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Running coupling in the Wilson line

3
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dilute-dense collisions e.g. 
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For gluons a similar expression is obtained in the limit n2
! 0:
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where Ã+ = �iT c
abA

c
+. Further details on point 4 are given in the appendix

3.2 All order resummation of the reggeized gluon fields to leading order

To sum up the interaction of partons with reggeized gluon fields to all orders in ↵s, it is
necessary to determine the free quark and gluon propagator of the quantum fluctuations
vµ.With

D̃(0)(k) =
i

k2 + i✏
, (64)

we have
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Since connecting
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We will therefore discuss it in here further detail. With p+M(ij . . .) = (p+ li+ lj + . . .)2�p2

one has (pa +
P

i li)
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14

with 

- Dilute limit: overall  clearly part of virtual photon impact factor 
collinear limit: splitting function  

- renormalization scale: must be constrained  by NLO (and higher order) corrections  
- expect the same for high parton densities, so far not taken into account 

- phenomenology: changes normalization (at NLO) of dipole amplitude and 
generalizations therefore

αs(μ)
Pqg(z)
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F2(x, Q2) ∼ ∫ d2r∫ d2b∫
1

0
dz |ψ(z, r, Q2) |2 N(x, r, b)

and



How to take this into account?

4

1st: perturbative corrections to the 
light-front wave function

real & virtual

but also to the interaction with the background field (=resummed propagator, 
Wilson lines, …) should receive a NLO corrections:
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natural if we start from interaction with single 
gluon & generalize to many

NLO corrections:

with
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as previously. We can therefore combine both contributions and finally obtain for the
one-loop correction in momentum space
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While the integral over the transverse momenta yields for most cases a delta-function,
this is not the case for the logarithmic contribution. Following [14], one has
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where �E denotes the Euler number. The above correction gives now the leading
order coupling of a reggeized gluon with color index ‘c’ to the quark line times the
NLO correction. Since the latter is color independent (leaving aside an overall color
factor), one finds the usual factors relevant for the leading order propagagor. The only
di↵erence is now that the field A

c(x5) is now placed at a di↵erent transverse coordinate,
as long as we are not dealing with the delta function contribution of Eq. (128). Since
@�A+(x) = 0, there is no minus momentum transfer from the target, k� = k

+ = 0,
and consequently the plus momentum along the quark line is being conserved. Using
n�p�n�= 2p · nn�+ O(n2) we arrive then at the same chain of arguments as used in the
leading order case. We find
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Challenges
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Challenges …
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From a technical point of view, this is not completely trivial …. 

such corrections appear to be zero

I = ∫
dl−d+d2+2ϵl

(l+l− − l2 + i0+)(l+(l− − k−) − (l − k)2 + i0+) k

ℓ

l− =
l2 − i0+

l+
poles:

l− =
(l − k)2 − i0+

l+
at same side → integral seems to vanish
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→ one of the two results is wrong!

ddl
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[Yan (1973)], [Heinzl (2003)] outlined in [Collins (2011)]

integrals non-zero + UV divergent (in the case of interest to us)

solution: I ∼ δ(l+)



More challenges …
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if we regulate rapidity divergencies through tilting light-cone directions n+ → n, n2 ≠ 0
one finds integrals ∼ 1/n2 [Chachamis, MH, Madrigal, Sabio Vera; 1212.4992]
means: one cannot set  before evaluating integralsn2 → 0
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don’t use cut-off regulator



More challenges …

7

if we regulate rapidity divergencies through tilting light-cone directions n+ → n, n2 ≠ 0
one finds integrals ∼ 1/n2 [Chachamis, MH, Madrigal, Sabio Vera; 1212.4992]
means: one cannot set  before evaluating integralsn2 → 0

similar issues with alternative regulators 
1

k+ + i0+
→

1
k+ + IΔ

used for TMDs eg.

one needs

cannot use simplified theory 
before the integral is evaluated

[Echevarria, Idilbi, Scimemi; 1111.4996]

l+

l+ + iΔ
= 1 −

iΔ
l+ + iΔ

≠ 1

since ∫ ddl
Δ

l2(l − k2)(l+ + iΔ)
=

even though , Δ → 0

finite
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don’t use cut-off regulator



The tool for our study: Lipatov’s 
effective action
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Tool to be used for this study
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Lipatov’s high energy effective action  [Lipatov; hep-ph/9502308]  
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✗ original derivation slightly opaque 
✗ UV renormalization works, but not systematically discussed



Tool to be used for this study

9

Lipatov’s high energy effective action  [Lipatov; hep-ph/9502308]  

✓ leading order Balitsky JIMWLK evolution contained  

✓NLO corrections well understood in the dilute limit e.g. 

- forward jets and trajectory [MH, Sabio Vera; 1110.6741][Chachamis, MH, 
Madrigal, Sabio Vera;1202.0649, 1212.4992,1307.2591], forward jets with 
rapidity gap [MH, Madrigal, Murdaca, Sabio Vera, 1404.2937, 1406.5625, 
1409.6704] 

- forward Higgs [MH, Kutak, van Hameren, arXiv:2011.03193]  

- TMD factorization [MH, 2107.06203] 

with correct UV properties (agrees with limits of scattering amplitudes etc),  
 
Note: does not agree with results on NLO forward jets/hadrons within shockwave 
picture e.g. 
[Chirilli, Xiao, Yuan; 1203.6139],  
[Altinoluk, Armesto, Beuf, Kovner, Lublinsky; 1411.2869 ]

[MH, 1802.06755]
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✗ original derivation slightly opaque 
✗ UV renormalization works, but not systematically discussed

https://arxiv.org/abs/2011.03193
https://arxiv.org/abs/2107.06203


Brief derivation of Lipatov’s action

10

first presented in [MH, Gomez Bock, Sabio Vera; 2010.03621]

...

...

basic idea:

group particles/fields into clusters local in rapidity 

& study their interactions with fields with significantly different rapidity 
study behavior of vector fields under boosts
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for electroweak theory



Boosting fields
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Figure 1: Kinematics of the 2 ! 4 scattering process.

To arrive at a description of QCD which is factorized into elements localized in rapidity, we
consider the scenario where QCD fields in di↵erent rapidity clusters are boosted with respect
to each other. Under such boosts, local fields inside a sector ‘s’ scale as

V s
µ ⇠ 1 (4)

whereas fields which connect to a source which is boosted in the plus/minus direction scale
as
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where ⌘(s) denotes the rapidity of the sector under consideration, where we introduced the
following Sudakov decomposition,
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where we note that @±x⌥ = 2, @±x± = 0 within our convention. Taking the flimit ⌘ ! 1

and keeping only the leading contribution, we arrive at the following composition of a vector
field into local and non-local components
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This separation translates into an action S(s) =
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d4xLQCD[v
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µ (x), ,  ̄] for each local sector,

which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
of local and non-local fields under boosts, bilinear terms which generate transition from a
single local into a single non-loca field do not contribute, which can be made explicit through
subtracting these bilinear terms using
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where ⌘(s) denotes the rapidity of the sector under consideration, where we introduced the
following Sudakov decomposition,

Vµ(x) = V�(x)
n�
µ

2
+ V+(x)

n+
µ

2
+ Vµ,?(x). (6)

For the boosted fields one furthermore finds
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In other words, the x±-dependence is frozen in this limit, @�V
⌘>⌘l
µ (x) = 0 = @+V

⌘<⌘l
µ (x),

where we note that @±x⌥ = 2, @±x± = 0 within our convention. Taking the flimit ⌘ ! 1

and keeping only the leading contribution, we arrive at the following composition of a vector
field into local and non-local components

vµ(x) =
X

s

v(s)µ (x) =
X
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V local(s)
µ (x) +
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V ⌘>⌘(s)
+ +
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V ⌘<⌘(s)
�

�
. (8)

This separation translates into an action S(s) =
R
d4xLQCD[v

(s)
µ (x), ,  ̄] for each local sector,

which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
of local and non-local fields under boosts, bilinear terms which generate transition from a
single local into a single non-loca field do not contribute, which can be made explicit through
subtracting these bilinear terms using

S(s) =

Z
d4xLQCD[v

(s)
µ , ,  ̄] +

Z
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v� � V ⌘<⌘(s)

�

⌘
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+

⌘
@2V ⌘<⌘(s)

�

i
, (9)

2

transverse/conjugate light-cone directions are 
suppressed 

• can be also done for fermions and scalars (if 
needed) 

• allows in general for a systematic expansion 
• Lipatov action: the leading term
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field into local and non-local components
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This separation translates into an action S(s) =
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which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
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and keeping only the leading contribution, we arrive at the following composition of a vector
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This separation translates into an action S(s) =
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d4xLQCD[v
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µ (x), ,  ̄] for each local sector,

which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
of local and non-local fields under boosts, bilinear terms which generate transition from a
single local into a single non-loca field do not contribute, which can be made explicit through
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2

what does this imply for the local QCD action?

