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Motivation for impact-parameter dependence

Dipole amplitude

D(r,b) = 1− 1

Nc
Tr
〈
V (x)V †(y)

〉

r = x− y = dipole size b =
1

2
(x+ y) = impact parameter

Infinite-target approximation: dependence on b very slow ⇒ D(r,b) ≈ D(r)

However, problems from neglecting the impact parameter:

1 Proton is not very large! Is this approximation justified?

2 Diffractive observables: b-dependence needed for t-spectrum

iM(t = −∆2) ∼
∫

d2b e−ib·∆D(r,b)
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Impact parameter in the initial condition
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McLerran–Venugopalan (MV) model

MV model: no dependence on impact parameter

Starting from the correlator:

〈
ρa(x, x+)ρb(y, y+)

〉
= δabδ2(x− y)δ(x+ − y+)µ2

we get

D(r) = 1− exp

[
−Q2

s r
2

4
log

(
1

mr

)]

where m is an infrared regulator and Q2
s ∼ µ2
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Impact parameter McLerran–Venugopalan model (IP-MV)

We can introduce dependence on the impact parameter by changing µ2 → µ2(x, x+)

Starting from the correlator:

〈
ρa(x, x+)ρb(y, y+)

〉
= δabδ2(x− y)δ(x+ − y+)µ2(x, x+)

we get

D(r,b) = 1− exp

[
−αsCF

2π

∫
d2zdz+ µ2(z, z+)Γz(x, y)

]

where

Γz(x, y) =
[
K0(m|x− z|)− K0(m|y − z|)

]2

Considered before in Iancu, Rezaeian; 1702.03943

Also similar to the JIMWLK initial condition used in Mäntysaari, Salazar, Schenke; 2207.03712
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IP-MV at small and large dipoles

We will consider a simple model for protons:

αsCF

2π

∫
dz+ µ2(z, z+) ≡ µ20T (z)

with a Gaussian thickness function T (b) = 1
2πBp

e−b2/(2Bp)

1 Small dipoles r2 ≪ Bp: reduces to the MV model

D(r,b = 0) ≈ 1− exp

[
−µ

2
0r

2

2Bp
log

(√
Bp

r

)]

2 Large dipoles r2 ≫ Bp: D → 0

Very different from the MV model: D → 1!

Effectively V (x) → 1 when |x| → ∞: no scattering
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Integrated dipole amplitude in the IP-MV model

IP-integrated dipole amplitude:
∫
d2bD(r,b)

Saturates to a constant for large dipoles

Behavior much closer to the MV model!

Large r : contribution from configurations where

|x| ≲ target radius, |y| → ∞
⇒ D(x, y) ≈ 1− 1

Nc
Tr ⟨V (x)⟩ ≡ M(x) =“monopole”
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Total quark-target scattering cross section σq by the optical theorem:

σq = 2

∫
d2bReM(b)

⇒ We can write
∫
d2bD(r,b) = σqD̃(r) where D̃(r) → 1 for large r
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Dipole gluon TMD in the IP-MV model

Gluon dipole TMD in the small-x limit

Gdip(k) =
−2

αs

∫
d2xd2y

(2π)2
e−i(x−y)·k Tr

〈
∂ixV (x)∂ iyV

†(y)
〉

Can be simplified by partial integration

However, one needs to take into account that V (x) → 1 when |x| → ∞!

Gdip(k) =
2k2

αs

∫
d2xd2y

(2π)2
e−i(x−y)·k Tr

〈[
V (x)−1

][
V †(y)−1

]〉

=
2Nck2

αs

∫
d2x d2y

(2π)2
e−i(x−y)·k[M(x) +M∗(y)− D(x, y)] =

2Nc

αs
k2σq

∫
d2r

(2π)4
e−ik·r

[
1− D̃(r)

]

Similar forms common in the literature – note that here D̃(r) already integrated over IP!
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Weizsäcker–Williams (WW) TMD in the IP-MV model

Gluon WW TMD in the small-x limit

GWW(k) =
−2

αs

∫
d2xd2y

(2π)2
e−i(x−y)·k Tr

〈[
V (x)

(
∂ ixV

†(x)
)
V (y)

(
∂ iyV

†(y)
)]〉

Large k : similar to the dipole TMD as expected

Small k : approaches a constant (c.f. Gdip → 0)

