Heavy-quark production in hadronic and UPC heavy-ion collisions

<u>Gian Michele Innocenti</u> Massachusetts Institute of Technology

DIFFRACTION AND GLUON SATURATION AT THE LHC AND THE EIC 10 June 2024 - 14 June 2024

Constraining parton dynamics in nuclei in (x,Q²)

Accessing the saturation scale is expected to be easier in nuclei (due to the higher initial partonic density)

In nuclei, saturation expected at higher x

- does it exist? is it experimentally reachable?
- what is its shape in (x, Q^2) ?
- what is the dependence on A?

Heavy quarks are well-calibrated/perturbative probes to explore this regime

Constraining nuclear PDFs at the LHC with "hadronic" pPb collisions

Constraining nuclear PDFs in hadronic collisions

 σ_V = Parton Distribution Function (x,Q²) $\otimes \sigma_{parton}(pQCD) \otimes$ Fragmentation functions

Example: Drell-Yan Z-boson production in pPb collisions:
→ quark PDFs at high Q²

To sample different region of x and Q² for gluons and quarks:

vary kinematic properties of the scattering and of the final-state products

• change the partonic process to change the initial parton species

ks: I**I-state products** es

 $x_{ion} \sim \frac{M_V}{\sqrt{s_{NN}}} exp(-y_V)$

Constraining nuclear PDFs: changing partonic "process"

Prompt-photon production Sensitive to both quark and gluon PDFs.

Di-jet production and heavy-quark production Mostly sensitive to gluon PDFs

Di-jet production in pA collisions with CMS

55² <Q² <400² GeV, 0.005<x_A<~0.8, gluon PDFs mid-rapidity

 \rightarrow **QCD probe**, sensitive to gluon nPDF (gluon-gluon production)

"Averaged" dijet $\eta_{dijet} = \frac{1}{2} (\eta_1 + \eta_2)$ $p_{T,dijet} = \frac{1}{2} (p_{T,1} + p_{T,1}) \sim Q$

CMS: <u>Phys. Rev. Lett. 121.062002</u> Eskola et al. arXiv.1812.05438

forward low x_A

D^o mesons in pA collisions at mid rapidity

D^o production in pA collisions at forward-y with LHCb

 $Q^2 \sim M^2_{cc} GeV$, x_A down to 10⁻⁶ gluon PDFs 1.5<y*<4.0

 \rightarrow QCD probe for low-x, low-Q² regime

very good accuracy down to 0 GeV

• unique access to the extreme low-x low-Q² region (saturation regime?)

LHCb, JHEP 10 (2017) 090

effect of final state on the nPDF?

B-meson production in pPb collisions at 5.02 TeV

First attempt to use beauty quarks to study nPDF modifications of gluons (limited experimental accuracy) lack of proton-proton reference (RpA built w.r.t. to FONLL predictions)

• limited pPb statistics \rightarrow larger pPb samples needed!

9

From measurements to nPDF constraints

\rightarrow Using a non-quadratic Hessian PDF reweighting, <u>K. J. Eskola et al., EPJC 79, 511 (2019)</u>

Significant constraints from inclusion of charm data from the LHC. Some caveats: • what is the influence of final state effects (e.g. D meson flow or hadronization)? • can we account for them in the nPDF fits?

Constraining nuclear PDFs at the LHC with Ultra-Peripheral HI collisions

Ultra-peripheral collisions (impact parameter $b > R_A + R_b$) • Flux of photon is proportional to Z²

Photon kinematics:

p_T < ħ/R_A ~ 30 MeV
E_{max} ~ O(100) GeV at LHC.

When running on PbPb, LHC is effectively a yy and yN collider! \rightarrow probability of having a hadronic PbPb collisions in a bunch crossing in is < 0.1%!