• the two point function of a field connection to a local and a field 
connecting to a boosted source vanishes 

• to construct the action: remove those terms 
• in practice: need to decompose gluonic field into local/non-local 

components
where in slight abuse of notation we defined

vµ(x) = V local(s)
µ +

n+

2
V ⌘>⌘(s)
+ +

n�

2
V ⌘<⌘(s)
� (45)

Obviously

v� � V ⌘<⌘(s)
� = V local(s)

� v+ � V ⌘>⌘(s)
+ = V local(s)

+ (46)

and the additional term cancels precisely the direct transition between local and non-local

fields. To re-derive Lipatov’s high energy e↵ective action we replace now the fields V ⌘>⌘(s)
+ , V ⌘<⌘(s)

�

by two new fields A± which are defined to be invariant under local gauge transformations,
but are still subject to the constraint @+A� = 0 = @�A+. One therefore arrives at

S̃ =

Z
d4x trLQCD[vµ, ,  ̄] +

Z
d4x tr

⇥
(v� �A�) @

2A+
⇤

+

Z
d4x tr

⇥
(v+ �A+) @

2A�

⇤
(47)

Since the fields v± transform under local gauge transformations, the above term is no longer
gauge invariant. It is therefore needed to replace

v±(x) ! v±(x)U [v±(x)] = �
1

g
@±U [v±(x)] (48)

with

U [v(x)] = P exp

 
�
g

2

Z x±

�1

dx0±v±(x
0)

!
, (49)

which then yields the desired gauge invariant e↵ective action.

1.5 A short discussion of gauge invariance

The reggeized gluon fields A± are special in the sense that they are invariant under local
gauge transformations. With the local SU(Nc) gauge transformations of gluon and quark
fields given by

�Lvµ =
1

g
[Dµ,�L], �L = ��L . Dµ = @µ + gvµ, (50)

with Dµ the covariant derivative and �L the parameter of the local gauge transformations
which decreases for x ! 1, the reggeized gluons fields are invariant under local gauge
transformations,

�LA± = 0. (51)

Nevertheless both A±(x) and Vµ(x) are transformed globally under SU(Nc),

�GA± = g[A±,�G] �Gvµ = g[vµ,�G], (52)

9

and remove the bilinear terms
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Constructing the action
In practice: more economic to write down the action for the complete field  
and the non-local field
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Figure 1: Kinematics of the 2 ! 4 scattering process.

To arrive at a description of QCD which is factorized into elements localized in rapidity, we
consider the scenario where QCD fields in di↵erent rapidity clusters are boosted with respect
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where ⌘(s) denotes the rapidity of the sector under consideration, where we introduced the
following Sudakov decomposition,
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2
+ V+(x)
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2
+ Vµ,?(x). (6)

For the boosted fields one furthermore finds
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In other words, the x±-dependence is frozen in this limit, @�V
⌘>⌘l
µ (x) = 0 = @+V

⌘<⌘l
µ (x),

where we note that @±x⌥ = 2, @±x± = 0 within our convention. Taking the flimit ⌘ ! 1

and keeping only the leading contribution, we arrive at the following composition of a vector
field into local and non-local components

vµ(x) =
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v(s)µ (x) =
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µ (x) +
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This separation translates into an action S(s) =
R
d4xLQCD[v

(s)
µ (x), ,  ̄] for each local sector,

which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
of local and non-local fields under boosts, bilinear terms which generate transition from a
single local into a single non-loca field do not contribute, which can be made explicit through
subtracting these bilinear terms using

S(s) =

Z
d4xLQCD[vµ, ,  ̄] +

Z
d4x tr

h⇣
v� � V ⌘<⌘(s)

�

⌘
@2V ⌘>⌘(s)

+

i

+

Z
d4x tr

h⇣
v+ � V ⌘>⌘(s)

+

⌘
@2V ⌘<⌘(s)

�

i
, (9)

2 ︸“local" field
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which describes the interaction of local and non-local fields. Due to di↵erent scaling properties
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2 ︸“local" fieldlast steps:

• promote non-local fields  to gauge invariant fields  
(the reggeized gluon fields) 

• finally replace

V± δLA± = 0

where

v(s)� � V ⌘<⌘(s)
� = V local(s)

� , v(s)+ � V ⌘>⌘(s)
+ = V local(s)

+ . (10)

To arrive at the complete gauge invariant e↵ective action, one replaces in a next step the fields

V ⌘>⌘(s)
+ , V ⌘<⌘(s)

� by two new fields A± which are invariant under local gauge transformations
and subject to the constraints @+A� = 0 = @�A+, where for convenience we remove the s
index from now on,

S =

Z
d4xLSU(N)[vµ(x)] +

Z
d4x tr

⇥
(v� �A�) @

2A+
⇤
+

Z
d4x tr

⇥
(v+ �A+) @

2A�
⇤
. (11)

The fields A± are called reggeized gluon fields since they reggeize in the sense of Regge
theory, see e.g. [4]. To ensure gauge invariant factorization of di↵erent rapidity sectors, these
reggeized gluon fields are then promoted to be invariant under local gauge transformations.
With the local SU(Nc) gauge transformations of gluon and quark fields given by

�Lvµ =
1

g
[Dµ,�L], �L = ��L . Dµ = @µ + gvµ, (12)

with Dµ the covariant derivative and �L the parameter of the local gauge transformations
which decreases for x ! 1, the reggeized gluons fields are invariant under local gauge
transformations,

�LA± = 0. (13)

Nevertheless both A±(x) and Vµ(x) are transformed globally under SU(Nc),

�GA± = g[A±,�G] �Gvµ = g[vµ,�G], (14)

with � = const. To ensure gauge invariance of the complete local action, it is then needed to
replace

v±(x) ! v±(x)U [v±(x)] = �
1

g
@±U [v±(x)] (15)

where the path-ordered Wilson line

U [v(x)] = P exp

 
�
g

2

Z x±

�1
dz±v±(z)

!
= 1�

g

@±
v± +

g

@±
v±

g

@±
v± + . . . (16)

ensures the full gauge invariance in the e↵ective action of Eq. (11). To obtain on the other
hand the e↵ective action for the quasi-elastic region, e.g. for the sector with maximal rapidity,
one drops the term in the second line of Eq. (9). To arrive at a minimal modification of
Eq. (11), one further imposes that only maximally antisymmetric color structures are taken
into account in Eq. (16), see [5] for a detailed discussed. Restriction to this subsector in color
space ensures both independence of the resulting induced vertices of the color representation
chosen for the A± fields and a real action. The bare propagator of the reggeized gluon field
as well as the first two induced vertices, which describe the coupling of the reggeized gluon
field to the convential gluon field are finally summarized in Fig. 2.

3

to arrive at gauge invariant local action

Seff = SQCD[vμ, ψ, ψ̄] + ∫ d4x tr [(v−U[v−] − A−) ∂2A+] + (′ +′ ↔′ −′ )

= action presented in  
& used for many calculations 

 [Lipatov; hep-ph/9502308]  
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Remarks on the regulator

14

Seff = SQCD[vμ, ψ, ψ̄] + ∫ d4x tr [(v−U[v−] − A−) ∂2A+] + (′ +′ ↔′ −′ )

• action is gauge invariant, without invoking  
• tilting light cone directions is therefore a gauge invariant deformation of the original action 
• good regulator

n2
± = 0
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UV renormalization
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original publication does not address this problem 

QCD fields: 

q, a,±

k, c, ⌫

= �i
2 q2�ac(n±)⌫ ,

k± = 0.

+ a

� b

q = �ab 2i
q2 ,
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= g
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(a) (b) (c)
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k2, c2, ⌫2

=
ig2

2
q2

✓
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k±3 k
±
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+
fa3a1efa2ea

k±3 k
±
2

◆
(n±)⌫1(n±)⌫2(n±)⌫3 ,

k±1 + k±2 + k±3 = 0.

Figure 2: Feynman rules for the lowest-order e↵ective vertices of the e↵ective action. Wavy lines

denote reggeized fields and curly lines gluons. Note that as in [6] we absorbe a factor 1/2 into the

vertices which is compensated by changing the residue of the reggeized gluon propagator from 1/2 to 2.

