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Introduction

Particle production at high energy/small x and in the presence of widely
separate transverse scales (momenta, masses, virtuality)

Hard dijets in DIS: relative momentum P⊥ ∼ Q � imbalance K⊥ & Qs(x)

Diffractive 2+1 jets in DIS (cf. talk by Dionysis T.)

Semi-inclusive SIDIS: Q2 � P 2
⊥ & Q2

s(x)

Higgs production (gg → H) in pA collisions: MH � P⊥ & Qs(x)

Hard γ-jet pair production in in pA collisions: P⊥ � K⊥ & Qs(x)
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Introduction (2)

Radiative corrections enhanced by large logarithms: rapidity and transverse

αs ln
1

x
(small-x) , αs ln2 P

2
⊥

K2
⊥
, αs ln

P 2
⊥

K2
⊥

(Sudakov) , αs ln
K2
⊥

Q2
s

(DGLAP)

... that we would like to resum to all orders ⇒ evolution equations

Small-x logs are resummed by the BK/JIMWLK equations (1997-2000)

Sudakov logs are resummed by the CSS equation (1981-85)

within the high-energy factorisation (CGC): Mueller, Xiao, Yuan, 2013

DGLAP well understood in the collinear factorisation (target parton picture)

... but overlooked so far in the CGC theory/colour dipole picture

see however the collinear improvement of the BK equation

(Beuf 2014, E.I. et al. 2015, Ducloué et al. 2019)
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Motivation: Pb+Pb UPCs at the LHC

All 3 evolutions relevant for dijet production in Pb+Pb UPCs at the LHC

x values of order 10−3

very hard jets with P⊥ ≥ 30 GeV

equally hard dijet imbalance K⊥ ∼ 10 GeV
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Similar results by ATLAS (ATLAS-CONF-2022-02)

Gluon saturation & Diffraction, ECT* TMD evolution at small x Edmond Iancu 4 / 23



Outline

This work: A unified picture of the 3 types of evolution

a succession of 3 evolutions: BK/JIMWLK, DGLAP and CSS

The framework: TMD factorisation emerging from the CGC effective theory

The context: the production of hard dijets in DIS at NLO

identify all the large transverse logarithms which occur at NLO

separate the DGLAP logs and the Sudakov logs from the transverse
logs included in the collinearly improved BK equation

A partonic picture for the target (proton, nucleus) emerging from the
evolution of the projectile (dipole)

A step towards unifying collinear (TMD) and CGC factorisations at small x
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Hard dijet production in DIS

Two back-to-back jets in the transverse plane: P⊥ ∼ Q � K⊥ & Qs

P⊥ = z2k1⊥ − z1k2⊥ , K⊥ = k1⊥ + k2⊥

Small qq̄ dipole: r = |x− y| ∼ 1/P⊥ � 1/Qs =⇒ single scattering

Multiple scattering still important for the momentum imbalance: K⊥ ∼ Qs

scattering amplitude: VxV
†
y − 1 ' rj

(
Vb∂

jV †b
)
, b = z1x + z2y

r ∼ 1/P⊥ dependence factorises from the b ∼ 1/K⊥ dependence
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TMD factorisation for inclusive dijets

dσγ
∗
T,LA→qq̄A

dz1dz2d2Pd2K
= HT,L(z1, z2, Q

2, P 2
⊥)Fg(xqq̄,K2

⊥)

Hard factor encoding the kinematics of the qq̄ pair

HT = αemαse
2
fδ(1− z1 − z2)

(
z2

1 + z2
2

) P 4
⊥ + Q̄4

(P 2
⊥ + Q̄2)4

(Q̄2 = z1z2Q
2)

Weiszäcker-Williams gluon TMD: unintegrated gluon distribution

Fg(x,K2
⊥) =

∫
b,b

e−iK·(b−b)

(2π)4

−2

αs

〈
Tr
[
(∂iVb)V †b (∂iVb)V †

b

]〉
x
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Collinear factorisation

If the dijet imbalance it not measured ⇒ integrate over K ⇒ gluon PDF

dσγ
∗
T,LA→qq̄A

dz1dz2d2Pd2
= HT,L(z1, z2, Q

2, P 2
⊥)xG(x, P 2

⊥)

xG(x, P 2
⊥) is well known to obey DGLAP evolution with increasing P 2

⊥

Standard one-loop calculation in the target picture

Bjorken frame P−N →∞, target light-cone gauge A− = 0

Is this also encoded in the NLO corrections in the dipole picture ?
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The Sudakov effect

P⊥ � K⊥ ⇒ large phase-space for final state emissions

Double-logarithmic integration: K⊥ � kg⊥ � P⊥ and zg � 1

Virtual corrections dominate: suppression of the cross-section

∆FSud(x,K2
⊥, P

2
⊥) = −αsNc

4π
ln2 P

2
⊥

K2
⊥
Fg(x,K2

⊥) .

