## Whan UDLAP.

## Towards a consistent

 formulation of high energy factorization at NLODiffraction and gluon saturation at the LHC and the EIC, Jun 10-14, 2024 ECT*, Trento, Italy

## Outline

1. running coupling corrections \& the dipole amplitude
2. Challenges
3. The tool: Lipatov's effective action (and a brief rederivation)
4. Renormalization and results in the dilute limit
5. First results for the dense limit
6. Conclusions

## Running coupling in the Wilson line

dilute-dense collisions e.g. $\quad F_{2}\left(x, Q^{2}\right) \sim \int d^{2} r \int d^{2} b \int_{0}^{1} d z\left|\psi\left(z, r, Q^{2}\right)\right|^{2} N(x, r, b)$
with

$$
\hat{N}(x, \mathbf{r}, \mathbf{b})=\left\langle\frac{1}{N_{c}} \operatorname{tr}\left(\mathbb{1 1}-W(\mathbf{b}+\mathbf{r} / 2) W^{\dagger}(\mathbf{b}-\mathbf{r} / 2)\right)\right\rangle_{x}=\mathcal{O}\left(\alpha_{s}\right)
$$

and

$$
W(\boldsymbol{z})=\mathrm{P} \exp \left(-\frac{g}{2} \int_{-\infty}^{\infty} d z^{+} A_{+}\right)
$$

- Dilute limit: overall $\alpha_{s}(\mu)$ clearly part of virtual photon impact factor collinear limit: splitting function $P_{q g}(z)$
- renormalization scale: must be constrained by NLO (and higher order) corrections
- expect the same for high parton densities, so far not taken into account
- phenomenology: changes normalization (at NLO) of dipole amplitude and generalizations therefore


## How to take this into account?

NLO corrections: 1st: perturbative corrections to the light-front wave function
real \& virtual

but also to the
interaction with the background field (=resummea propagator, Wilson lines, ...) should receive a NLO corrections:


$$
=\tau_{F}(q,-p)=2 \pi \delta\left(p^{+}-q^{+}\right) \not \varkappa^{+} \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}
$$

$$
\left[\theta\left(p^{+}\right)[W(\boldsymbol{z})-1]-\theta\left(-p^{+}\right)\left[W^{\dagger}(\boldsymbol{z})-1\right]\right]
$$

$$
W(\boldsymbol{z})=\mathrm{P} \exp \left(-\frac{g}{2} \int_{-\infty}^{\infty} d z^{+} A_{+}\right) \quad \begin{aligned}
& \text { natural if we start from interad } \\
& \text { gluon \& generalize to many }
\end{aligned}
$$

## Challenges

## Chaiences...

such corrections appear to be zero

$$
\begin{gathered}
I=\int \frac{d l^{-} d^{+} d^{2+2 \epsilon} \mathbf{l}}{\left(l^{+} l^{-}-\mathbf{l}^{2}+i 0^{+}\right)\left(l^{+}\left(l^{-}-k^{-}\right)-(\mathbf{l}-\mathbf{k})^{2}+i 0^{+}\right)} \\
\text {poles: } \quad l^{-}=\frac{\mathbf{l}^{2}-i 0^{+}}{l^{+}} \\
\quad l^{-}=\frac{(\mathbf{l}-\mathbf{k})^{2}-i 0^{+}}{l^{+}} \quad \text { at same side } \rightarrow \text { integral seems to vanish }
\end{gathered}
$$



## Challenges

such corrections appear to be zero

$$
I=\int \frac{d l^{-} d^{+} d^{2+2 \epsilon} \mathbf{l}}{\left(l^{+} l^{-}-\mathbf{l}^{2}+i 0^{+}\right)\left(l^{+}\left(l^{-}-k^{-}\right)-(\mathbf{l}-\mathbf{k})^{2}+i 0^{+}\right)}
$$


poles: $\quad l^{-}=\frac{\mathbf{l}^{2}-i 0^{+}}{l^{+}}$

$$
l^{-}=\frac{(\mathbf{l}-\mathbf{k})^{2}-i 0^{+}}{l^{+}} \quad \text { at same side } \rightarrow \text { integral seems to vanish }
$$

BUT: conventional calculation ( $d^{d} l$, Wick rotation etc.): yields finite result
$\rightarrow$ one of the two results is wrong!