2.1 UV renormalization of the e↵ective action

The original derivation of this e↵ective action in [2] does not specify whether the above
decomposition is meant to take place for bare or renormalized QCD fields. With the usual
renormalization of QCD fields and coupings,

 bare = Z
1
2
2  R, vµbare = Z

1
2
3 v

µ
R, gbare = Zgµ

�✏gR, Z1 = ZgZ2Z
1
2
3 , (17)

where for simplicity we do not consider the possibility of a quark mass term, it is natural to
identify the renormalization of the gluon and reggeized gluon fields,

A±,bare = Z
1
2
3 A±,R. (18)

Only if reggeized gluon field and conventional gluon field are subject to the same renormal-
ization constant, one has

Z
d4x

⇥
(v⌥,bare �A⌥,bare) @

2A±,bare

⇤
= Z3

Z
d4x

⇥
(v⌥,R �A⌥,R) @

2A±,R
⇤
, (19)

and bilinear terms which generate transitions between local and non-local fields in the La-
grangian, see Eq. (9). As commonly done, it is further possible to rescale the renormalized
fields,

 R,  ̄R ! Z
� 1

2
2  R, Z

� 1
2

2  ̄R, v
µ
R ! Z

� 1
2

3 vµR, (20)

which collects renormalization constants into the gauge coupling g and possible mass terms in
the Lagrangian. As usually this has the implication that 1-loop correction to the propagator
are no longer UV finite by themselves, while scattering amplitudes etc are. A similar rescaling

A±,R ! Z
� 1

2
3 A±,R, is also possible for the reggeized gluon field. To discuss finiteness of the

4

couplings: 

q, a,±

k, c, ⌫

= �i
2 q2�ac(n±)⌫ ,
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Figure 2: Feynman rules for the lowest-order e↵ective vertices of the e↵ective action. Wavy lines

denote reggeized fields and curly lines gluons. Note that as in [6] we absorbe a factor 1/2 into the

vertices which is compensated by changing the residue of the reggeized gluon propagator from 1/2 to 2.

2.1 UV renormalization of the e↵ective action

The original derivation of this e↵ective action in [2] does not specify whether the above
decomposition is meant to take place for bare or renormalized QCD fields. With the usual
renormalization of QCD fields and coupings,

 bare = Z
1
2
2  R, vµbare = Z

1
2
3 v

µ
R, gbare = Zgµ

�✏gR, Z1 = ZgZ2Z
1
2
3 , (17)

where for simplicity we do not consider the possibility of a quark mass term, it is natural to
identify the renormalization of the gluon and reggeized gluon fields,

A±,bare = Z
1
2
3 A±,R. (18)

Only if reggeized gluon field and conventional gluon field are subject to the same renormal-
ization constant, one has

Z
d4x

⇥
(v⌥,bare �A⌥,bare) @

2A±,bare

⇤
= Z3

Z
d4x

⇥
(v⌥,R �A⌥,R) @

2A±,R
⇤
, (19)

and bilinear terms which generate transitions between local and non-local fields in the La-
grangian, see Eq. (9). As commonly done, it is further possible to rescale the renormalized
fields,

 R,  ̄R ! Z
� 1

2
2  R, Z

� 1
2

2  ̄R, v
µ
R ! Z

� 1
2

3 vµR, (20)

which collects renormalization constants into the gauge coupling g and possible mass terms in
the Lagrangian. As usually this has the implication that 1-loop correction to the propagator
are no longer UV finite by themselves, while scattering amplitudes etc are. A similar rescaling

A±,R ! Z
� 1

2
3 A±,R, is also possible for the reggeized gluon field. To discuss finiteness of the

4

have in mind  scheme; as a start: massless theoryMS

Seff = SQCD[vμ, ψ, ψ̄] + ∫ d4x tr [(v−U[v−] − A−) ∂2A+] + (′ +′ ↔′ −′ )

reggeized gluon field:

removes bilinear term if v± → v± + A±

requires A±,bare = Z
1
2
3 A±,R

also coupling in the path ordered 
exponential  should be renormalized U[v−]
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Rescaling fields

16

Commonly done:
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Figure 2: Feynman rules for the lowest-order e↵ective vertices of the e↵ective action. Wavy lines

denote reggeized fields and curly lines gluons. Note that as in [6] we absorbe a factor 1/2 into the

vertices which is compensated by changing the residue of the reggeized gluon propagator from 1/2 to 2.

2.1 UV renormalization of the e↵ective action

The original derivation of this e↵ective action in [2] does not specify whether the above
decomposition is meant to take place for bare or renormalized QCD fields. With the usual
renormalization of QCD fields and coupings,

 bare = Z
1
2
2  R, vµbare = Z

1
2
3 v

µ
R, gbare = Zgµ

�✏gR, Z1 = ZgZ2Z
1
2
3 , (17)

where for simplicity we do not consider the possibility of a quark mass term, it is natural to
identify the renormalization of the gluon and reggeized gluon fields,

A±,bare = Z
1
2
3 A±,R. (18)

Only if reggeized gluon field and conventional gluon field are subject to the same renormal-
ization constant, one has

Z
d4x

⇥
(v⌥,bare �A⌥,bare) @

2A±,bare

⇤
= Z3

Z
d4x

⇥
(v⌥,R �A⌥,R) @

2A±,R
⇤
, (19)

and bilinear terms which generate transitions between local and non-local fields in the La-
grangian, see Eq. (9). As commonly done, it is further possible to rescale the renormalized
fields,

 R,  ̄R ! Z
� 1

2
2  R, Z

� 1
2

2  ̄R, v
µ
R ! Z

� 1
2

3 vµR, (20)

which collects renormalization constants into the gauge coupling g and possible mass terms in
the Lagrangian. As usually this has the implication that 1-loop correction to the propagator
are no longer UV finite by themselves, while scattering amplitudes etc are. A similar rescaling

A±,R ! Z
� 1

2
3 A±,R, is also possible for the reggeized gluon field. To discuss finiteness of the

4

similar:

advantage: only need one counter-term related to the coupling constant (and 
masses for massive theory)  

disadvantage: individual correlation functions are not finite (usually not a 
problem)
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Figure 2: Feynman rules for the lowest-order e↵ective vertices of the e↵ective action. Wavy lines

denote reggeized fields and curly lines gluons. Note that as in [6] we absorbe a factor 1/2 into the

vertices which is compensated by changing the residue of the reggeized gluon propagator from 1/2 to 2.

2.1 UV renormalization of the e↵ective action

The original derivation of this e↵ective action in [2] does not specify whether the above
decomposition is meant to take place for bare or renormalized QCD fields. With the usual
renormalization of QCD fields and coupings,

 bare = Z
1
2
2  R, vµbare = Z

1
2
3 v

µ
R, gbare = Zgµ

�✏gR, Z1 = ZgZ2Z
1
2
3 , (17)

where for simplicity we do not consider the possibility of a quark mass term, it is natural to
identify the renormalization of the gluon and reggeized gluon fields,

A±,bare = Z
1
2
3 A±,R. (18)

Only if reggeized gluon field and conventional gluon field are subject to the same renormal-
ization constant, one has

Z
d4x

⇥
(v⌥,bare �A⌥,bare) @

2A±,bare

⇤
= Z3

Z
d4x

⇥
(v⌥,R �A⌥,R) @

2A±,R
⇤
, (19)

and bilinear terms which generate transitions between local and non-local fields in the La-
grangian, see Eq. (9). As commonly done, it is further possible to rescale the renormalized
fields,

 R,  ̄R ! Z
� 1

2
2  R, Z

� 1
2

2  ̄R, v
µ
R ! Z

� 1
2

3 vµR, (20)

which collects renormalization constants into the gauge coupling g and possible mass terms in
the Lagrangian. As usually this has the implication that 1-loop correction to the propagator
are no longer UV finite by themselves, while scattering amplitudes etc are. A similar rescaling

A±,R ! Z
� 1

2
3 A±,R, is also possible for the reggeized gluon field. To discuss finiteness of the

4

here: rescale QCD field as usually

scheme 1: reggeized gluon field NOT rescaled (counter term for 2 point function)

scheme 2: reggeized gluon field rescaled (no counter term for 2 point function)

Towards a consistent formation of high energy factorization at NLO — Martin Hentschinski — June 11, 24, ECT* Trento Italy



Testing ground: dilute calculation
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loop integrals etc. already done in 
[MH, Sabio Vera; 1110.6741] 
[Chachamis, MH, Madrigal, Sabio Vera;1202.0649, 1212.4992,1307.2591]

goal: focus on UV terms 

Where hq denotes the coupling of the reggeized gluon to the external quarks and G the
reggeized gluon Green’s function with

h(B)
q (k) = h(0)q (k) + h(1)q (k) + . . . h(0)q (k) =

↵sCFp
N2

c � 1

21+✏

µ2✏�(1� ✏)

1

k2
,

G(B)(k) = G(0) +G(1) . . . G(0) = 1 . (27)

The superscript ‘B’ indicates that we are dealing here with bare impact factors and Green’s
function as far as the definition of high energy factorized matrix elements and Green’s function
is concerned. Higher order corrections naturally contain soft-collinear singularities, which
need to cancel against corresponding singularities of the cross-sections with additional gluons
in the final states, and collinear singularities which need to be absorbed into corresponding
parton distribution functions. Both aspects have been extensively studied in the literature,
see e.g. [12, 13] and we will not explicitly address cancelation of these divergencies here.
Instead we will focus on the determination of the (virtual) 1-loop corrections. Determination
of 1-loop correction requires the determination of the of the quark-reggeized gluon scattering
vertex at 1-loop, Fig. 4 as well as the self-energy of the reggeized gluon, Fig. 5. With the
bare propagator of the reggeized gluon given by

ĜB
�
⇢; ✏,k2, µ2

�
=

2i

k2
GB

✓
⇢; ✏,

k2

µ2

◆

GB

✓
⇢; ✏,

k2

µ2

◆
=

(
1 +

2i

k2
⌃

✓
⇢, ✏,

k2

µ2

◆
+


2i

k2
⌃

✓
⇢, ✏,

k2

µ2

◆�2
+ . . .

