ATLAS Roman Pots Status & Performance

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland

Diffraction and gluon saturation at the LHC and the EIC

Trento, Italy, 10th June 2024

• Characteristic topology: presence of rapidity gap between the proton(s) and the "central" system;

Measuring rapidity gap:

- + "classically" used for diffractive pattern identification
- + no need for additional detectors
- gap is frequently destroyed due to pile-up background
- gap may be out of acceptance of "central" detector

 Characteristic topology: presence of rapidity gap between the proton(s) and the "central" system; one or both interacting proton(s) remain intact.

 Intact protons scattered at very small angles → very close to the beam after the interaction → detectors must be located far from the Interaction Point (IP) → LHC magnetic fields (optics) must be considered.

Measuring rapidity gap:

- + "classically" used for diffractive pattern identification + no need for additional detectors
- + no need for additional detectors
- gap is frequently destroyed due to pile-up background
- gap may be out of acceptance of "central" detector

Measuring forward protons:

- + protons measured directly
- + suitable for pile-up environment
- protons are scattered at very small angles
- additional detectors required far downstream

Special optics: β^* of 90 m, 120 m, 2.5 km, 3/6 km \rightarrow weak, parallel-to-point focusing (low pile-up):

Forward Proton Detectors @ IP1 (ATLAS)

ALFA

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution:

 $\sigma_x = \sigma_y = 30 \ \mu m$

• in operation between 2011 and 2023

- ATLAS Forward Proton
- 210 m from ATLAS IP
- hard diffraction, BSM searches
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_{x/y} = 6/30 \ \mu m$
- timing detectors, resolution: $\sigma_t \sim 25 \text{ ps}$
- in operation since 2016 (one side) / 2017 (full set)

LHC beam

thin window and floor (300 $\mu {\rm m})$

ALFA

ALFA Detectors

- Two stations at each ATLAS side. 240 m far from the IP1.
- Scintillating fibres position measurement with precision of \sim 30 μ m,
- Roman Pot technology detectors can move in vertical (y) direction.

ATLAS Roman Pots - Status & Performance

Installation of station B7R1 II

Installation of station A7R1

QRL-protection very close to station

8th of December ALFA installation 2010 - first 8 days

ALFA Deinstallation: 2023

Summary of ALFA's final run and discussion on its remains

Bartosz Dziedzic

ARP general meeting 13-15th December 2023

Removal ALFA from the tunel

Venting the vacuum section;

- Tricky removal of the near station;
- > Far station despite harder access, removed very smoothly.

- After 12 years of operation life of ALFA detectors came to an end.
- However, the story is not finished:
 - stations donated to TWOCRYST experiment,
 - ongoing data analyses.

ALFA Data-taking (2011 - 2023)

Year	β*	√s [TeV]	Comments				
2011	90 m	7	elastics: NPB 889 (2014) excl. π ⁺ π : EPJC 83 (2023) 627				
2012	90 m	8	elastics: PLB 761 (2016) single diff.: JHEP 02 (2020) 042				
2012	1 km	8	elastics dataset				
2013	0.8 m	2.76	proton-lead dataset				
2013	0.8 m	2.76	proton-proton reference dataset				
2015	90	13	diffractive dataset				
2016	2.5 km	13	elastics: EPJC 83 (2023) 441				
2018	90 m	13	elastic (large t) and diff. datasets				
2018	11 m	0.9	elastics (large t) dataset				
2018	50/100m	0.9	elastics dataset				
2023	3/6 km	13.6	elastics dataset				

- In 2023 ALFA successfully finished its programme!
- The initial focus to measure properties of elastic scattering was extended to measure diffractive events → a lot of interesting data-sets to be analysed!
- A few publications areleardy released; more in the pipeline.
- Many more interesting topics are waiting for analysers!