## chalenges

such corrections appear to be zero

$$
I=\int \frac{d l^{-} d^{+} d^{2+2 \epsilon} \mathbf{l}}{\left(l^{+} l^{-}-\mathbf{l}^{2}+i 0^{+}\right)\left(l^{+}\left(l^{-}-k^{-}\right)-(\mathbf{l}-\mathbf{k})^{2}+i 0^{+}\right)}
$$


poles: $\quad l^{-}=\frac{\mathbf{l}^{2}-i 0^{+}}{l^{+}}$

$$
l^{-}=\frac{(\mathbf{l}-\mathbf{k})^{2}-i 0^{+}}{l^{+}} \quad \text { at same side } \rightarrow \text { integral seems to vanish }
$$

BUT: conventional calculation ( $d^{d} l$, Wick rotation etc.): yields finite result
$\rightarrow$ one of the two results is wrong!
solution: $I \sim \delta\left(l^{+}\right) \quad[Y a n(1973)],[$ Heinzl (2003)] outlined in $\quad[C o l l i n s(2011)]$
integrals non-zero + UV divergent (in the case of interest to us)

## More challenges

if we regulate rapidity divergencies through tilting light-cone directions $n^{+} \rightarrow n, n^{2} \neq 0$ one finds integrals $\sim 1 / n^{2}$
[Chachamis, MH, Madrigal, Sabio Vera; 1212.4992] means: one cannot set $n^{2} \rightarrow 0$ before evaluating integrals

## More challenges

if we regulate rapidity divergencies through tilting light-cone directions $n^{+} \rightarrow n, n^{2} \neq 0$ one finds integrals $\sim 1 / n^{2} \quad$ [Chachamis, MH, Madrigal, Sabio Vera; 1212.4992] means: one cannot set $n^{2} \rightarrow 0$ before evaluating integrals
similar issues with alternative regulators

$$
\frac{1}{k^{+}+i 0^{+}} \rightarrow \frac{1}{k^{+}+I \Delta}
$$

used for TMDs eg. [Echevarria, Idilbi, Scimemi; 1111.4996]
even though $\Delta \rightarrow 0$, one needs $\quad \frac{l^{+}}{l^{+}+i \Delta}=1-\frac{i \Delta}{l^{+}+i \Delta} \neq 1$

$$
\text { since } \quad \int d^{d} l \frac{\Delta}{l^{2}\left(l-k^{2}\right)\left(l^{+}+i \Delta\right)}=\text { finite }
$$

cannot use simplified theory before the integral is evaluated

## The tool for our study: Lipatov's effective action

## Tool to be used for this study

Lipatov's high energy effective action
[Lipatov; hep-ph/9502308]
$X$ original derivation slightly opaque
X UV renormalization works, but not systematically discussed

## Tool to be used for this study

Lipatov's high energy effective action
[Lipatov; hep-ph/9502308]
$X$ original derivation slightly opaque
X UV renormalization works, but not systematically discussed
$\checkmark$ leading order Balitsky JIMWLK evolution contained [MH, 1802.06755]
$\checkmark$ NLO corrections well understood in the dilute limit e.g.

- forward jets and trajectory [MH, Sabio Vera; 1110.6741][Chachamis, MH, Madrigal, Sabio Vera;1202.0649, 1212.4992,1307.2591], forward jets with rapidity gap [MH, Madrigal, Murdaca, Sabio Vera, 1404.2937, 1406.5625, 1409.6704]
- forward Higgs [MH, Kutak, van Hameren, arXiv:2011.03193]
- TMD factorization [MH, 2107.06203]
with correct UV properties (agrees with limits of scattering amplitudes etc),
Note: does not agree with results on NLO forward jets/hadrons within shockwave picture e.g.
[Chirilli, Xiao, Yuan; 1203.6139],
[Altinoluk, Armesto, Beuf, Kovner, Lublinsky; 1411.2869]
Towards a consistent formation of high energy factorization at NLO - Martin Hentschinski — June 11, 24, ECT* Trento Italy