)
, (28)

where we split o↵ the tree-level reggeized gluon propagator from our definition of the bare
propagator and absorbed it into the quark vertices.

⌃

✓
⇢, ✏,

k2

µ2

◆
= ⌃(1)

✓
⇢, ✏,

k2

µ2

◆
+ ⌃(2)

✓
⇢, ✏,

k2

µ2

◆
+ . . . , (29)

denotes the reggeized gluon self-energy. For the 1-loop correction, diagrams Fig. 5.a-g yiled
[14],

2i

k2
⌃(1)

✓
⇢, ✏,

k2

µ2

◆
=

↵s

4⇡

✓
k2

µ2

◆✏ 
�

CA(2⇢� i⇡)

✏
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✏

✓
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3
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+
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9
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�
+

✓
5

3
Ca �

2

3
nf

◆
↵s

4⇡

1

✏

�

scheme 1

. (30)

The last term in squared brackets denotes the counter term contribution, Fig. 5.g, which is
non-zero within scheme 1 (no rescaling of the reggeized gluon field). It removes the the UV
divergence of the second term. The first term carries a soft singularity which is associated
with the gluon Regge trajectory. It is well known that for physical observables this IR
divergency cancels against a similar singularity present in the real part of the BFKL kernel,
see e.g. [9, 10]. For the scattering amplitude of a quark with a reggeized gluon at one-loop,
diagrams Fig. 5.a-g, we obtain
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, (31)

7

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: Non-zero diagrams for the quark-reggeized gluon vertex at 1-loop using the conventional

(un-shifted) high energy e↵ective action

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Non-zero diagrams for the reggeized gluon self energy using the conventional (un-shifted)

high energy e↵ective action

future reference we further present the tilted vectors

ñ� =
n�

� e�⇢n+

1� e�2⇢
, ñ+ =

n+
� e�⇢n�

1� e�2⇢
, (ñ±)2 = �n2, (24)

which are useful to construct the Sudakov decomposition of a certain four vector, using tilted
components,

l =
l · n

2
ñ� +

l · n̄

2
ñ+ + l?. (25)

To be precise, we consider the one-loop corrections to the quark-quark scattering cross-
section q(pa) + q(pb) ! q(p1) + q(p2) in the high energy limit and we average (sum) over
initial (final) quark helicities and color. At tree-level one has in d = 4 + 2✏ dimensions1

d�̂ab
d2+2✏k

= hq(k) · |G(k)|2 · h(0)q (k), (26)

1Note that the tree-level reggeized gluon propagator has been absorbed into the quark impact factors hq(k)

6

tilt light cone directions n± → n, n̄ = n± + e−ρn∓
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Where hq denotes the coupling of the reggeized gluon to the external quarks and G the
reggeized gluon Green’s function with

h(B)
q (k) = h(0)q (k) + h(1)q (k) + . . . h(0)q (k) =

↵sCFp
N2

c � 1

21+✏

µ2✏�(1� ✏)

1

k2
,

G(B)(k) = G(0) +G(1) . . . G(0) = 1 . (27)

The superscript ‘B’ indicates that we are dealing here with bare impact factors and Green’s
function as far as the definition of high energy factorized matrix elements and Green’s function
is concerned. Higher order corrections naturally contain soft-collinear singularities, which
need to cancel against corresponding singularities of the cross-sections with additional gluons
in the final states, and collinear singularities which need to be absorbed into corresponding
parton distribution functions. Both aspects have been extensively studied in the literature,
see e.g. [12, 13] and we will not explicitly address cancelation of these divergencies here.
Instead we will focus on the determination of the (virtual) 1-loop corrections. Determination
of 1-loop correction requires the determination of the of the quark-reggeized gluon scattering
vertex at 1-loop, Fig. 4 as well as the self-energy of the reggeized gluon, Fig. 5. With the
bare propagator of the reggeized gluon given by
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where we split o↵ the tree-level reggeized gluon propagator from our definition of the bare
propagator and absorbed it into the quark vertices.
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denotes the reggeized gluon self-energy. For the 1-loop correction, diagrams Fig. 5.a-g yiled
[14],
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The last term in squared brackets denotes the counter term contribution, Fig. 5.g, which is
non-zero within scheme 1 (no rescaling of the reggeized gluon field). It removes the the UV
divergence of the second term. The first term carries a soft singularity which is associated
with the gluon Regge trajectory. It is well known that for physical observables this IR
divergency cancels against a similar singularity present in the real part of the BFKL kernel,
see e.g. [9, 10]. For the scattering amplitude of a quark with a reggeized gluon at one-loop,
diagrams Fig. 5.a-g, we obtain
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�
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�

2nf
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�

scheme 1

, (31)
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: Non-zero diagrams for the quark-reggeized gluon vertex at 1-loop using the conventional

(un-shifted) high energy e↵ective action

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Non-zero diagrams for the reggeized gluon self energy using the conventional (un-shifted)

high energy e↵ective action

future reference we further present the tilted vectors

ñ� =
n�

� e�⇢n+

1� e�2⇢
, ñ+ =

n+
� e�⇢n�

1� e�2⇢
, (ñ±)2 = �n2, (24)

which are useful to construct the Sudakov decomposition of a certain four vector, using tilted
components,

l =
l · n

2
ñ� +

l · n̄

2
ñ+ + l?. (25)

To be precise, we consider the one-loop corrections to the quark-quark scattering cross-
section q(pa) + q(pb) ! q(p1) + q(p2) in the high energy limit and we average (sum) over
initial (final) quark helicities and color. At tree-level one has in d = 4 + 2✏ dimensions1

d�̂ab
d2+2✏k

= hq(k) · |G(k)|2 · h(0)q (k), (26)

1Note that the tree-level reggeized gluon propagator has been absorbed into the quark impact factors hq(k)

6

within scheme 1: both elements are finite 
scheme 2: uncanceled UV divergences (as expected)
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where the last term in square brackets denotes again the contribution which is only present
within the scheme 1. Apart from ultra-violet divergencies – which within scheme 1 are all
cancelled by corresponding counterterms – , the above expressions contains collinear 1/✏ poles
(proportional to CF , to be absorbed into parton distribution functions) and a soft 1/✏ pole,
to be cancelled against a corresponding pole in the real corrections, as well as a high energy
singularity parametrized by finite ⇢. To remove the overlap between exact and factorized
impact factors, one defines in the following the bar coe�cient,

CB
q

�
⇢, ✏;k2, µ2

�
= hBq

�
⇢, ✏;k2, µ2

�
� 2h(0)q (k)

2i

k2
⌃(1)

✓
⇢; ✏,

k2

µ2

◆
, (32)

which allows to to construct the high energy factorized cross-section at 1-loop (virtual cor-
rections only)

d�̂

d2+2✏k

����
virt.

= CB
q

�
⇢, ✏; p+a ,k

2, µ2
�
·

����G
B

✓
⇢; ✏,

k2

µ2

◆����
2

CB
q

�
⇢, ✏; p�b ,k

2, µ2
�
. (33)

While the above cross-section is up to 1-loop accuracy independent of the regulator ⇢, its
individual elements depend on the regulator. We therefore introduce transition functions Z±

as well as renormalized Green’s function and impact factors through [15,16]

GR

✓
⌘, ✏;

k2

µ2

◆
=

GB
⇣
⇢, ✏; k

2

µ2

⌘

Z+
⇣
⌘, ⇢; ✏, k

2

µ2

⌘
Z�

⇣
⌘, ⇢; ✏, k

2

µ2

⌘
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q

⇣
⌘, ✏; p±a,b,k

2, µ2
⌘
=


Z±

✓
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k2

µ2

◆�2
· CB

q

⇣
⇢, ✏; p±a,b,k

2, µ2
⌘
, (34)

and

d�̂

d2+2✏k

����
virt.