K. Hencken, M. Strikman, R. Vogt, P. Yepes, Phys. Rept. 458:1-171, 2008 11

Vector-meson photoproduction in UPC

Vector mesons (VM) probe gluonic structure of nucleus and nucleon. \rightarrow At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]2

Coherent production ($< p_T > ~ 50 \text{ MeV}$)

- VM <pt> ~ 50 MeV
- Probing the averaged gluon density

Incoherent production VM ($< p_T > ~ 500 \text{ MeV}$)

 Photon fluctuated dipole couples coherently to entire nucleus Target nucleus remains intact

 Photon fluctuated dipole couples to individual nucleons • Target nucleus usually breaks

Probing the local gluon density fluctuation

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-12 21:48:04.525285 GMT Run / Event / LS: 326619 / 2320827 / 8

Coherent J/ ψ photoproduction in UPC Pbp collisions

Х

UPC yp from LHC and ep from HERA well described by models that include a strong increase of the gluon density

No indication of gluon saturation, even down to $x \sim 10^{-5}$ in a free nucleon.

Coherent J/ ψ photoproduction in UPC PbPb collisions

Two-Way Ambiguity in A-A UPC: the initial direction of the photon is not fully defined At fixed y, contributions from two different photon energies $w_{1,2} = M_{J/\psi} exp(\mp y)$

ALICE: PLB 798 (2019) 134926

Solving the photon ambiguity with neutron information from ZDC

Method in a nutshell (V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942)

- Rate of high energy photon flux is larger at smaller impact parameter
- impact parameter of the collision can be estimated by considering the magnitude of EM dissociation

EM dissociation (EMD) leads to neutron emission with additional photon exchange

- Independent of interested physics process
- Large cross section ~200 b (single EMD)

Probability of EMD is strongly correlated with the impact parameter of the collision **b**

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

First coherent measurement in different neutron classes → inputs to disentangle low from high energy γN events

CMS, Phys. Rev. Lett. 131 (2023) 262301

$$\frac{\mathrm{d}\sigma_{J/\psi}^{\mathrm{in}j\mathrm{n}}(y)}{\mathrm{d}y} = n_{\gamma\mathrm{A}}^{\mathrm{in}j\mathrm{n}}(\omega_1) \,\sigma_{J/\psi}(\omega_1) + n_{\gamma\mathrm{A}}^{\mathrm{in}j\mathrm{n}}(\omega_2) \,\sigma_{J/\psi}(\omega_2) \,\sigma_{J/\psi}(\omega_2)$$

- in jn = (0n0n, 0nXn, XnXn)
- $\omega_{1,2} = \omega_{1,2}(y)$ two possible photon energies
- $n_{\gamma A}(\omega)$ is the photon flux (from theory)
- $\sigma_{J/\psi}(\omega)$ the coherent photoproduction cross section for a single γA interaction, averaged over a range of y

17

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

No theoretical model predicts the observed values and x dependence of R_q over the wide x range reported

CMS, Phys. Rev. Lett. 131 (2023) 262301

R_g ~ 0.8-0.9 for x > 10⁻³ (low $W_{\gamma N}^{Pb}$)

Coherent J/ ψ in PbPb UPCs: CMS vs ALICE

ALICE, JHEP 10 (2023) 119 CMS, Phys. Rev. Lett. 131 (2023) 262301

Open heavy flavors in UPC events at the LHC

Untagged di-jets in vN scatterings

Sizeable contamination from "resolved"-photon processes:

 \rightarrow complex theoretical description

Dynamic constraints on (x, Q²)

by varying dijet kinematics

ATLAS, ATLAS-CONF-2017-011

"Open" heavy-flavor and jet photoproduction in UPCs

- Simple pQCD description down to $p_T=0$
- "in-vacuum" environment with limited final-state effects
- dynamical acces to a wide region of x, Q^2 region down to low x_{BJ}
- \rightarrow scan the region where high-density effects should emerge

- $x_{min} \approx 10^{-4}$ with low p_T, forward probes (LHC)
- $\cdot Q_{\min}^2 \approx m_{c\bar{c}}^2$

S. Klein, R. Vogt et al: <u>Phys. Rev. C, v66, 2002</u>

EM open heavy-quark production in UPC

Inclusive photoproduction γg (signal):

Exclusive photoproduction

Diffractive events

- Unbroken nuclei
- exchanging pomerons
- could be selected if in overlap with electromagnetic dissociation

EM open heavy-quark production in UPC

Background sources

(background)

Inclusive photoproduction γg (signal):

Exclusive photoproduction

Diffractive events

- Unbroken nuclei
- exchanging pomerons
- could be selected if in overlap with electromagnetic dissociation

Experimental strategy for "hard" inclusive photoproduction

Event selection: Xn0n events with "rapidity gap".