## Brief derivation of Lipatov's action

## first presented in [MH, Gomez Bock, Sabio Vera; 2010.03621] for electroweak theory

## basic idea:


group particles/fields into clusters local in rapidity
\& study their interactions with fields with significantly different rapidity study behavior of vector fields under boosts

## Boosting fields



- can be also done for fermions and scalars (if needed)
- allows in general for a systematic expansion
- Lipatov action: the leading term
pick a sector $\&$ boost the sources in other sectors
- fields connecting to sources in same sector are not modified

$$
V_{\mu}^{s} \sim 1
$$

- fields connecting to a source boosted in +/- direction

$$
V_{+}^{\eta>\eta(s)} \sim V_{-}^{\eta<\eta(s)} \sim 1
$$

plus/minus component is leading

$$
\begin{aligned}
& V_{\mu, \perp}^{\eta>\eta(s)} \sim V_{\mu, \perp}^{\eta<\eta(s)} \sim e^{-|\eta-\eta(s)|} \\
& V_{-}^{\eta>\eta(s)} \sim V_{+}^{\eta<\eta(s)} \sim e^{-2|\eta-\eta(s)|}
\end{aligned}
$$

transverse/conjugate light-cone directions are suppressed

## Constructing the action

for fields connecting to boosted sources: dependence on light-cone time is frozen for $\eta \rightarrow \pm \infty$

$$
\begin{aligned}
& V_{+}^{\eta>\eta_{l}}(x)=V_{+}^{\eta>\eta_{l}}\left(x_{+} e^{\eta_{l}-\eta}, x_{-}, x_{\perp}\right) \simeq V_{+}^{\eta>\eta_{l}}\left(0, x_{-}, x_{\perp}\right) \\
& V_{-}^{\eta<\eta_{l}}(x)=V_{-}^{\eta<\eta_{l}}\left(x_{+}, x_{-} e^{\eta-\eta_{l}}, x_{\perp}\right) \simeq V_{-}^{\eta<\eta_{l}}\left(x_{+}, 0, x_{\perp}\right)
\end{aligned}
$$

for the chosen convention:

$$
\partial_{-} V_{\mu}^{\eta>\eta_{l}}(x)=0=\partial_{+} V_{\mu}^{\eta<\eta_{l}}(x)
$$

## Constructing the action

for fields connecting to boosted sources: dependence on light-cone time is frozen for $\eta \rightarrow \pm \infty$

$$
\begin{aligned}
& V_{+}^{\eta>\eta_{l}}(x)=V_{+}^{\eta>\eta_{l}}\left(x_{+} e^{\eta_{l}-\eta}, x_{-}, x_{\perp}\right) \simeq V_{+}^{\eta>\eta_{l}}\left(0, x_{-}, x_{\perp}\right) \\
& V_{-}^{\eta<\eta_{l}}(x)=V_{-}^{\eta<\eta_{l}}\left(x_{+}, x_{-} e^{\eta-\eta_{l}}, x_{\perp}\right) \simeq V_{-}^{\eta<\eta_{l}}\left(x_{+}, 0, x_{\perp}\right)
\end{aligned}
$$

for the chosen convention:

$$
\partial_{-} V_{\mu}^{\eta>\eta_{l}}(x)=0=\partial_{+} V_{\mu}^{\eta<\eta_{l}}(x)
$$

what does this imply for the local QCD action?