= CR
q

�
⌘, ✏; p+a ,k

2, µ2
�
·

����G
R

✓
⌘; ✏,

k2

µ2

◆����
2
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q

�
⌘, ✏; p�b k

2, µ2
�
. (35)

In their most general form these transition functions are parametrized as

Z±
✓
⌘, ⇢; ✏,

q2

µ2

◆
= exp


⇢� ⌘

2
!

✓
✏,
q2

µ2

◆
+ f±

✓
✏,
q2

µ2

◆�
. (36)

The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏, q2). It is
determined by the requirement that the renormalized reggeized gluon propagator must be
free of high energy divergences, i.e. ⇢ indpependent. At one loop one obtains

!(1)

✓
q2

µ2

◆
= �

↵sCa

2⇡

✓
1

✏
+ ln

k2

µ2

◆
(37)

The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains

f (1)

✓
✏,
q2

µ2

◆
=

↵s

4⇡

✓
2nf � 5CA

6
ln

k2

µ2
+

31CA � 10nf

18
+


2nf � 5CA

6✏

�

scheme 2

◆
. (38)
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a) subtract factorized contribution from NLO quark reggeized gluon vertex

where the last term in square brackets denotes again the contribution which is only present
within the scheme 1. Apart from ultra-violet divergencies – which within scheme 1 are all
cancelled by corresponding counterterms – , the above expressions contains collinear 1/✏ poles
(proportional to CF , to be absorbed into parton distribution functions) and a soft 1/✏ pole,
to be cancelled against a corresponding pole in the real corrections, as well as a high energy
singularity parametrized by finite ⇢. To remove the overlap between exact and factorized
impact factors, one defines in the following the bar coe�cient,

CB
q

�
⇢, ✏;k2, µ2

�
= hBq

�
⇢, ✏;k2, µ2

�
� 2h(0)q (k)

2i

k2
⌃(1)

✓
⇢; ✏,

k2

µ2

◆
, (32)

which allows to to construct the high energy factorized cross-section at 1-loop (virtual cor-
rections only)

d�̂

d2+2✏k

����
virt.

= CB
q

�
⇢, ✏; p+a ,k

2, µ2
�
·

����G
B

✓
⇢; ✏,

k2

µ2

◆����
2

CB
q

�
⇢, ✏; p�b ,k

2, µ2
�
. (33)

While the above cross-section is up to 1-loop accuracy independent of the regulator ⇢, its
individual elements depend on the regulator. We therefore introduce transition functions Z±

as well as renormalized Green’s function and impact factors through [15,16]

GR

✓
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k2

µ2

◆
=

GB
⇣
⇢, ✏; k

2

µ2

⌘

Z+
⇣
⌘, ⇢; ✏, k

2
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⌘
Z�

⇣
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2
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⌘

CR
q

⇣
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2, µ2
⌘
=
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⌘, ⇢; ✏,

k2

µ2

◆�2
· CB

q

⇣
⇢, ✏; p±a,b,k

2, µ2
⌘
, (34)

and

d�̂

d2+2✏k

����
virt.

= CR
q

�
⌘, ✏; p+a ,k

2, µ2
�
·

����G
R

✓
⌘; ✏,

k2
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◆����
2

CR
q

�
⌘, ✏; p�b k

2, µ2
�
. (35)

In their most general form these transition functions are parametrized as

Z±
✓
⌘, ⇢; ✏,

q2

µ2

◆
= exp


⇢� ⌘

2
!

✓
✏,
q2

µ2

◆
+ f±

✓
✏,
q2

µ2

◆�
. (36)

The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏, q2). It is
determined by the requirement that the renormalized reggeized gluon propagator must be
free of high energy divergences, i.e. ⇢ indpependent. At one loop one obtains

!(1)

✓
q2

µ2

◆
= �

↵sCa

2⇡

✓
1

✏
+ ln

k2

µ2

◆
(37)

The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains

f (1)

✓
✏,
q2

µ2

◆
=

↵s
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✓
2nf � 5CA

6
ln

k2

µ2
+

31CA � 10nf

18
+
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�

scheme 2

◆
. (38)
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Where hq denotes the coupling of the reggeized gluon to the external quarks and G the
reggeized gluon Green’s function with

h(B)
q (k) = h(0)q (k) + h(1)q (k) + . . . h(0)q (k) =

↵sCFp
N2

c � 1

21+✏

µ2✏�(1� ✏)

1

k2
,

G(B)(k) = G(0) +G(1) . . . G(0) = 1 . (27)

The superscript ‘B’ indicates that we are dealing here with bare impact factors and Green’s
function as far as the definition of high energy factorized matrix elements and Green’s function
is concerned. Higher order corrections naturally contain soft-collinear singularities, which
need to cancel against corresponding singularities of the cross-sections with additional gluons
in the final states, and collinear singularities which need to be absorbed into corresponding
parton distribution functions. Both aspects have been extensively studied in the literature,
see e.g. [12, 13] and we will not explicitly address cancelation of these divergencies here.
Instead we will focus on the determination of the (virtual) 1-loop corrections. Determination
of 1-loop correction requires the determination of the of the quark-reggeized gluon scattering
vertex at 1-loop, Fig. 4 as well as the self-energy of the reggeized gluon, Fig. 5. With the
bare propagator of the reggeized gluon given by

ĜB
�
⇢; ✏,k2, µ2

�
=

2i

k2
GB

✓
⇢; ✏,

k2

µ2

◆
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k2

µ2
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(
1 +

2i
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⌃

✓
⇢, ✏,

k2

µ2

◆
+


2i

k2
⌃

✓
⇢, ✏,

k2

µ2

◆�2
+ . . .

)
, (28)

where we split o↵ the tree-level reggeized gluon propagator from our definition of the bare
propagator and absorbed it into the quark vertices.

⌃

✓
⇢, ✏,

k2

µ2

◆
= ⌃(1)

✓
⇢, ✏,

k2

µ2

◆
+ ⌃(2)

✓
⇢, ✏,

k2
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◆
+ . . . , (29)

denotes the reggeized gluon self-energy. For the 1-loop correction, diagrams Fig. 5.a-g yiled
[14],

2i
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. (30)

The last term in squared brackets denotes the counter term contribution, Fig. 5.g, which is
non-zero within scheme 1 (no rescaling of the reggeized gluon field). It removes the the UV
divergence of the second term. The first term carries a soft singularity which is associated
with the gluon Regge trajectory. It is well known that for physical observables this IR
divergency cancels against a similar singularity present in the real part of the BFKL kernel,
see e.g. [9, 10]. For the scattering amplitude of a quark with a reggeized gluon at one-loop,
diagrams Fig. 5.a-g, we obtain

h(1)
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, (31)

7

b) bare reggeized gluon Green’s function

c) cross-section independent   at NLO, individual elements are  dependentρ ρ
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where the last term in square brackets denotes again the contribution which is only present
within the scheme 1. Apart from ultra-violet divergencies – which within scheme 1 are all
cancelled by corresponding counterterms – , the above expressions contains collinear 1/✏ poles
(proportional to CF , to be absorbed into parton distribution functions) and a soft 1/✏ pole,
to be cancelled against a corresponding pole in the real corrections, as well as a high energy
singularity parametrized by finite ⇢. To remove the overlap between exact and factorized
impact factors, one defines in the following the bar coe�cient,

CB
q

�
⇢, ✏;k2, µ2

�
= hBq

�
⇢, ✏;k2, µ2

�
� 2h(0)q (k)

2i

k2
⌃(1)

✓
⇢; ✏,

k2

µ2

◆
, (32)

which allows to to construct the high energy factorized cross-section at 1-loop (virtual cor-
rections only)

d�̂
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2
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q

�
⇢, ✏; p�b ,k

2, µ2
�
. (33)

While the above cross-section is up to 1-loop accuracy independent of the regulator ⇢, its
individual elements depend on the regulator. We therefore introduce transition functions Z±

as well as renormalized Green’s function and impact factors through [15,16]
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, (34)

and
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. (35)

In their most general form these transition functions are parametrized as

Z±
✓
⌘, ⇢; ✏,
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◆
= exp
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2
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✓
✏,
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. (36)

The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏, q2). It is
determined by the requirement that the renormalized reggeized gluon propagator must be
free of high energy divergences, i.e. ⇢ indpependent. At one loop one obtains
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q2
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◆
= �
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✏
+ ln

k2
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◆
(37)

The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains
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. (38)
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transition function  to obtain finite elements: Z±

where the last term in square brackets denotes again the contribution which is only present
within the scheme 1. Apart from ultra-violet divergencies – which within scheme 1 are all
cancelled by corresponding counterterms – , the above expressions contains collinear 1/✏ poles
(proportional to CF , to be absorbed into parton distribution functions) and a soft 1/✏ pole,
to be cancelled against a corresponding pole in the real corrections, as well as a high energy
singularity parametrized by finite ⇢. To remove the overlap between exact and factorized
impact factors, one defines in the following the bar coe�cient,