Note: using D(r) = 1− exp
[
−Q2

s r
2

4 log
(

1
mr + e

)]
we

have GWW → logQ2
s /k

2 at k = 0

With IP: can also calculate GTMDs and Wigner

distributions
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Impact parameter in the evolution
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High-energy evolution

Balitsky–Kovchegov equation

∂YD(x0, x1,Y ) =

∫
d2x2 KBK(x0, x1, x2)

[
D(x0, x2,Y ) + D(x2, x1,Y )− D(x0, x1,Y )− D(x0, x2,Y )D(x2, x1,Y )

]

where the kernel is given by (xij = xi − xj):

KBK(x0, x1, x2) =
αsNc

2π2
x201

x220x
2
21

We also introduce an IR cutoff m′: Replace xi

x2
→ xi

x2
× |x|m′K1(m

′|x|) in KBK

m′ ≡ m = 0.4GeV IR regulator, needed to suppress contribution from large dipoles

(see e.g. Kovner, Wiedemann; hep-ph/0112140)

Similar prescription as in Mäntysaari, Salazar, Schenke; 2207.03712 for JIMWLK evolution
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Comparison: BK evolution with and without impact parameter

BK evolution with the same initial condition

Without IP: integrate over IP first, then evolve the

normalized result D̃(r)

Calculate exclusive J/ψ production

t-integration for the IP-independent case:

σno IP ≡ dσno IP

dt

∣∣∣∣
t=0

×
(
σIP

/
dσIP
dt

∣∣∣∣
t=0

)

Huge difference with the two prescriptions

⇒ IP-integration and evolution do not commute!

Difference due to the nonlinear term
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Comparison: BK evolution with and without impact parameter

We can also compare for nuclear targets

⇒ Switch the thickness function T (z) for

Woods–Saxon

Nucleus much larger than proton

⇒ Neglecting impact parameter more

justified
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Comparison: BK evolution with and without impact parameter
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Differences can be seen in the integrated dipole amplitude:

The quark-target scattering cross section σq grows with energy
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Sensitivity to the IR regulator

Problem with the IP BK: need to regulate

the IR region (large dipoles)

Compare exclusive J/ψ production with

different m′ in the evolution:

Sensitivity to the IR regulator can be large

Note: we can compensate for m′ by

changing αs

Dependence on m′ might be ameliorated

by NLL corrections to the evolution

Can be done with BK! (WIP)
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Saturation effects in exclusive vector meson production
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Estimating saturation effects

BK equation

∂YD(x0, x1,Y ) =

∫
d2x2 KBK(x0, x1, x2)

[
D(x0, x2,Y ) + D(x2, x1,Y )− D(x0, x1,Y )− D(x0, x2,Y )D(x2, x1,Y )

]

Saturation effects introduced by the nonlinear term in the BK equation

Without nonlinear term: BFKL evolution

⇒ Compare BK and BFKL evolutions to estimate saturation effects

Use the same setup with the IR regulator m′ for both evolution equations

Consistent comparison of the equations

IP-dependence important for protons to avoid overestimating saturation
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Exclusive J/ψ production: proton targets

Slight difference between BFKL and BK in

the slope

Can be compensated by adjusting αs for

BFKL

Fit the evolution to the proton data

⇒ Predictions for heavy nuclei not

sensitive to the IR regulator

Proton data described well by both BK

and BFKL evolution
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Exclusive J/ψ production: nuclear targets

Differences between BK and BFKL:

a factor of 2 for W ∼ 1000GeV

BFKL results linear as predicted

BK describes the data much better

Still not exact agreement:

A well-known problem, see e.g.

Mäntysaari, Salazar, Schenke; 2312.04194
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Exclusive J/ψ production: nuclear suppression

Plot the nuclear suppression defined as

RA =
√
σA/σIA

where σIA is the impulse approximation

BFKL essentially constant

Linear evolution: energy dependence for

protons and nuclei expected to be similar

Clear disagreement with the data

Saturation provides a natural explanation
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Summary

Initial condition modified with the impact parameter

Evolution modified with the impact parameter (for protons)

With IP: sensitivity to the large dipoles (nonperturbative region) – needs to be regulated

NLL evolution might decrease contribution form large dipoles

Impact parameter makes it possible to compare BFKL and BK consistently

Saturation effects already visible in γ + Pb → J/ψ + Pb?

Many features of the JIMWLK can reproduced with BK

Articles out soon...

The dependence on the impact parameter should not be neglected!
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