- the two point function of a field connection to a local and a field connecting to a boosted source vanishes
- to construct the action: remove those terms
- in practice: need to decompose gluonic field into local/non-local components

$$
v_{\mu}(x)=V_{\mu}^{\text {local }(s)}+\frac{n^{+}}{2} V_{+}^{\eta>\eta(s)}+\frac{n^{-}}{2} V_{-}^{\eta<\eta(s)}
$$

and remove the bilinear terms

## Constructing the action

In practice: more economic to write down the action for the complete field $v_{\mu}(x)$ and the non-local field

$$
\left.\begin{array}{rl}
S^{(s)}=\int d^{4} x \mathcal{L}_{\mathrm{QCD}}\left[v_{\mu}, \psi, \bar{\psi}\right] & +\int d^{4} x \operatorname{tr}\left[\left(v_{-}-V_{-}^{\eta<\eta(s)}\right)\right.
\end{array} \partial^{2} V_{+}^{\eta>\eta(s)}\right] ~[\underbrace{}_{\text {"local" field }}+\int d^{4} x \operatorname{tr}[\underbrace{\left(-V_{+}^{\eta>\eta(s)}\right.}_{+}) \partial^{2} V_{-}^{\eta<\eta(s)}]
$$

## Constructing the action

In practice: more economic to write down the action for the complete field $v_{\mu}(x)$ and the non-local field

$$
\begin{aligned}
S^{(s)}=\int d^{4} x \mathcal{L}_{\mathrm{QCD}}\left[v_{\mu}, \psi, \bar{\psi}\right] & +\int d^{4} x \operatorname{tr}\left[\left(v_{-}-V_{-}^{\eta<\eta(s)}\right) \partial^{2} V_{+}^{\eta>\eta(s)}\right] \\
& +\int d^{4} x \operatorname{tr}[\underbrace{\left(v_{+}-V_{+}^{\eta>\eta(s)}\right.}) \partial^{2} V_{-}^{\eta<\eta(s)}]
\end{aligned}
$$

last steps:

- promote non-local fields $V_{ \pm}$to gauge invariant fields $\delta_{L} A_{ \pm}=0$ (the reggeized gluon fields)
- finally replace $v_{ \pm}(x) \rightarrow v_{ \pm}(x) U\left[v_{ \pm}(x)\right]=-\frac{1}{g} \partial_{ \pm} U\left[v_{ \pm}(x)\right]$
to arrive at gauge invariant local action

$$
\begin{gathered}
S_{e f f}=S_{Q C D}\left[v_{\mu}, \psi, \bar{\psi}\right]+\int d^{4} x \operatorname{tr}\left[\left(v_{-} U\left[v_{-}\right]-A_{-}\right) \partial^{2} A_{+}\right]+\left(\prime^{\prime}+^{\prime} \leftrightarrow^{\prime}-^{\prime}\right) \\
=\text { action presented in [Lipatov; hep-ph/9502308] } \\
\text { \& used for many calculations }
\end{gathered}
$$

## Remarks on the regulator

$$
S_{e f f}=S_{Q C D}\left[v_{\mu}, \psi, \bar{\psi}\right]+\int d^{4} x \operatorname{tr}\left[\left(v_{-} U\left[v_{-}\right]-A_{-}\right) \partial^{2} A_{+}\right]+\left(+^{\prime} \leftrightarrow^{\prime}-^{\prime}\right)
$$

- action is gauge invariant, without invoking $n_{ \pm}^{2}=0$
- tilting light cone directions is therefore a gauge invariant deformation of the original action
- good regulator


## UV renormalization

original publication does not address this problem
QCD fields:

$$
\begin{aligned}
\psi_{\text {bare }}=Z_{2}^{\frac{1}{2}} \psi_{R}, & v_{\text {bare }}^{\mu}=Z_{3}^{\frac{1}{2}} v_{R}^{\mu} \\
\text { couplings: } & g_{\text {bare }}=Z_{g} \mu^{-\epsilon} g_{R},
\end{aligned} Z_{1}=Z_{g} Z_{2} Z_{3}^{\frac{1}{2}}
$$

have in mind $\overline{M S}$ scheme; as a start: massless theory
reggeized gluon field:

$$
\begin{aligned}
S_{e f f}=S_{Q C D}\left[v_{\mu}, \psi, \bar{\psi}\right]+\int d^{4} x \operatorname{tr} & {[\underbrace{\left(v_{-} U\left[v_{-}\right]-A_{-}\right) \partial^{2} A_{+}}]+\left(\left(^{\prime}+^{\prime} \leftrightarrow^{\prime}-^{\prime}\right)\right.} \\
& \text { removes bilinear term if } v_{ \pm} \rightarrow v_{ \pm}+A_{ \pm} \\
& \text {requires } A_{ \pm, \text {bare }}=Z_{3}^{\frac{1}{2}} A_{ \pm, R} \\
& \begin{array}{l}
\text { also coupling in the path ordered } \\
\\
\\
\text { exponential } U\left[v_{-}\right] \text {should be renormalized }
\end{array}
\end{aligned}
$$

## Rescaling fields

Commonly done:

$$
\begin{array}{ll}
\psi_{R}, \bar{\psi}_{R} \rightarrow Z_{2}^{-\frac{1}{2}} \psi_{R}, Z_{2}^{-\frac{1}{2}} \bar{\psi}_{R}, v_{R}^{\mu} \rightarrow Z_{3}^{-\frac{1}{2}} v_{R}^{\mu} \\
\text { similar: } & A_{ \pm, R} \rightarrow Z_{3}^{-\frac{1}{2}} A_{ \pm, R}
\end{array}
$$

advantage: only need one counter-term related to the coupling constant (and masses for massive theory)
disadvantage: individual correlation functions are not finite (usually not a problem)
here: rescale QCD field as usually
scheme 1:
reggeized gluon field NOT rescaled (counter term for 2 point function)
scheme 2: reggeized gluon field rescaled (no counter term for 2 point function)

## Testing ground: dilute calculation

loop integrals etc. already done in

```
[MH, Sabio Vera; 1110.6741]
[Chachamis, MH, Madrigal, Sabio Vera;1202.0649, 1212.4992,1307.2591]
```

tilt light cone directions $n^{ \pm} \rightarrow n, \bar{n}=n^{ \pm}+e^{-\rho} n^{\mp}$
goal: focus on UV terms

$$
\begin{aligned}
\frac{2 i}{\boldsymbol{k}^{2}} \Sigma^{(1)}\left(\rho, \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)=\frac{\alpha_{s}}{4 \pi} & \left(\frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)^{\epsilon}\left[-\frac{C_{A}(2 \rho-i \pi)}{\epsilon}-\frac{1}{\epsilon}\left(\frac{5 C_{A}}{3}-\frac{2 n_{f}}{3}\right)\right. \\
& \left.+\frac{31 C_{A}}{9}-\frac{10 n_{f}}{9}+\mathcal{O}(\epsilon)\right]+\left[\left(\frac{5}{3} C_{a}-\frac{2}{3} n_{f}\right) \frac{\alpha_{s}}{4 \pi} \frac{1}{\epsilon}\right]_{\text {scheme } 1}
\end{aligned}
$$


$\xi$
$\xi$
$\xi$
$\xi$
$\xi$

## Testing: quark vertex


(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

(i)

$$
\begin{aligned}
& \frac{h^{(1)}\left(\rho, \epsilon ; \boldsymbol{k}^{2}, \mu^{2}\right)}{h_{q}^{(0)}(\boldsymbol{k})}=\frac{\alpha_{s}}{2 \pi}\left(\frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)^{\epsilon}\left[2 C_{F}\left(-\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}-4+\frac{\pi^{2}}{6}\right)+C_{A}\left(-\frac{8}{3 \epsilon}\right.\right. \\
& \left.\quad-\frac{2}{\epsilon} \ln \left(e^{\rho / 2} \frac{p_{a}^{+}}{|\boldsymbol{k}|}\right)+\frac{58}{9}+\frac{\pi^{2}}{2}\right)+n_{f}\left(\frac{2}{3 \epsilon}-\frac{10}{9}\right)+\frac{\beta_{0}}{2 \epsilon}+\left[\frac{5 C_{A}}{6 \epsilon}-\frac{2 n_{f}}{6 \epsilon}\right]_{\text {scheme } 1}
\end{aligned}
$$

within scheme 1: both elements are finite
scheme 2: uncanceled UV divergences (as expected)