CB
q

�
⇢, ✏;k2, µ2

�
= hBq

�
⇢, ✏;k2, µ2

�
� 2h(0)q (k)

2i
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◆
, (32)

which allows to to construct the high energy factorized cross-section at 1-loop (virtual cor-
rections only)
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While the above cross-section is up to 1-loop accuracy independent of the regulator ⇢, its
individual elements depend on the regulator. We therefore introduce transition functions Z±

as well as renormalized Green’s function and impact factors through [15,16]
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and
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In their most general form these transition functions are parametrized as
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The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏, q2). It is
determined by the requirement that the renormalized reggeized gluon propagator must be
free of high energy divergences, i.e. ⇢ indpependent. At one loop one obtains
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+ ln

k2

µ2

◆
(37)

The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains
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. (38)
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NLO cross-section: 

where the last term in square brackets denotes again the contribution which is only present
within the scheme 1. Apart from ultra-violet divergencies – which within scheme 1 are all
cancelled by corresponding counterterms – , the above expressions contains collinear 1/✏ poles
(proportional to CF , to be absorbed into parton distribution functions) and a soft 1/✏ pole,
to be cancelled against a corresponding pole in the real corrections, as well as a high energy
singularity parametrized by finite ⇢. To remove the overlap between exact and factorized
impact factors, one defines in the following the bar coe�cient,
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q

�
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�
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◆
, (32)

which allows to to construct the high energy factorized cross-section at 1-loop (virtual cor-
rections only)

d�̂

d2+2✏k

����
virt.

= CB
q

�
⇢, ✏; p+a ,k

2, µ2
�
·

����G
B

✓
⇢; ✏,

k2

µ2

◆����
2

CB
q

�
⇢, ✏; p�b ,k

2, µ2
�
. (33)

While the above cross-section is up to 1-loop accuracy independent of the regulator ⇢, its
individual elements depend on the regulator. We therefore introduce transition functions Z±

as well as renormalized Green’s function and impact factors through [15,16]
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In their most general form these transition functions are parametrized as
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The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏, q2). It is
determined by the requirement that the renormalized reggeized gluon propagator must be
free of high energy divergences, i.e. ⇢ indpependent. At one loop one obtains
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The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains
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must fix UV finiteness
ρ



'Finite' term in the transition function

21

where the last term in square brackets denotes again the contribution which is only present
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The function f±(✏, q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-
metry of the scattering amplitude requires f+ = f� = f , while Regge theory suggests fixing
it in such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized
gluon propagators to the vertices, to which the reggeized gluon couples. One obtains
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fixed by symmetry:

for scheme 2: must be such that UV divergencies are cancelled between 
Green’s function & vertex 

finally: 
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Figure 6: The GGR and QQR verticess

The parameters ⌘ in the transition functions are arbitrary; their role is analogous to the
renormalization scale in UV renormalization or the factorization scale in collinear factoriza-
tion. It gives rise to a dependence of the reggeized gluon propagator on the the factorization
parameter ⌘ from which a renormalization group equation (RGE) results:
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With the above choice for the function f±, one has
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For the 1-loop quark impact factors one finds up to higher order terms in ↵s:
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in agreement with results reported in the literature [12, 17,18].

2.3 Breakdown of the naive shock-wave picture and regulator

Within the frequently used shock-wave picture see e.g. [19], the 1-loop corrections to the
interaction of the quark with reggeized gluon takes into account only diagrams Fig. 4.a-c.
It would be further possible to include Fig. 4.d, but this is in general not done. Fig. 4.e-
i are not included; they are rather associated with a correction with the shockwave. It
is straightforward to convince oneself that this decomposition is not gauge invariant and
therefore not possible, at least without further specification. To be specific, we shift to this
end the gluon field v± ! v± +A±, which removes the direct transition vertex, Fig. 2.a from
the Feynman rules and couples to reggeized gluon directly to all other particles. In particular
we obtain in this way the so-called gluon-gluon-reggeized gluon (GGR) and quark-quark-
reggeized gluon vertices, see Fig. 6, with
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2
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�
. (42)

Within this setup, diagrams which contain a three-gluon-vertex and a first order induced
vertex, are combined into a single contribution, which takes the same value. Evaluating
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The parameters ⌘ in the transition functions are arbitrary; their role is analogous to the
renormalization scale in UV renormalization or the factorization scale in collinear factoriza-
tion. It gives rise to a dependence of the reggeized gluon propagator on the the factorization
parameter ⌘ from which a renormalization group equation (RGE) results:
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in agreement with results reported in the literature [12, 17,18].

2.3 Breakdown of the naive shock-wave picture and regulator

Within the frequently used shock-wave picture see e.g. [19], the 1-loop corrections to the
interaction of the quark with reggeized gluon takes into account only diagrams Fig. 4.a-c.
It would be further possible to include Fig. 4.d, but this is in general not done. Fig. 4.e-
i are not included; they are rather associated with a correction with the shockwave. It
is straightforward to convince oneself that this decomposition is not gauge invariant and
therefore not possible, at least without further specification. To be specific, we shift to this
end the gluon field v± ! v± +A±, which removes the direct transition vertex, Fig. 2.a from
the Feynman rules and couples to reggeized gluon directly to all other particles. In particular
we obtain in this way the so-called gluon-gluon-reggeized gluon (GGR) and quark-quark-
reggeized gluon vertices, see Fig. 6, with
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2


2p · ngµ⌫ � nµ(p� k)⌫ + (�r � k)µn⌫
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Within this setup, diagrams which contain a three-gluon-vertex and a first order induced
vertex, are combined into a single contribution, which takes the same value. Evaluating

9

reggeized gluon: 
(solution to RG equation for  field)A±
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What about the shock wave picture?

22

used for strong fields , equally valid for dilute gA+ ∼ 1 gA+ ≪ 1

idea: separate NLO corrections into  
- formation of the partonic wave (1 or 2 partons) 
- interaction with the shockwave

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: Non-zero diagrams for the quark-reggeized gluon vertex at 1-loop using the conventional

(un-shifted) high energy e↵ective action

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Non-zero diagrams for the reggeized gluon self energy using the conventional (un-shifted)

high energy e↵ective action

future reference we further present the tilted vectors

ñ� =
n�

� e�⇢n+

1� e�2⇢
, ñ+ =

n+
� e�⇢n�

1� e�2⇢
, (ñ±)2 = �n2, (24)

which are useful to construct the Sudakov decomposition of a certain four vector, using tilted
components,

l =
l · n

2
ñ� +

l · n̄

2
ñ+ + l?. (25)

To be precise, we consider the one-loop corrections to the quark-quark scattering cross-
section q(pa) + q(pb) ! q(p1) + q(p2) in the high energy limit and we average (sum) over
initial (final) quark helicities and color. At tree-level one has in d = 4 + 2✏ dimensions1

d�̂ab
d2+2✏k

= hq(k) · |G(k)|2 · h(0)q (k), (26)

1Note that the tree-level reggeized gluon propagator has been absorbed into the quark impact factors hq(k)

6

included in the 
shockwave picture

belongs 
somehow to 
the target

effective action does not support this separation of contributions
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A test: use different gauges

23

1) covariant (Lorentz-Feynman) gauge 
2) axial gauge (not light-cone due to tilted directions)

Fig. 4a.-c using covariant Lorentz-Feynman gauge and axial gauge with We use now the
polarization tensor in axial gauge for the gluon propagators,

dµ⌫(l, n) = �gµ⌫ +
lµn⌫ + nµl⌫

l · n
�

n2lµl⌫

(l · n)2
, (43)

we find di↵erent results. While the result of Fig. 4.b remains unmodified, we have
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(44)

While the double pole and the high energy logaritm are unmodified, the single pole in 1/✏
receives a di↵erent coe�cient. The discrepancy is indeed easily understood: the color current
of a quark line with two gluons does not satisfy itself conservation of the color current, but
requires in addition the contribution of the 3-gluon-vertex, see e.g. [7] for an elementary
discussion. Gauge invariance of the Lipatov e↵ective action framework is on the other hand
apparent, if the missing diagrams Fig. 4.e-g are evaluated. The yield in the regarding gauges
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As expected the di↵erence between both gauges cancels if both sets of diagrams are being
combined.