Short Tille						
alfa	search	search	search	search		search
Measurement of exclusive pion pair production	STDM	Eur. Phys. J. C 83 (2023) 627	2022-12-01	7	78.7 µb ⁻¹	Documents 2212.00664 Inspire HepData Internal
Measurement of the total cross section and rho-parameter from elastic scattering	STDM	Eur. Phys. J. C 83 (2023) 441	2022-07-25	13	340 µb ⁻¹	Documents 2207.12246 Inspire HepData Briefing Internal
Inclusive single diffractive dissociation cross-section of \ensuremath{pp} collisions at 8 TeV	STDM	JHEP 02 (2020) 042 (Erratum)	2019-11-01	8	24.11 nb ⁻¹	Documents 1911.00453 Inspire HepData Internal
Total cross section with ALFA at 8 TeV	STDM	Phys. Lett. B (2016) 158	2016-07-22	8	500 µb ⁻¹	Documents 1607.06605 Inspire HepData Internal
Total cross section with ALFA at 7 TeV	STDM	Nucl. Phys. B 889 (2014) 486	2014-08-25	7	80 µb ⁻¹	Documents 1408.5778 Inspire HepData Briefing Internal

ALFA Analysis Example: Total Cross Section

$$\begin{split} \sqrt{s} &= 7 \text{ TeV}, \ L = 80 \mu \text{b}^{-1} \\ \sigma_{tot}(pp \rightarrow X) &= 95.35 \pm 0.38 \ (stat.) \pm 1.25 \ (exp.) \pm 0.37 \ (extr.) \ \text{mb} \\ B &= 19.73 \pm 0.14 \ (stat.) \pm 0.26 \ (syst.) \ \text{GeV}^{-2} \end{split}$$

$$\begin{split} &\sqrt{s} = 8 \,\, {\rm TeV}, \, L = 500 \mu {\rm b}^{-1} \\ &\sigma_{tot}(pp \to X) = 96.07 \pm 0.18 \,\, (stat.) \pm 0.85 \,\, (exp.) \pm 0.31 \,\, (extr.) \,\, {\rm mb} \\ &B = 19.74 \pm 0.05 \,\, (stat.) \pm 0.23 \,\, (syst.) \,\, {\rm GeV}^{-2} \end{split}$$

ALFA Analysis Example: Total Cross Section

$$\sqrt{s} = 13 \text{ TeV}, \ L = 340 \mu b^{-1}$$

 $\sigma_{tot}(pp \rightarrow X) = 104.7 \pm 1.1 \text{ mb}$
 $ho = 0.098 \pm 0.011$

ALFA Analysis Example: Diffraction

Differential cross sections for single diffraction

Exclusive pion pair production

AFP

AFP: Silicon Trackers (SiT)

- Four detectors in each station.
- Technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- Pixel size: $50x250 \ \mu m^2$.
- Tilted by 14^0 to improve resolution in x.
- Resolution: \sim 6 μ m in x and \sim 30 μ m in y.
- Trigger: majority vote (2 out of 3; two chips in FAR station are paired and vote as one).

Proton Tagging or Position Measurement?

 v'_{IP}) and energy (E_{IP}) .

of such method

From ISRN High Energy Physics (2012) 491460:

ATLAS_TDR-024

How to Reduce Physics Background?

 $\delta = \frac{c}{2} \Delta t$

ш

<u>Time-of</u>-Flight Detectors (ToF)

Setup and performance shown above are from test-beam (Opt. Express 24 (2016) 27951, JINST 11 (2016) P09005).

- 4×4 quartz bars oriented at the Cherenkov angle with respect to the beam trajectory.
- Light is directed to Photonis MCP-PMT.
- Expected resolution: ~ 25 ps.
- Installed in both FAR stations.

ATLAS Forward Proton Detector – High- μ Data-taking

Data recorder so far:

- 32.0 fb⁻¹ in 2017 (left),
- 34.1 fb⁻¹ in 2022 (top right),
- 26.3 fb⁻¹ in 2023 (bottom right),
- in total: 92.4 fb⁻¹.
- Note: not all of recorded data is useful for physics analyses.

AFP Performance

ATLAS Roman Pots - Status & Performance

- New: V2 optics (bottom left) is better compared to V1 in terms of low-ξ acceptance (NEAR station).
- V2 is better than V1 in terms of resolution (especially for FAR stations), but worse than the default.
- High-ξ acceptance for V1 and V2 is due to TCL4 and TCL5 and may be an issue – see next slide.