## Combining

a) subtract factorized contribution from NLO quark reggeized gluon vertex

$$
C_{q}^{B}\left(\rho, \epsilon ; \boldsymbol{k}^{2}, \mu^{2}\right)=h_{q}^{B}\left(\rho, \epsilon ; \boldsymbol{k}^{2}, \mu^{2}\right)-2 h_{q}^{(0)}(\boldsymbol{k}) \frac{2 i}{\boldsymbol{k}^{2}} \Sigma^{(1)}\left(\rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)
$$

b) bare reggeized gluon Green's function

$$
\begin{aligned}
\hat{G}^{B}\left(\rho ; \epsilon, \boldsymbol{k}^{2}, \mu^{2}\right) & =\frac{2 i}{\boldsymbol{k}^{2}} G^{B}\left(\rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) \\
G^{B}\left(\rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) & =\left\{1+\frac{2 i}{\boldsymbol{k}^{2}} \Sigma\left(\rho, \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)+\left[\frac{2 i}{\boldsymbol{k}^{2}} \Sigma\left(\rho, \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)\right]^{2}+\ldots\right\}
\end{aligned}
$$

c) cross-section independent $\rho$ at NLO, individual elements are $\rho$ dependent

$$
\left.\frac{d \hat{\sigma}}{d^{2+2} \boldsymbol{\epsilon} \boldsymbol{k}}\right|_{\text {virt. }}=C_{q}^{B}\left(\rho, \epsilon ; p_{a}^{+}, \boldsymbol{k}^{2}, \mu^{2}\right) \cdot\left|G^{B}\left(\rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)\right|^{2} C_{q}^{B}\left(\rho, \epsilon ; p_{b}^{-}, \boldsymbol{k}^{2}, \mu^{2}\right)
$$

## Renormalization for rapidity divergencies

transition function $Z^{ \pm}$to obtain finite elements:

$$
\begin{aligned}
G^{R}\left(\eta, \epsilon ; \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) & =\frac{G^{B}\left(\rho, \epsilon ; \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)}{Z^{+}\left(\eta, \rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) Z^{-}\left(\eta, \rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)} \\
C_{q}^{R}\left(\eta, \epsilon ; p_{a, b}^{ \pm}, \boldsymbol{k}^{2}, \mu^{2}\right) & =\left[Z^{ \pm}\left(\eta, \rho ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)\right]^{2} \cdot C_{q}^{B}\left(\rho, \epsilon ; p_{a, b}^{ \pm}, \boldsymbol{k}^{2}, \mu^{2}\right)
\end{aligned}
$$

NLO cross-section:

$$
\left.\frac{d \hat{\sigma}}{d^{2+2 \epsilon} \boldsymbol{k}}\right|_{\mathrm{virt} .}=C_{q}^{R}\left(\eta, \epsilon ; p_{a}^{+}, \boldsymbol{k}^{2}, \mu^{2}\right) \cdot\left|G^{R}\left(\eta ; \epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)\right|^{2} C_{q}^{R}\left(\eta, \epsilon ; p_{b}^{-} \boldsymbol{k}^{2}, \mu^{2}\right)
$$

$$
Z^{ \pm}\left(\eta, \rho ; \epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)=\exp \left[\frac{\rho-\eta}{2} \omega\left(\epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)+f^{ \pm}\left(\epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)\right]
$$

# 'Finite' term in the transition function 

fixed by symmetry:
[Chachamis, MH, Madrigal, Sabio Vera;1202.0649, 1212.4992,1307.2591]
for scheme 2: must be such that UV divergencies are cancelled between Green's function \& vertex

$$
f^{(1)}\left(\epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)=\frac{\alpha_{s}}{4 \pi}\left(\frac{2 n_{f}-5 C_{A}}{6} \ln \frac{\boldsymbol{k}^{2}}{\mu^{2}}+\frac{31 C_{A}-10 n_{f}}{18}+\left[\frac{2 n_{f}-5 C_{A}}{6 \epsilon}\right]_{\text {scheme 2 } 2}\right)
$$

finally:

$$
\frac{d}{d \eta} G^{R}\left(\eta ; \epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)=\omega\left(\epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right) G^{R}\left(\eta ; \epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)
$$

reggeized gluon:

$$
G^{R}\left(\eta ; \epsilon, \frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)=\exp \left[\eta \cdot \omega^{(1)}\left(\epsilon, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)\right]
$$

