

Probing gluon saturation in exclusive vector meson production

Heikki Mäntysaari with F. Salazar, B. Schenke, C. Shen, W. Zhao arXiv:2312.04194 & in preparation

> University of Jyväskylä Centre of Excellence in Quark Matter Finland

ECT*, June 12, 2024

Introduction: vector mesons in UPCs, $A + A \rightarrow J/\psi + A + A$

D. Grund, UPC2023 Two-fold ambiguity:

$$x_A = \frac{M_V}{\sqrt{s}} e^{\pm y}$$

 ∇^{S} In principle UPCs provide access to very small-x nuclear $\sigma \sim n_{\gamma}(+y)\sigma(+y)+n_{\gamma}(-y)\sigma(-y)$ structure, but high- x_{A} component dominates at large |y|

ALICE, 2101.04577

Recent development: extract individual $\gamma + A \rightarrow J/\psi + A$ contributions

$$\begin{aligned} \frac{\mathrm{d}\sigma_{AA}^{\{b_1\}}}{\mathrm{d}y} &= n_{\gamma}(y, \{b\}_1)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y, \{b\}_1)\sigma_{\gamma A}(-y) \end{aligned}$$
$$\begin{aligned} \frac{\mathrm{d}\sigma_{AA}^{\{b_2\}}}{\mathrm{d}y} &= n_{\gamma}(y, \{b\}_2)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y, \{b\}_2)\sigma_{\gamma A}(-y) \end{aligned}$$

Forward neutron classes \Rightarrow impact parmeter range $\{b_i\} \Rightarrow$ different flux n_{γ} \Rightarrow solve for $\sigma_{\gamma A}$ Method: Guzey et al, 1312.6486 See previous talk

Access VM production at very small xConfront CGC calculations with this data!

ALICE, 2305.19060

 \Rightarrow Probe average interaction \Rightarrow average geometry

Variance \Rightarrow access to event-by-event fluctuations in the target structure

Vector meson production at high energy

Lowest order in perturbation theory: $\mathcal{A}_{\Omega} \sim i \int d^2 \mathbf{b}_{\perp} e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}} \Psi^* \otimes \Psi_{\mathrm{J/\psi}} \otimes N_{\Omega}$

 $\ \ \, \bullet \ \ \, \ \, \ \ \, \gamma^* \to q\bar{q}: \ \ \, \mbox{photon wave function} \ \ \Psi \ \ \, \mbox{(QED)}$

2 $q \bar{q}$ -target interaction: dipole amplitude N_{Ω}

 $\ \, {\bf 0} \ \, q\bar{q} \rightarrow {\rm J}/\psi : \, {\rm J}/\psi \ \, {\rm wave \ function} \ \, \Psi_{{\rm J}/\psi} \ \,$

H.M, Salazar, Schenke, 2207.03712

No net color charge transfer ("diffractive"), Ω =target configuration

MV model + JIMWLK evolution constrained by HERA data, details soon

Dipole-target scattering in CGC: $N_{\Omega}(\mathbf{x}_{\perp}, \mathbf{y}_{\perp}) = 1 - \frac{1}{N_c} \operatorname{Tr} \left\{ V^{\dagger}(\mathbf{x}_{\perp}) V(\mathbf{y}_{\perp}) \right\}$

Color charge distribution at x = 0.01

- $\bullet\,$ Event-by-event random color charge distribution ρ^a
- MV model: $g^2 \langle \rho^a(\mathbf{x}_{\perp}, x^-) \rho^b(\mathbf{y}_{\perp}, y^-) \rangle \sim \delta^{ab} \delta(\mathbf{x}_{\perp} \mathbf{y}_{\perp}) \delta(x^- y^-) g^4 \mu^2 + \text{an IR regulator } \tilde{m}$
- $g^2 \mu \sim cQ_s(\mathbf{b}_{\perp})$ with $Q_s^2 \sim T_p(\mathbf{b}_{\perp})$ from IPsat fit to HERA σ_r data $V(\mathbf{x}_{\perp}) = P \exp\left(-ig \int \mathrm{d}x^- \frac{\rho(\mathbf{x}_{\perp})}{\nabla^2 \tilde{m}^2}\right)$

Small-x evolution

- Perturbative JIMWLK evolution (event-by-event)
- Gluon emission kernel regulated in IR:

$$K_{\mathbf{x}_{\perp}} = \frac{x^{i}}{\mathbf{x}_{\perp}^{2}} \to m_{\text{JIMWLK}} |\mathbf{x}_{\perp}| K_{1}(m_{\text{JIMWLK}} |\mathbf{x}_{\perp}|) \frac{x^{i}}{\mathbf{x}_{\perp}^{2}}$$

Nucleus: sample nucleon positions from Woods-Saxon, sum $T_i(\mathbf{b}_\perp)$ – no free parameters

Initial condition + perturbative evolution

Dipole: MV model + JIMWLK evolution constrained by $\gamma + p \rightarrow {\rm J}/\psi + p$ data

Large e-b-e fluctuations in proton geometry.