AFP Performance: Reconstruction Efficiency

- Performance analysis based on 2017 data (taken with $\mu\approx$ 2): ATL-FWD-PUB-2021-002.
- Poor efficiency of few percent due to fast PMT degradation; effect not expected during Run 3 due to new PMTs.
- Very good timing resolution: 20 50 ps for single bar.
- Overall time resolution of each ToF detector:
 - 20 ± 4 ps for side A,
 - 26 ± 5 ps for side C,
 - note: systematic uncertainties dominate.

Glance on Analysis: Exclusive Di-lepton Measurement with AFP Tag

PHYSICAL REVIEW LETTERS 125, 261801 (2020)

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

G. Aad et al.^{*} (ATLAS Collaboration)

(Received 2 October 2020; revised 30 October 2020; accepted 23 November 2020; published 23 December 2020)

- Exclusive di-muons, $pp \rightarrow pl^{-}l^{+}p$:
 - proton(s) measured in AFP,
 - leptons ($\mu^+\mu^-$ or e^+e^-) measured in ATLAS.
- 2017 data; $\sqrt{s} = 13$; $L = 14.6 \text{ fb}^{-1}$.
- Powerful background rejection due to AFP:
 - proton tagging,
 - kinematics match: proton vs lepton system.
- 57 (123) candidates in the $ee + p \ (\mu \mu + p)$ final state.
- Background-only hypothesis rejected with a significance exceeding 5σ in each channel.
- Measured cross sections:

 $\sigma_{ee+p} = 11.0 \pm 2.6(\text{stat}) \pm 1.2(\text{syst}) \pm 0.3(\text{lumi}),$ $\sigma_{\mu\mu+p} = 7.2 \pm 1.6(\text{stat}) \pm 0.9(\text{syst}) \pm 0.2(\text{lumi}).$

• ALFA and AFP "physics" publications:

Diphoton resonance search with AFP tag	EXOT	JHEP 07 (2023) 234	2023-04-21	13	30 fb ⁻¹	Documents 2304.10953 Inspire HepData Internal
Measurement of exclusive pion pair production	STDM	Eur. Phys. J. C 83 (2023) 627	2022-12-01	7	78.7 µb ⁻¹	Documents 2212.00664 Inspire HepData Internal
Measurement of the total cross section and rho-parameter from elastic scattering	STDM	Eur. Phys. J. C 83 (2023) 441	2022-07-25	13	340 µb ⁻¹	Documents 2207.12246 Inspire HepData Briefing Intenal
Observation of forward proton scattering in association with lepton pairs produced in photon fusion	STDM	Phys. Rev. Lett. 125 (2020) 261801	2020-09-30	13	14.6 fb ⁻¹	Documents 2009.14537 Inspire HepData Briefing Internal
Inclusive single diffractive dissociation cross-section of pp collisions at 8 TeV	STDM	JHEP 02 (2020) 042 (Erratum)	2019-11-01	8	24.11 nb ⁻¹	Documents 1911.00453 Inspire HepData Internal
Total cross section with ALFA at 8 TeV	STDM	Phys. Lett. B (2016) 158	2016-07-22	8	500 µb ^{.1}	Documents 1607.06605 Inspire HepData Internal
Total cross section with ALFA at 7 TeV	STDM	Nucl. Phys. B 889 (2014) 486	2014-08-25	7	80 µb ⁻¹	Documents 1408.5778 Inspire HepData Briefing Internal

• ALFA concluded its programme in 2023:

- few ongoing elastic and diffractive analyses,
- many unique datasets \rightarrow waiting to be analysed!

• AFP continues to take data in regular and special runs:

- huge efforts of many to have system operational and in a good shape \rightarrow BIG THANKS!
- preliminary recommendations available and applicable via dedicated, user-friendly analysis tools,
- a lot of ongoing efforts to deliver final recommendations for "proton object" (2022-2023),

• eagerly waiting for 2024 (and 2025!) data-taking!

The work of MT was partially supported by Polish National Science Centre (project no. UMO-2019/34/E/ST2/00393). ATLAS Roman Pots – Status & Performance

Successful ATLAS Roman Pot Data-taking – Efforts of Many!