(solution to RG equation for $A_{ \pm}$field)

## What about the shock wave picture?

used for strong fields $g A_{+} \sim 1$, equally valid for dilute $g A_{+} \ll 1$
idea: separate NLO corrections into

- formation of the partonic wave (1 or 2 partons)
- interaction with the shockwave

effective action does not support this separation of contributions


## A test: use different gauges

1) covariant (Lorentz-Feynman) gauge
2) axial gauge (not light-cone due to tilted directions)

$$
d_{\mu \nu}(l, n)=-g_{\mu \nu}+\frac{l^{\mu} n^{\nu}+n^{\mu} l^{\nu}}{l \cdot n}-\frac{n^{2} l^{\mu} l^{\nu}}{(l \cdot n)^{2}}
$$

some diagrams yield different results

$$
\begin{aligned}
& \text { Fig. 4.a }+ \text { Fig. 4.c }\left.\right|_{\text {cov. }}=\frac{\alpha_{s} C_{A}}{4 \pi}\left(\frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)^{\epsilon}\left[\frac{-1}{\epsilon^{2}}+\frac{1}{2 \epsilon}-\frac{2}{\epsilon} \ln \left(e^{\rho / 2} \frac{p_{a}^{+}}{|\boldsymbol{k}|}\right)+\frac{2 \pi^{2}}{3}-1\right]+\mathcal{O}(\epsilon), \\
& \text { Fig. 4.a }+ \text { Fig. 4.c }\left.\right|_{\text {axial }}=\frac{\alpha_{s} C_{A}}{4 \pi}\left(\frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)^{\epsilon}\left[\frac{-1}{\epsilon^{2}}+\frac{5}{2 \epsilon}-\frac{2}{\epsilon} \ln \left(e^{\rho / 2} \frac{p_{a}^{+}}{|\boldsymbol{k}|}\right)+\frac{2 \pi^{2}}{3}-1\right]+\mathcal{O}(\epsilon) .
\end{aligned}
$$


(a)

(b)

(c)

(d)

- differences cancel if complete set of corrections is considered
- not true for individual "shock-wave" and "self-energy" diagrams
- there is no gauge invariant separation of both contributions


## Good news: not everything is lost

shockwave like/external contributions and remainder correspond to different types of loop integrals

- shockwave like integrals (as obtained within light front perturbation theory): loop integrals which contain a momentum with $n \cdot p \neq 0$
- yields eikonalization (reggeized field resummed through Wilson line)
- no $1 / n^{2}$ terms
- bubble like integrals: all external momenta in the loop $n \cdot p=0$
- no eikonalization possible (only a single $A_{+}$couples to the loop)
- can yield $1 / n^{2}, 1 /\left(n^{2}\right)^{2}$ etc.
- care is needed with the limit $n^{2} \rightarrow 0$
- seem to vanish (but they don't)

BUT: separation not possible on a diagrammatic basis \& not a consequence of high energy factorization

## Reason

contains integrals


$$
\int \frac{d^{d} l\left(l \cdot p_{a}\right)^{m}}{l^{2}(l+k)^{2}(l \cdot n)^{a_{1}}}, \quad k \cdot n=0
$$

- UV divergent
- absent if one ignores (incorrectly) the $\delta\left(l^{+}\right)$ configuration
- but you can't do that; it's non-zero
my procedure:
- identify all those contributions
- evaluate remainder using more conventional methods (but using consistent regulator i.e. tilting)