Questions for theorists: should we call this process inclusive photoproduction or semi-inclusive photoproduction due to the requirement on the Xn?

Experimental strategy for "hard" inclusive photoproduction

Event selection: Xn0n events with "rapidity gap".

Rapidity gap in the direction of outgoing photon

Heavy-quark tagged jets: \rightarrow high-statistics up to high-p_T $D^0 \rightarrow K^-\pi^+$ reconstruction: \rightarrow Trace charm quark down to low p_T

at least one neutron in the ZDC (Xn)

ZDC Layout 4 HAD sections – stacked behind each other HAD4 HAD3 HAD2 HAD1 EM 1-5 Reaction Plane Detector (RPD) 5 EM sections - next to each other BEAM

Triggering on yy, yN events as a big experimental challenge!

• Hardware trigger system (Level-1 has max accepted rate in heavy-ions about 20-30 kHz) • Interaction rate of $\gamma\gamma$, γN in heavy-ions $\mathcal{O}(MHz)!!$

Converting CMS into a yy, yN detector for the "LHyC"

Zero-Degree Calorimeter (ZDC) as a trigger detector

- \rightarrow develop a strategy for fast online calibration

New trigger algorithms for yy and yN "hard" events

- → photonuclear high-Q² triggers (ZDCXOR && L1 jet)
- \rightarrow photonuclear low-Q² triggers (ZDCXOR)
- \rightarrow yy and diffractive triggers

 \rightarrow integrate ZDC in the Level-1 (hardware) trigger-emulation chain

L1 trigger efficiency vs $D^0 p_T$ (2023 data)

CMS Experiment at the LHC, CERN Data recorded: 2023-Oct-10 05:24:04.000512 GMT Run / Event / LS: 374925 / 591414336 / 646

A photonuclear dijet event in PbPb UPCs '23 collected with the new triggering algorithms

a background-less forward dijet event!

28

Measurement of di-cjets and di-bjets in vN scatterings

Measurement of charm and beauty tagged dijet system in pp, PbPb, AuAu

- \rightarrow stronger constraints on x,Q²
- \rightarrow enable the study of low-p_T dijet decorrelation!

Measurement of di-cjets and di-bjets in γN scatterings

Measurement of charm and beauty tagged dijet system in pp, PbPb, AuAu

- \rightarrow stronger constraints on x,Q²
- \rightarrow enable the study of low-p_T dijet decorrelation!

- $\Delta \varphi$ correlations of di-HQ jets or hadrons:
- \rightarrow strong sensitivity to the Q_s scale via <k²_T> broadening

CMS at the LHC in Run 4 (2029–2032) and beyond

• New tracker with $|\eta| < 4$

• PID for low p_T hadrons

CMS Phase-II tracker: CMS-TDR-014 CMS: Phys. Rev. D 96, 112003 CMS: CMS-TDR-020

 \rightarrow **Down to x** ~ 10⁻⁵ with $\gamma N \rightarrow c\bar{c}$ observables \rightarrow New observables for nPDF studies (e.g. double-parton scatterings)

From UPCs at LHC/RHIC to the Electron Ion Collider

UPC at the LHC \rightarrow very low x reach

EIC \rightarrow <u>control on the photon virtuality (Q²)</u> and on the scale of the interaction

Highlights from the future EIC heavy-flavor program:

Inclusive heavy-flavors and DD correlations:

 \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}

 \rightarrow beyond the collinear limit (TMDs)

<u>Heavy-quark jet and substructure:</u> \rightarrow parton-propagation in "cold" vs "hot" matter

<u>Heavy-flavor hadrochemistry and collectivity:</u> \rightarrow what is the time scale of hadronization?

