|S_c|^2 \left(1 - \langle |S_{nc}|^2 \rangle \right),$$

with

$$S_{nc}|^2 \rangle = \frac{1}{\sigma_{NN}^{el}} \int d\Omega \frac{d\sigma_{NN}^{el}(\theta)}{d\Omega} |S_{nc}(b_{nc}(\theta,\phi))|^2,$$

STRIPPING FROM ANNIHILATION

- \bar{p} captured in antiprotonic orbital (~QED)
- then annihilate in tail $\rho_{n/p}(r)$ (QCD)

Two main methods applied in the past (LEAR at CERN) for nuclear structure:

- X rays from lower orbitals
- pions from annihilation

The interpretation of both methods depends on \bar{p} - nucleus optical potential

STRIPPING FROM ANNIHILATION

- \bar{p} captured in antiprotonic orbital (~QED)
- Energy shifts and decay widths of inner levels sensitive to the matter distribution

$$\Gamma_{n\ell} = \int \operatorname{Im} V(r) |\Psi_{n\ell}(r)|^2 r^2 dr$$

with $V(r) = \frac{2\pi}{\mu} a\rho(r)$

172Y @ CERN, R. Schmidt et al., PRC (1998)

Nuclear potential induces shift of inner level energies of few 100 eV (X ray energies: 100 keV)

TECHNISCHE

UNIVERSITÄT

DARMSTADT

STRIPPING FROM ANNIHILATION

- \bar{p} captured in antiprotonic orbital (~QED)
- then annihilate in tail $\rho_{n/p}(r)$ (QCD)
- Conservation of total charge

$$\sum_{\pi} q_{\pi} = \begin{cases} 0 \text{ for } \bar{p}p \\ -1 \text{ for } \bar{p}n \end{cases}$$

- Collaboration with Lazauskas, Hupin et al. (theory)
- See talks by: **Duerinck and Finelli**

- First application of method: Bugg et al., PRL (1973)
- Application to rare isotopes first proposed by: Wada and Yamazaki, NIM B (2004)
- First experiments at PUMA, CERN, in 2025

LOW-ENERGY ANTIPROTONS

THE PUMA EXPERIMENT

Aumann et al. (PUMA collaboration), EPJA (2022)

erc

SUMMARY

- Direct reactions are unique to probe the wavefunction of nuclear states.
- Optical potentials are major components for the analysis and interpretation of direct reaction cross sections Accuracy and precision of 10% or less for cross sections would allow quantitative statements
- In transfer reactions, uncertainties from isospin dependence and separation energy are lacking Variations of cross sections of ~O(10)-O(100) % due to optical potentials
- Nucleon quasifree scattering: optical potentials lead to variations of cross sections of ~O(10)% Cluster knockout (deuteron, ... not discussed in this talk) is expected to be more dependent on the OP Systematic uncertainties from reaction formalism and related approximations are large (> 20%)
- Inclusive stripping reactions at or below ~150 MeV / nucleon may deviate significantly from eikonal and favour larger uncertainties than at higher energies (Pauli blocking, core excitation from FSI, transfer)
- Low-energy antiprotons sensitive to nuclear surface; soon applied to RI at CERN

SCOPE AND AIMS

- Optical potentials from ab initio theory, Dispersive optical model (DOM) and other microscopic methods
- Consistency among structure and reaction mechanisms
- Uncertainties
- Implementation of microscopic nucleon-nucleus OP in actual reactions
- Applications
 - structure of nuclei away from stability investigated at facilities at various energy regimes
 - antiproton-nucleus optical potentials
 - deformed nuclei
 - astrophysics