The one-loop result exponentiates: e−∆FSud

Strong effect: it washes out the back-to-back correlation
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Azimuthal correlations in inclusive dijets

P⊥ � K⊥: the final jets are nearly back to back in the transverse plane

azimuthal distribution shows a pronounced peak at ∆φ = π

Additional broadening due to final-state radiation: Sudakov effect

(Zheng, Aschenauer, Lee, and Xiao, arXiv:1403.2413)

The effects of saturation are essentially washed out /
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Final state emissions

The final state emissions of soft gluons factorise ⇒ ∆FSud

Direct emissions by the quark: real & virtual

∆FqqSud =
αsCF
π2

∫
d2kg

∫ 1

k2g⊥/P
2
⊥

dzg
zg

Fg(x,K + kg)−Fg(x,K)(
kg − zg

z1
P
)2

Lower limit on zg: the boundary with the high energy evolution

BK/JIMWLK: very soft gluon emissions which occur close the collision:

τg '
2zgq

+

k2
g⊥

� τγ '
2q+

Q2
=⇒ zg �

k2
g⊥

Q2
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Final state emissions

The final state emissions of soft gluons factorise ⇒ ∆FSud

Direct emissions by the quark: real & virtual

∆FqqSud =
αsCF
π2

∫
d2kg

∫ 1

k2g⊥/P
2
⊥

dzg
zg

Fg(x,K + kg)−Fg(x,K)(
kg − zg

z1
P
)2

Collinear singularity when kg/zg = P /z1 or θg = θ1

Removed via the renormalisation of the quark fragmentation function

DGLAP evolution of quark fragmentation into hadrons
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Final state emissions

The final state emissions of soft gluons factorise ⇒ ∆FSud

Direct emissions by the quark: real & virtual

∆FqqSud =
αsCF
π2

∫
d2kg

∫ 1

k2g⊥/P
2
⊥

dzg
zg

Fg(x,K + kg)−Fg(x,K)(
kg − zg

z1
P
)2

However, we are interested in the production of jets ⇒ large angles

θg ∼
kg⊥
zgq+

> θ1 ∼
P⊥
z1q+

⇒ zg <
kg⊥
P⊥

⇒ logarithmic phase-space

∫
d2kg
k2
g

Gluon saturation & Diffraction, ECT* TMD evolution at small x Edmond Iancu 11 / 23



Final state emissions

The final state emissions of soft gluons factorise ⇒ ∆FSud

Direct emissions by the quark: real & virtual

∆FqqSud =
αsCF
π2

∫
d2kg
k2
g

∫ kg⊥/P⊥

k2g⊥/P
2
⊥

dzg
zg

[Fg(x,K + kg)−Fg(x,K)]

Emissions with low kg⊥ � K⊥ cancel between real and virtual

unobservable: cannot affect the final state

Real gluons with kg⊥�K⊥ are suppressed: Fg(K + kg)'Fg(kg)∼1/k2
g⊥
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The “virtual” Sudakov

The “standard” Sudakov, as coming from virtual corrections:

∆FqqSud = −αsCF
π
Fg(x,K2

⊥)

∫ P 2
⊥

K2
⊥

dk2
g⊥

k2
g⊥

∫ kg⊥/P⊥

k2g⊥/P
2
⊥

dzg
zg

Similar result for direct emissions by the antiquark

Large angle ⇒ interference between emissions by the q and by the q̄

Leading-twist interference effects are suppressed at large Nc

Overall color factor: CF + CF + 1/Nc = Nc

∆F V
Sud(x,K2

⊥, P
2
⊥) = −αsNc

4π
ln2 P

2
⊥

K2
⊥
Fg(x,K2

⊥) .

a large angle emission sees the overall colour charge: a gluon
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The “real” Sudakov

To DLA, there is also a “real” Sudakov effect (real gluon emission)

The dijet imbalance can also be caused by the gluon recoil: kg ' −K

∆FR
Sud =

αsNc
π2

∫
d2kg
k2
g

∫ kg⊥/P⊥

k2g⊥/P
2
⊥

dzg
zg
Fg(x,K + kg)

Replace kg = `−K and use `⊥ ≡ |K + kg| � K⊥.

