Tetraquarks in Central Exclusive Production

Ronan McNulty Diffraction and Gluon Saturation at the LHC and EIC Trento 10-14 June 2024

Motivation for CEP

- Much to understand about QCD
 - perturbative / non-perturbative regime
 - proton and nuclear structure (PDFs GPDs)
 - saturation 👹
 - quark model bound states (ρ , ρ ', f_0 , $f_{2...}$)
 - beyond the naïve quark model (hybrids, tetraquarks), glueballs)
 - colourless propagators: pomerons and odderons
- Can be addressed in diffractive DIS.

Physics of the Vacuum

Central Exclusive Production

Physics of the Vacuum

Tetraquarks in CEP

o_{inelastic}

≈ 60mb

Physics of the Vacuum

Central Exclusive Production

Colourless propagators

Hadron colliders:

Generally, to ensure no (colourful) QCD interaction, $d>R_1+R_2$ (1.5 - 6 fm).

Large impact parameter - Small p_T

Electron-hadron collider: ~70% of total cross-section is diffractive

Tetraquarks in CEP

Photoproduction

low-x

[dn] (q ψ/L ← q γ)σ

Implications: Saturation

Saturation effects become visible at low-x. Onset of saturation expected to scale with nucleon density ~ $A^{1/3}$ so **may be easier to see in nuclear collisions**

Saturation is not inconsistent with the data, but is also not required.

Double Pomeron Exchange

Understanding colourless strong interactions is fundamental Also simple environment for spectroscopy, in particular, glueballs

Charmonium production

Can only be produced in DPE

Difficult to separate peaks: work ongoing with photon conversions Tetraquarks in CEP

LHCb estimate exclusive cross-section. **58+-12 pb** Harland-Lang, Khoze, Ryskin: **2-7 pb**

 $\sigma^{J/\psi J/\psi}$: $\sigma^{J/\psi \psi(2S)}$: $\sigma^{\psi(2S)\psi(2S)} = 1$: 0.40 : 0.044

<u>J/ψJ/ψ: search for</u> <u>exotica</u>

JPG 41 (2014) 115002

Today from **inclusive** measurements we know there is significant structure and tetraquark candidates

Diffractive measurements are cleaner and help identify quantum numbers

How to find J^P of resonances

How angular distributions help...

Production for continuum

What is production mechanism for tetraquark states ?

Can molecular states be produced in CEP?

Can tightly bound 4-quark states be produced in CEP?

cccc. v ccss

Molecular picture inconsistent with CEP

arXiv:1305.0527

A Mechanism for Hadron Molecule Production in $p\bar{p}(p)$ Collisions

A Esposito^{*}, F Piccinini[†], A Pilloni^{*} and AD Polosa^{*}

FIG. 1: The elastic scattering of a D^0 (or D^{*0}) with a pion among those produced in hadronization could reduce the relative momentum \mathbf{k}_0 in the centre of mass of the $D^0 \overline{D}^{0*}$ pair.

In our view the X could rather be the meson-molecule analogue of the stable deuterium.

Given the large number of pions produced in the neighbourhood of the open charm meson pairs in momentum phase space, it is plausible that some of those pions could scatter elastically on the D^0 or D^{*0} component of the would-be-molecule changing the relative momentum in the centre of mass of the pair, \mathbf{k}_0 , towards lower values - see Fig. 1. We can assume the initial total energy \mathcal{E} of the pair to be positive. However, if $k_0 = |\mathbf{k}_0|$

$J/\psi + \phi$: search for exotica

Structure seen in **inclusive** production of $J/\psi + \phi$.

Can these structure be seen in central **exclusive** production?

- Cleaner environment
- Insight into production mechanism

Central exclusive production

Search for events with precisely four tracks

2 muons + 2 identified kaons

4-track invariant mass

Summary of cross-sections

Production rate for these exotic states is not particularly small

Process	Final state	Cross-section
Photoproduction	$p + J/\psi + p$	7nb
Double pomeron exchange	$p + J/\psi + \chi_{c2} + p$	2nb
	$p + J/\psi + \phi + p$	90pb
	$p + J/\psi + J/\psi + p$	60 pb

How are these produced?

Conclusions

- Tetraquark states are seen in central exclusive diffractive events
- Cross-sections have not yet been calculated theoretically
- CEP can shed light on the nature of these states: tightly bound, molecules or even glueballs.