We note that for the evaluation of these sets of diagrams it is essential to take into account
terms ⇠ n2 in the combination of numerators. As pointed out in [14], there exists Feynman
integrals which yield results ⇠ 1/n2 and which therefore cancel those seemingly subleading
contributions. It is therefore needed to combine terms ⇠ n2 with the corresponding Feynman
integrals before taking the limit n2 = 4e�⇢

! 0.
To conclude we point out that neither covariant nor axial gauge yields a result which

agrees with the result obtained within the shockwave picture [19, 20] in the dilute limit. We
will explore this di↵erence and its resolultion in the following section.

3 High energy e↵ective action in the presence of a strong
background field at NLO

• action basics (shift, relevant vertices, relation to previous discussion, eikonalization at
tree level, equivalence to shockwave picture)

• NLO quark on a dense field

• integrals with p · n 6= 0 and those without; bubble vs. reggeization

10

some diagrams yield different results
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As expected the di↵erence between both gauges cancels if both sets of diagrams are being
combined.

We note that for the evaluation of these sets of diagrams it is essential to take into account
terms ⇠ n2 in the combination of numerators. As pointed out in [14], there exists Feynman
integrals which yield results ⇠ 1/n2 and which therefore cancel those seemingly subleading
contributions. It is therefore needed to combine terms ⇠ n2 with the corresponding Feynman
integrals before taking the limit n2 = 4e�⇢

! 0.
To conclude we point out that neither covariant nor axial gauge yields a result which

agrees with the result obtained within the shockwave picture [19, 20] in the dilute limit. We
will explore this di↵erence and its resolultion in the following section.

3 High energy e↵ective action in the presence of a strong
background field at NLO

• action basics (shift, relevant vertices, relation to previous discussion, eikonalization at
tree level, equivalence to shockwave picture)

• NLO quark on a dense field

• integrals with p · n 6= 0 and those without; bubble vs. reggeization
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: Non-zero diagrams for the quark-reggeized gluon vertex at 1-loop using the conventional

(un-shifted) high energy e↵ective action

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Non-zero diagrams for the reggeized gluon self energy using the conventional (un-shifted)

high energy e↵ective action

future reference we further present the tilted vectors

ñ� =
n�

� e�⇢n+

1� e�2⇢
, ñ+ =

n+
� e�⇢n�

1� e�2⇢
, (ñ±)2 = �n2, (24)

which are useful to construct the Sudakov decomposition of a certain four vector, using tilted
components,

l =
l · n

2
ñ� +

l · n̄

2
ñ+ + l?. (25)

To be precise, we consider the one-loop corrections to the quark-quark scattering cross-
section q(pa) + q(pb) ! q(p1) + q(p2) in the high energy limit and we average (sum) over
initial (final) quark helicities and color. At tree-level one has in d = 4 + 2✏ dimensions1

d�̂ab
d2+2✏k

= hq(k) · |G(k)|2 · h(0)q (k), (26)

1Note that the tree-level reggeized gluon propagator has been absorbed into the quark impact factors hq(k)

6

• differences cancel if complete set of corrections is considered 
• not true for individual “shock-wave” and “self-energy” diagrams 
• there is no gauge invariant separation of both contributions
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Good news: not everything is lost

24

shockwave like/external contributions and remainder correspond to different types 
of loop integrals

- shockwave like integrals (as obtained within light front perturbation theory): 
loop integrals which contain a momentum with  

• yields eikonalization (reggeized field resummed through Wilson line) 

• no  terms 

- bubble like integrals: all  external momenta in the loop  

• no eikonalization possible (only a single  couples to the loop) 

• can yield  etc.  

• care is needed with the limit  
• seem to vanish (but they don’t)

n ⋅ p ≠ 0

1/n2

n ⋅ p = 0
A+

1/n2,1/(n2)2

n2 → 0

BUT: separation not possible on a diagrammatic basis & not a consequence of high energy 
factorization 
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Reason

25

contains integrals 

k

∫
ddl (l ⋅ pa)m

l2(l + k)2(l ⋅ n)a1
, k ⋅ n = 0pa

- UV divergent 
- absent if one ignores (incorrectly) the  

configuration 
- but you can’t do that; it’s non-zero

δ(l+)

my procedure: 
- identify all those contributions 
- evaluate remainder using more conventional methods (but using consistent 

regulator i.e. tilting)
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First result for the dilute dense 
case

26



Finally gA+ ∼ 1

27

Lipatov’s effective action allows for resummation of strong field for arbitrary gauge
[MH, 1802.06755]

NLO: requires new set of induced vertices (non-local shifted version) or 
cancellations between individual diagrams 

both problems are absent for axial gauge → use that + shift v± → v± + A±

• evaluation of self-energy diagrams (and counter-terms) relatively 
straightforward

ℓ

k

ℓ

k

also not free of issues, but can be overcome

k
k
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UV terms with quark propagator

28

ℓ

k + ℓ

k

• more problematic; naively absent (“emission 
inside the shockwave”) 

• possible to isolate “bubble" configuration in 
triangle diagram using Ward like identities
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Result

29
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as previously. We can therefore combine both contributions and finally obtain for the
one-loop correction in momentum space
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While the integral over the transverse momenta yields for most cases a delta-function,
this is not the case for the logarithmic contribution. Following [14], one has
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where �E denotes the Euler number. The above correction gives now the leading
order coupling of a reggeized gluon with color index ‘c’ to the quark line times the
NLO correction. Since the latter is color independent (leaving aside an overall color
factor), one finds the usual factors relevant for the leading order propagagor. The only
di↵erence is now that the field A

c(x5) is now placed at a di↵erent transverse coordinate,
as long as we are not dealing with the delta function contribution of Eq. (128). Since
@�A+(x) = 0, there is no minus momentum transfer from the target, k� = k

+ = 0,
and consequently the plus momentum along the quark line is being conserved. Using
n�p�n�= 2p · nn�+ O(n2) we arrive then at the same chain of arguments as used in the
leading order case. We find
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using scheme 1 (otherwise uncanceled UV pole)

still lacks “shock wave integrals”; yields essentially 
result in the literature (+ tilted regulator)

[Chirilli, Xiao, Yuan; 1203.6139],  
[Altinoluk, Armesto, Beuf, Kovner, Lublinsky; 1411.2869 ]

for the quasi-elastic correction
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order vertices. Following the treatment in [28], theses vertices carry only anti-symmetric
color tensors (corresponding to a combination of anti-commutators of SU(Nc) generators).
Combining these induced vertices with the symmetric m reggeized gluon state to construct
a ‘Wilson-line-n gluon’ vertex (n � m), where the coupling to the Wilson line is always me-
diated by at least one reggeized gluon, one recovers the complete symmetry structure. For a
pedagogic presentation for the case up to three gluons we refer to Appendix A; see also the
discussion in [21].

At this point we would like to return to a proposal made in [27] for the definition of the
reggeized gluon from Wilson-lines in the Balitsky-JIMWLK formalism. There it has been
proposed to define the reggeized gluon R

a(z) as the logarithm of the adjoint Wilson line,

R
a(z) ⌘

1

gNc
f
abc logU bc(z) . (52)

Using the above results, one finds directly for the results obtained from Lipatov’s high energy
e↵ective action,

R
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h
ig↵
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i
= ↵
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2
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a
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+
, z), (53)

i.e. the definition of the reggeized gluon of [27] coincides with the reggeized gluon field
of Lipatov’s e↵ective action, once this field is integrated over the corresponding light-cone
coordinate.

5 Balitsky-JIMWLK evolution

In the following we demonstrate that the high energy evolution of Wilson lines of reggeized
gluons (obtained within the high energy e↵ective action) leads directly to the leading order
Balitsky-JIMWLK evolution equation. Even though this is expected, given the coincidence
in the resummed gluon and quark propagators, this provides an important consistency check,
in particular for future calculation of CGC-observables. We will then investigate the question
whether integrating out quantum fluctuations of a general ensemble of Wilson lines gives in-
deed rise to the Balitsky-JIMWLK evolution equation.

Within Lipatov’s high energy e↵ective action, the determination of high energy evolution
requires in general the high energy e↵ective action for ‘central-rapidity’ processes, i.e. the
e↵ective action which contains both A� and the A+ reggeized gluon fields and corresponding
induced vertices. For the discussion of dense-dilute collision the decomposition provided by
the e↵ective action for central rapidities is however not very e�cient; the additional set of
induced vertices provides a certain color decomposition of amplitudes which describe gluon
production from a multi-reggeized gluon exchange. While it has been demonstrated at the
level of the scattering amplitude for four-reggeized gluon exchange that after a certain reshuf-
fling of terms the 2 � 4 reggeized gluon vertex (triple Pomeron vertex) arises from the high
energy e↵ective action [21] (which at the same time can be shown to arise as well from
Balitsky-JIMWLK evolution [23]), the calculation is rather cumbersome. While the refor-
mulation of the e↵ective action provided in Sec. 3 already provides a first simplification, it
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= [Caron-Huot; 1309.6521] 
[MH,1802.06755 ]

Fourier transform of transverse log: [Diehl, Ostermeier, Schäfer; 1111.0910]



central corrections (UV)

30

1st naive attempt: follow                                and determine fluctuations of Wilson line [MH, 1802.06755]

→ not what the action tells you to do; does not work (uncanceled UV divergencies)

correct procedure: • calculate corrections to n reggeized gluon state 
• as far as bubble/UV configurations are concerned, 

this is straightforward

. . .