Implicit assumption: Qs � K⊥ � P⊥
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The “real” Sudakov

To DLA, there is also a “real” Sudakov effect (real gluon emission)

The dijet imbalance can also be caused by the gluon recoil: kg ' −K

∆FR
Sud(x,K2

⊥, P
2
⊥) =

αsNc
π2

1

K2
⊥

1

2
ln
P 2
⊥

K2
⊥

∫ K2
⊥

Λ2

d2`Fg(x, `2⊥)

The integral over ` yields the gluon PDF at the scale K2
⊥∫ K2

⊥

Λ2

d2`Fg(x, `2⊥) = xG(x,K2
⊥) ∼ ln

K2
⊥

Q2
s
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More on the Sudakov dynamics

Fg(x,K2
⊥, P

2
⊥) = F (0)

g (x,K2
⊥) + ∆FR

Sud + ∆FV
Sud

P⊥ dependence (“resolution scale”) introduced by the loop corrections

The gluon PDF in the presence of the resolution scale:

xG(x, P 2
⊥) =

∫ P 2
⊥

Λ2

d2K Fg(x,K2
⊥, P

2
⊥)

After integrating over K⊥, “real” and “virtual” Sudakov mutually cancel:∫ P 2
⊥

Λ2

d2K
(

∆FR
Sud + ∆FV

Sud

)
= 0

final-state emissions irrelevant if the imbalance K⊥ not measured

Sudakov dynamics does not change the total number of gluons

In order to uncover DGLAP dynamics, we need to go beyond DLA
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Real gluon emissions in the initial state

No collinear singularity ⇒ just one logarithm: xG(x,K2
⊥)

Special NLO: leading order in 2 power expansions: K⊥/P⊥ and `⊥/K⊥

Soft gluon ⇒ effective gluon-gluon dipole (cf. talk by Dionysis T.)

TMD factorisation: same hard factor H(z1, z2, Q
2, P 2
⊥) as at leading order

Same WW colour operator, but evaluated at the lower scale `⊥:

Uacz
(
Vxt

cV †y
)
− ta ' −Rj

(
Uz∂

jU†z
)ac
tc.

Renormalisation group... as expected for one step in DGLAP
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From projectile to target rapidity

DGLAP must refer to the gluon TMD: a parton distribution in the target

the gluon emission should occur in the target wavefunction

splitting function Pgg(ξ) with ξ a fraction of k−

Exchange zg for ξ: transfer the gluon from the dipole to the target

always possible for a soft gluon: zg � 1

s-channel gluon must be on-shell: 2(zgq
+)(1− ξ)P−N = K2

⊥

Integration limits on zg transmit to corresponding limits on ξ
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The DGLAP splitting function

∆FR =
αs

2π2K2
⊥

∫ 1−K⊥/P⊥

x?

dξ Pgg (ξ)
x

ξ
G

(
x

ξ
,K2
⊥

)

Pgg(ξ) = 2Nc
1 + (1− ξ)2(1 + ξ2)− (1− ξ2)

ξ(1− ξ)

Final-state (singular at ξ → 1) + initial-state + interference

Non-local in x: x ≡ xqq̄ and x
ξ = xqq̄g

Upper limit 1−K⊥/P⊥ on ξ comes from zg . K⊥/P⊥

Lower limit x∗ < 1 on ξ comes from zg & x∗(K⊥/P⊥)2: αs ln 1
x∗
� 1
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Emergent DGLAP & CSS evolutions

∆FR =
αs

2π2K2
⊥

∫ 1

x?

dξ P (+)
gg (ξ)

x

ξ
G

(
x

ξ
,K2
⊥

)
+ ∆FR

Sud

“Plus” prescription for the pole at ξ → 1:

Pgg(ξ) = 2Nc
1 + (1− ξ)2(1 + ξ2)− (1− ξ2)

ξ(1− ξ)+

P⊥–dependence only in the Sudakov piece (final-state emission)

∆FR
Sud(x,K2

⊥, P
2
⊥) =

αsNc
π2

1

K2
⊥

1

2
ln
P 2
⊥

K2
⊥
xG(x,K2

⊥)

The corresponding virtual correction: Sudakov + running coupling

∆FV = −αsNc
π

(
1

4
ln2 P

2
⊥

K2
⊥
− β0 ln

P 2
⊥

K2
⊥

)
F (0)
g (x,K2

⊥)

∆FR
Sud + ∆FV: one step in CSS evolution (with increasing P 2

⊥)
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Three successive evolutions

JIMWLK for the WW TMD from x0 ∼ 10−2 down to xqq̄: F (0)
g (xqq̄,K

2
⊥)

DGLAP evolution from Q2
s up to K2

⊥ using F (0)
g as a source term

CSS evolution from K2
⊥ up to P 2

⊥ with initial condition Fg(x,K2
⊥)
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CSS evolution: a rate equation

∂Fg(x,K2
⊥, P

2
⊥)

∂ lnP 2
⊥

=
αsNc

2π

{
1

K2
⊥

K2
⊥∫

Λ2

d`2⊥ Fg(x, `2⊥, P 2
⊥)−

P 2
⊥∫

K2
⊥

d`2⊥
`2⊥
Fg(x,K2

⊥, P
2
⊥)