H.M, Schenke, 1806.06783, H.M, Salazar, Schenke, 2207.03712

UPC data comparison: $A + A \rightarrow J/\psi + A + A$

Two setups

- "CGC+shape fluct": include nucleon substructure
 - Slightly stronger suppression
- "CGC": spherical nucleons
 - Much less fluctuations, smaller $\sigma^{\rm incoherent}$

Lessons from UPC data with two-fold ambiguity

- Midrapidity LHC data ($W \sim 125 \, {
 m GeV}$) overstimated
- Forward data (sensitive to low-W) well described

H.M, F. Salazar, B. Schenke, 2207.03712

Saturation in coherent production: $\gamma + Pb \rightarrow J/\psi + Pb$

Heikki Mäntysaari (JYU)

- $\bullet\,$ Challenging to describe the W dependence of $\sigma^{\gamma\rm Pb}$
 - \blacktriangleright LHC data well reproduced at moderate $W \lesssim 100~{\rm GeV}$
 - Energy dependence well reproduced at higher W, but overestimate overall cross section
- Nuclear suppression factor

$$S_{\rm coh} = \sqrt{\frac{\sigma^{\gamma \rm Pb}}{\sigma_{\rm IA}}}, \quad \sigma_{\rm IA} = \left. \frac{\mathrm{d}\sigma^{\gamma p}}{\mathrm{d}t} \right|_{t=0} \int \mathrm{d}t \, |F(t)|^2$$

- General trend captured...
- \blacktriangleright . . . but data would prefer a stronger W dependence

No free parameters when moving $p\to A:$ genuine prediction Recall: parameters fit to $\gamma+p\to {\rm J}/\psi+p$ only, more soon

Saturation effect on nuclear geometry: $A+A \rightarrow A+A+{\rm J}/\psi$

 $\gamma+Pb$ at the LHC: very high density, saturation can modify the nuclear geometry

UPC data from LHC: $x = 6 \cdot 10^{-4}$

- Coherent $\gamma + Pb \rightarrow J/\psi + Pb$
- No saturation: geometry = Woods-Saxon
 ⇒ not compatible with ALICE data
- ullet Saturation: nucleus pprox black disc at the center
 - \Rightarrow modifies nuclear geometry

 \Rightarrow J/ ψ spectra compatible with ALICE measurements (But can't describe UPC spectra, photon k_T handled differently?)

H.M, Schenke, Salazar, PRD106 (2022), ALICE: PLB817 (2021)

Saturation in incoherent production: $\gamma + Pb \rightarrow J/\psi + Pb^*$

- Proton e-b-e fluctuating geometry tuned to HERA data
- Smoother proton at small- $x \Rightarrow$ reduced fluctuations, incoherent cross section suppressed
- Lower-energy measurement from STAR for the suppression factor

$$S_{\text{incoh}} = \frac{\sigma^{\gamma + \text{Pb} \to \text{J}/\psi + \text{Pb}^*}}{A(\sigma^{\gamma + p \to \text{J}/\psi + p} + \sigma^{\gamma + p \to \text{J}/\psi + p^*})}$$

- $\bullet\,$ LHC data can probe $x_{\mathbb{P}}$ dependent geometry fluctuations
- ALICE t spectra: compatible with no modification to nucleon substructure in nuclei at $x_{\mathbb{P}}\sim 10^{-3}$

H.M, Salazar, Schenke, 2312.04194

Simultaneous description of $\gamma + p$ and $\gamma + Pb$?