∓

± ± ±

important observation: 

- generalizing pole prescription of eikonal denominators 
developed in [MH, 1112.4509] to n reggeized gluons, the 

 transition vanishes after integration over 
longitudinal momenta 

- also the counter-term & associated self-energy correction 
vanish 

- same applies to the loop correction to this vertex

A± → (A±)n

. . .

∓

± ± ±
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UV configuration: reggeized gluon self energy

31

only relevant configuration (for UV):  
• self energy of the reggeized gluon without  

dependent (rapidity divergent) term 
• the latter: not a “bubble" configuration, allows for 

eikonalization + needs to be combined with 
other corrections

ρ

Remainder: need to construct “shockwave like correction” for the n  reggeized 
gluon state (can’t use directly the Wilson line as in                               )  

expect: JIMWLK evolution at 1-loop (to be confirmed, work in progress)

Towards a consistent formation of high energy factorization at NLO — Martin Hentschinski — June 11, 24, ECT* Trento Italy

next step: combine central/factorized and quasi-elastic correction using 
subtraction + transition function 

requires complete 1-loop correction to  n reggeized gluon state;  
but can anticipate what happens to  the UV terms (essentially the same as 

for the dilute case) 

αs

4π [ − ( 5CA

3
−

2nf

3 ) ln ( k2

μ2 ) +
31CA

9
−

10nf

9
+ 𝒪(ϵ)]for scheme 1  

in momentum space:

[MH, 1802.06755]



Preliminary final result for UV enhanced terms
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with
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as previously. We can therefore combine both contributions and finally obtain for the
one-loop correction in momentum space
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While the integral over the transverse momenta yields for most cases a delta-function,
this is not the case for the logarithmic contribution. Following [14], one has
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where �E denotes the Euler number. The above correction gives now the leading
order coupling of a reggeized gluon with color index ‘c’ to the quark line times the
NLO correction. Since the latter is color independent (leaving aside an overall color
factor), one finds the usual factors relevant for the leading order propagagor. The only
di↵erence is now that the field A

c(x5) is now placed at a di↵erent transverse coordinate,
as long as we are not dealing with the delta function contribution of Eq. (128). Since
@�A+(x) = 0, there is no minus momentum transfer from the target, k� = k

+ = 0,
and consequently the plus momentum along the quark line is being conserved. Using
n�p�n�= 2p · nn�+ O(n2) we arrive then at the same chain of arguments as used in the
leading order case. We find
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Final result for UV enhanced terms
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W (0)(z) = exp (igαa(z)ta), αa(z) =
2
ig

tr [ta ln W (0)(z)]
the Wilson line enters somehow the optimal scale of the 
running coupling
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• Can we absorb these corrections into the “target”?  
Technically (I believe) yes: a special scheme (a special choice for the “f" function) 
 
Argument against: depends on the “projectile" renormalization scale 
Also: needs this for correct anomalous dimension of TMD operator 
Effective action: “projectile" not “target" correction 

• In this work we separated UV and conventional shock wave contributions through 
different characteristics of look integrals 
Question: is there a more general organizing principle?

 [MH, 2107.06203]
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Discussion & Conclusion

• My take home message: Don’t ignore UV divergencies, even if they do not seem to 
manifest, they are there & should be taken into account

• We have many impressive NLO results, e.g.

but to my understanding, high energy factorization at NLO with a dense target is not 
yet fully worked out;

• Still in work in progress;
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧f and ⌧g. In
combination with conventional QCD Feynman rules (where we follow the conventions

1I interpret the kt of [1] as k2
t = �k2 with k2 Euclidean.

2A complete derivation requires the LSZ-reduction formula
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the real gluon interacting with the quark at the same vertex) and therefore posesses, as
far as the pole structure is concerend, the same structure as the the first contribution.
Moreover, unlike the first contribution, the vertex which leads to emission of the real
gluon, can appear at any position. Note that, since we are dealing with a real final
state quark and gluon, the time ordering of the ‘quark Wilson line’ is not a↵ected by
the emission of the real gluon. Taking into account only the color generators due to the
interaction with the background field and the vertex Eq. (24) we have for the second
contribution, the following result,
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interaction with the background field:

strong background field resummed into path ordered 
exponentials (Wilson lines)

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, 
McLerran, Venugopalan, PRD 52 (1995) 2935-2943], …

use light-cone gauge, with k-=n-･k, (n-)2=0, n-~ target momentum

Tool: propagators in background field

Towards a consistent formation of high energy factorization at NLO — Martin Hentschinski — June 11, 24, ECT* Trento Italy
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Figure 4: Non-zero diagrams for the quark-reggeized gluon vertex at 1-loop using the shifted high
energy e↵ective action
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1.6 The QQR vertex in axial gauge
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gluons is concerned, we use the shifted vertex. We find:
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The calculation of this contribution is complicated by the fact that high energy kinematics
sets k · n ! 0 while this contribution appears directly in the polarization tensor of the t-
channel propagator which connects the quark line with the gluon self energy. It is therefore
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sets k · n ! 0 while this contribution appears directly in the polarization tensor of the t-
channel propagator which connects the quark line with the gluon self energy. It is therefore
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FIG. 1. The Feynman diagrams for the LO and NLO q ! q
channel of the q +A ! q +X process.

higher and higher order in ↵s, the factorization scale Xf

dependence becomes weaker and weaker. This is in fact
the reason why high order calculation is useful in CGC
factorization.

Although Xf dependence is suppressed by ↵s, its
choice is not unrestricted. The key for choosing Xf is
to avoid large logarithms at high order in ↵s so that one
has a better convergence of perturbative expansion for
impact factor. For example, in the first line of Eq. 5, one
of the NLO contribution ↵s ln(X̄/Xf ) can be significant
if the di↵erence between X̄ and Xf is large. To avoid this
kind of large logarithms, Xf in the first line can be cho-
sen as Xf = X̄ with  being an O(1) quantity. Based
on the same logic, we choose Xf ’s from the second to the

fifth lines of Eq. (5) to Min{ X̄

1�⇠
, Xmax} to reduce higher

order corrections, where Xmax is introduced to avoid Xf

to be too large as ⇠ ! 1. As the Xmax dependence is
at higher order in ↵s and very tiny, which will be shown
in Appendix A, we choose Xmax = 0.01 in the following.
In this way, the freedom to choose factorization scale Xf

becomes the freedom to choose the O(1) quantity . By
varying factorization scale via , we can estimate theoret-
ical uncertainties of the missing higher order corrections.
Note that theoretical uncertainty is hard to estimate for
Refs.[38, 40] because their factorization scales are fixed.

IV. NUMERICAL RESULTS

For numerical calculation, we use MSTW [53] for pro-
ton PDF and DSS [54, 55] for ⇡

� fragmentation func-
tions, with collinear factorization scale chosen as µ =

FIG. 2. This figure shows the comparison between our result
of di↵erential cross sections with

p
s = 5.02 TeV, yh = 1.65

and  = 1 to the ATLAS data [60].

FIG. 3. This figure shows the distribution of the d�()/d�(1)
range with  tuning from 0.5 to 2 for

p
s = 5.02 TeV, yh =

1.65.

kh?. Dipole amplitudes FF (k?;Xf ) are obtained by
solving the leading log BK equation with running cou-
pling correction(i.e. the rcBK equation)[56–58] with the
same parameters chosen in Ref.[59]. To make the nu-
merical calculation reliable, we also need to introduce
the condition that dipole amplitudes are correctly nor-
malized, detailed discussion on which will be given in
Appendix A .

We take ⇡
� meson production at LHC with

p
s =

5020 GeV and yh = 1.65 as an example to show the NLO
e↵ect, which kinematic condition has also been studied
in Ref.[38]. As discussed in Ref.[38], to compare with
the forward ATLAS data [60], the ⇡

� di↵erential cross
section need to be multiplied by a pre-factor, which we
choose the same as that in Ref.[38]. The comparison be-
tween our result with  = 1 and the forward ATLAS
data [60] is shown in Fig. 2. It can be found that, NLO
results are a little bit larger than LO results for small
and medium ph? and become smaller than LO when ph?
is very large. It is worth emphasizing that our results

→

Towards a consistent formation of high energy factorization at NLO — Martin Hentschinski — June 11, 24, ECT* Trento Italy