Summary and outlook

With jets and open-heavy flavor measurements in UPC collisions at LHC: • dynamic access to a large (x,Q^2) region with the same experimental probe • access to low-x, low-Q² region

Need for theoretical guidance and calculations for both LHC/RHIC and EIC: "Correct" definition of the physics process

Need for theoretical predictions:

 dN/dp_Tdy for charm and beauty hadrons, heavy-flavor tagged jets for inclusive photoproduction, diffractive production, ...) dijet measurements and correlations

• And MC calculations for photonuclear events, diffractive events, and yy:

 \rightarrow estimate contaminations or relative magnitude of the various subprocesses

33

Summary and outlook

With jets and open-heavy flavor measurements in UPC collisions at LHC: • dynamic access to a large (x,Q^2) region with the same experimental probe • access to low-x, low-Q² region

Need for theoretical guidance and calculations for both LHC/RHIC and EIC: "Correct" definition of the physics process

In the long term, exploit the possibility of performing analogous measurements at EIC and at the LHC/RHIC: running different ion species in both AA and pA collisions b

Need for theoretical predictions:

 dN/dp_Tdy for charm and beauty hadrons, heavy-flavor tagged jets for inclusive photoproduction, diffractive production, ...) dijet measurements and correlations

• And MC calculations for photonuclear events, diffractive events, and yy:

 \rightarrow estimate contaminations or relative magnitude of the various subprocesses

A new program to study cold "extreme" partonic matter

Collision energy

What happens to nuclear matter in the presence of very large densities of low-x gluons?
→ Can we observe a new phase of matter characterized by the so-called gluon saturation?
→ "Gluon saturation" is also at the core of the program of the future Electron-Ion Collider

Coherent J/ ψ in PbPb UPCs with forward–neutron tag

First coherent measurement in different neutron classes → inputs to disentangle low from high energy γN events

Leading twist approximation (LTA) - pQCD calculation with nuclear shadowing effects from multinucleon interference (both weak and strong shadowing scenarios are shown) Color dipole (CD) with different model parameters (BGK, BGW, IIM) → assume quark-antiquark dipole scattering from the nuclear targets

Low-x reach of HF yN at LHC

x_{Bjorken} reach for c-quark with $p_T=0$ X_{Bjorken} 0.050 0.010 0.005 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

charm LHC $|\eta| < 2.0$ charm LHC $|\eta| < 4.0$ beauty LHC $|\eta| < 2.0$ beauty LHC $|\eta| < 4.0$ charm RHIC $|\eta| < 1.1$ beauty RHIC $|\eta| < 1.1$

min v	max x
6.64*10-5	3.63*10 ⁻³
2.07* 10-4	1.13*10 ⁻²
8.99*10-6	2.68*10 ⁻²
2.8*10 -5	8.34*10 ⁻²
4.49*10 ⁻³	4.06*10 ⁻²
1.4*10 -2	1.26*10 ⁻¹

Heavy-flavor physics at the Electron-Ion Collider

→ Heavy-flavor observables are crucial to address the key physics questions of the EIC physics program

Inclusive heavy-flavor measurements in ep/eA collisions:

- \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}
- → evolution equations beyond DGLAP?

DD correlations:

- \rightarrow access to gluon TMDs
- → nuclear structure beyond the collinear limit

B.S. Page et al. Phys. Rev. D 101, 072003 H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 EIC, BNL-98815-2012, arXiv:1212.1701

Heavy-quark jet production and substructure in ep/eA: → parton-propagation inside the "cold" nuclear matter

 \rightarrow parton-shower evolution in a vacuum-like environment

- Heavy-flavor hadrochemistry and collectivity:
- \rightarrow hadronization modification in cold-nuclear matter
- \rightarrow what is the time scale of hadronization?