}

With increasing P⊥, one increases the phase-space for soft gluon emissions

The number of gluons in the bin K⊥ can

increase via the splitting of gluons with `⊥ � K⊥

decrease via the splitting into gluons with K⊥ � `⊥ � P⊥

the total number of gluons with K⊥ < P⊥ remains unchanged

100 101

K  [GeV]
1

0

1

2

3

4

5

6

g(
x,

K
2

,P
2

)

fixed coupling, s = 0.2, QCD = 0.25 GeV

init 1/K2

CSS(b -space) - P = 5 GeV
CSS(K -space) - P = 5 GeV

CSS(b -space) - P = 20 GeV
CSS(K -space) - P = 20 GeV

Solution with initial condition

F (0)
g (x,K2

⊥) =
1

K2
⊥

2 values of P⊥ : 5 and 20 GeV

Gluon saturation & Diffraction, ECT* TMD evolution at small x Edmond Iancu 20 / 23



CSS evolution: a rate equation

∂Fg(x,K2
⊥, P

2
⊥)

∂ lnP 2
⊥

=
αsNc

2π

{
1

K2
⊥

K2
⊥∫

Λ2

d`2⊥ Fg(x, `2⊥, P 2
⊥)−

P 2
⊥∫

K2
⊥

d`2⊥
`2⊥
Fg(x,K2

⊥, P
2
⊥)

}

With increasing P⊥, one increases the phase-space for soft gluon emissions

The number of gluons in the bin K⊥ can

increase via the splitting of gluons with `⊥ � K⊥

decrease via the splitting into gluons with K⊥ � `⊥ � P⊥

the total number of gluons with K⊥ < P⊥ remains unchanged

Adding saturation (MV model)

F̃ (0)
g (x,R2

⊥) =
Tqq̄(R)

R2

P⊥ = 5 GeV (green curve)
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Conclusions & Open questions

Particle production at small x (x < 10−2) and large transverse momenta
(P⊥ � Qs(x)) requires several types of evolutions

TMD factorisation within the CGC theory seems to be the right approach

A strategy to combine BK/JIMWLK, DGLAP and CSS evolutions in a
unified framework

Not a unique, super-equation, but rather a succession of evolutions

Numerical implementation of the whole scheme is under the way

Demonstrated on the exemple of hard dijet production in γA

Similar results for many other processes in γA and pA collisions

E.g. SIDIS involves the quark TMD and its evolutions
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Back-up: More about DGLAP & CSS

F (0)
g (x,K2

⊥): the gluon WW TMD without DGLAP and CSS

DGLAP evolution from Q2
s up to K2

⊥ using F (0)
g as a source term:

∂xG(x,Q2)

∂ lnQ2
= πQ2F (0)

g (x,Q2) +
αs
2π

∫ 1

x∗

dξ Pgg (ξ)
x

ξ
G

(
x

ξ
,Q2

)
,

The gluon TMD including JIMWLK and DGLAP:

Fg(x,K2
⊥) =

1

παs(K2
⊥)

∂

∂K2
⊥

[
αs(K

2
⊥)xG(x,K2

⊥)
]

CSS evolution from K2
⊥ up to P 2

⊥ with initial condition Fg(x,K2
⊥):

∂Fg(x,K2
⊥, P

2
⊥)

∂ lnP 2
⊥

=
αsNc

2π

{
1

K2
⊥

K2
⊥∫

Λ2

d`2⊥ Fg(x, `2⊥, P 2
⊥)−

P 2
⊥∫

K2
⊥

d`2⊥
`2⊥
Fg(x,K2

⊥, P
2
⊥)

}

+β0
αsNc
π
Fg(x,K2

⊥, P
2
⊥)
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Back-up: CSS equation in coordinate space

The CSS equation is usually written/solved in transverse coordinate space

DGLAP evolution from Q2
s up to K2

⊥ using F (0)
g as a source term:

F̃g(x,R2, Q2) ≡
∫

d2K

(2π)2
e−iK·R Fg(x,K2

⊥, Q
2)

The respective equation has no real piece ! Smearing of the K⊥–distribution:

∂F̃g(x,R2, Q2)

∂ lnQ2
=
Nc
π

{
−1

2

∫ Q2

1/R2

d`2⊥
`2⊥

αs(`
2
⊥) + β0αs(Q

2)

}
F̃g

Local in both Q2 and R2 ⇒ trivial to solve

F̃g(x,R2, Q2) = F̃0(x,R2)

{
−Nc
π

∫ Q2

1/R2

d`2⊥
`2⊥

αs(`
2
⊥)

[
1

2
ln
Q2

`2⊥
− β0

]}

... but the Fourier transform back to momentum space can be tricky !
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