Model parameters, initial condition at x = 0.01

- Proton Q_s (QsmuRatio)
- Proton width (B_G)
- Hot spot size (B_q) (fix: 3 hot spots)
- Magnitude of Q_s fluctuations (smearQsWidth)
- IR regulator in the MV model (m)
- IR regulator in the JIMWLK kernel ($m_{
 m JIMWLK}$)
- Running coupling scale in JIMWLK (Λ)

Data

- W dependent $\gamma + p \rightarrow J/\psi + p$ (HERA+LHC)
- W dependent $\gamma + Pb \rightarrow J/\psi + Pb$
- $d\sigma/dt(\gamma + p \rightarrow J/\psi + p$, coh+incoh, $W = 75 \,\text{GeV}$)

Structure function data

H.M, Salazar, Schenke, Shen, Zhao, in preparation

- Parameters fit to J/ψ photoproduction data: Charm production overestimated
- Similar conclusion as H.M, Schenke, 1806.06783
- IPsat-parmaterization based fits manage to describe all data
 - ▶ E.g. Rezaeian et al, 1212.2974
 - \blacktriangleright But with $\sim 1.5 \times 1.1$ skewedenss&real part corrections for VM production not included here
 - Would get smaller Q_s , weaker suppression
- Note: as we fit J/ψ data, the wave function uncertainty affects these results strongly

Wave function uncertainty

- $\bullet~J/\psi$ wave function non-perturbative, need to be modelled
- ${\rm J}/\psi$ photoproduction in $\gamma+p:$ up to $\sim 50\%$ uncertainty
- ullet Wave function uncertainty does not cancel in ${\rm Pb}/p$ ratio
- Systematic approach based on NRQCD: Lappi, H.M, Penttala, 2006.02830
- This work: assume that the uncertainty mostly affects normalization, introduce a K factor: $\Psi^* \otimes \Psi_{1/\psi} \rightarrow K \Psi^* \otimes \Psi_{1/\psi}$
 - ▶ Idea: e.g. K < 1 needs to be compensated by larger Q_s ⇒ slower evolution speed especially in Pb
 - \Rightarrow stronger suppression in $\gamma + Pb$

In preparation with Salazar, Schenke, Zhao, Shen

What about NLO?

T. Lappi, H.M, Penttala, 2106.12825

NLO calculations exist

- Heavy meson in non-relativistic limit
- Light meson at high- Q^2

H.M, Penttala, 2104.02349, 2204.14031, 2203.16911

First NLO calculations

Lappi, H.M, Penttala, 2106.12825:

- Slightly less suppression at NLO
- NLO corrections mostly cancel in ${\cal A}/p$ ratio

However, still large uncertainties (resummation scheme in evolution, initial condition, here b-indep evolution [See Jani's talk], ...)

Conclusions and outlook

- $\gamma + Pb \rightarrow J/\psi + Pb$ data from UPCs: probe saturation in the TeV range
- Nuclear suppression factors & p_T^2 spectra: signatures of strong saturation effects
 - Stronger than we can naturally describe
 - ▶ Tension between the $\gamma + p \rightarrow J/\psi + p$ and $\gamma + Pb \rightarrow J/\psi + p$ data can be reduced by taking into account wave function uncertainty
- Future measurements of incoherent $\gamma + Pb \rightarrow J/\Psi + Pb^*$ provide further constraints
 - + probe energy evolution of substructure fluctuations

The 2nd workshop on the physics of Ultra Peripheral Collisions

Ultra Peripheral location for UPC physics

- Lapland, Finland, 9.-13.6.2025 (24h daylight!), TBC
- https://indico.cern.ch/event/1378275/

Local organizing committee chairs

• Ilkka Helenius and Heikki Mäntysaari

Travel

• International flight to Helsinki + domestic connection

Backups

Example with protons: proton shape from $\gamma + p \rightarrow J/\Psi + p$ Comparison to HERA data including color charge fluctuations ($x \sim 10^{-3}$)

Round proton: Fit proton size: (gluonic) radius $r_p \sim 0.6$ fm Note EM radius 0.88 fm

Average geometry (coherent) ✓ Fluctuations (incoherent) ✗

Constraining proton fluctuations: $\gamma + p \rightarrow J/\Psi + p$

HERA data can be described with large event-by-event fluctuations in the proton geometry

H.M, B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1: EPJC73, 2466

STAR suppression factor data

H.M, Salazar, Schenke, 2312.04194:

Channel	STAR	CGC+shape fluct	CGC
$S_{ m coh}$	0.846 ± 0.063	0.89	0.90
$S_{ m incoh}$	$0.36\substack{+0.06\\-0.07}$	0.58	0.32

Table: Nuclear modification factors for J/ψ photoproduction in $\gamma + Au$ collisions. The CGC predictions are calculated at $x_{\mathbb{P}} = 0.01$ and the STAR measurements are performed at $x_{\mathbb{P}} = 0.015$. The coherent suppression factors S_{coh} obtained with and without nucleon substructure fluctuations are compatible with each other within the numerical accuracy.

Slower evolution speed in nuclei