First result for the dilute dense case

## Finally $g A_{+} \sim 1$

Lipatov's effective action allows for resummation of strong field for arbitrary gauge
[MH, 1802.06755]
NLO: requires new set of induced vertices (non-local shifted version) or cancellations between individual diagrams
both problems are absent for axial gauge $\rightarrow$ use that + shift $v_{ \pm} \rightarrow v_{ \pm}+A_{ \pm}$ also not free of issues, but can be overcome


- evaluation of self-energy diagrams (and counter-terms) relatively straightforward


## UV terms with quark propagator



- more problematic; naively absent ("emission inside the shockwave")
- possible to isolate "bubble" configuration in triangle diagram using Ward like identities


## Result

for the quasi-elastic correction


$$
=\tau_{F}(q,-p)=2 \pi \delta\left(p^{+}-q^{+}\right) \not x^{+} \int d^{2} \boldsymbol{z} e^{i z \cdot(p-q)}
$$

$$
\begin{aligned}
W(\boldsymbol{z})= & {\left[\theta\left(p^{+}\right)[W(\boldsymbol{z})-1]-\theta\left(-p^{+}\right)\left[W^{\dagger}(\boldsymbol{z})-1\right]\right] } \\
+ & \left\{1+\frac{\alpha_{s} C_{A}}{4 \pi}\left[\left(-\frac{8}{3}+\frac{2 n_{f}}{3 C_{A}}\right) \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}+\frac{49}{9}-\frac{10 n_{f}}{9 C_{A}}\right]\right. \\
3 & \left.-\frac{2 n_{f}}{3 C_{A}}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n-1}\left[i g \alpha^{a}(\boldsymbol{z}) t^{a}\right]^{k} \\
& \left.\int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\left[i g \alpha^{b}(\boldsymbol{z}) t^{b}\right]^{n-k-1}\right\}
\end{aligned}
$$

Fourier transform of transverse log: [Diehl, Ostermeier, Schäfer; 1111.0910]

$$
\alpha^{a}(\boldsymbol{z})=\frac{1}{2} \int d x^{+} A_{+}^{a}\left(x^{+}, \boldsymbol{z}\right)=\frac{1}{g N_{c}} f^{a b c} \log U^{b c}(\boldsymbol{z}) \quad \begin{aligned}
& {[\text { Caron-Huot; 1309.6521] }} \\
& {[\mathrm{MH}, 1802.06755]}
\end{aligned}
$$

using scheme 1 (otherwise uncanceled UV pole)
still lacks "shock wave integrals"; yields essentially [Chirill, Xiao, Yuan; 1203.6139],
result in the literature (+ tilted regulator)
[Altinoluk, Armesto, Beuf, Kovner, Lublinsky; 1411.2869]
Towards a consistent formation of high energy factorization at NLO - Martin Hentschinski — June 11, 24, ECT* Trento Italy

## central corrections (UV)

1st naive attempt: follow[MH, 1802.06755] and determine fluctuations of Wilson line
$\rightarrow$ not what the action tells you to do; does not work (uncanceled UV divergencies)
correct procedure: • calculate corrections to $n$ reggeized gluon state

- as far as bubble/UV configurations are concerned, this is straightforward
important observation:
- generalizing pole prescription of eikonal denominators developed in [MH, 1112.4509] to $n$ reggeized gluons, the $A_{ \pm} \rightarrow\left(A_{ \pm}\right)^{n}$ transition vanishes after integration over longitudinal momenta
- also the counter-term \& associated self-energy correction vanish
- same applies to the loop correction to this vertex



## UV configuration: reggeized gluon self energy

only relevant configuration (for UV):

- self energy of the reggeized gluon without $\rho$ dependent (rapidity divergent) term
- the latter: not a "bubble" configuration, allows for eikonalization + needs to be combined with other corrections

for scheme 1
in momentum space:

$$
\frac{\alpha_{s}}{4 \pi}\left[-\left(\frac{5 C_{A}}{3}-\frac{2 n_{f}}{3}\right) \ln \left(\frac{\mathbf{k}^{2}}{\mu^{2}}\right)+\frac{31 C_{A}}{9}-\frac{10 n_{f}}{9}+\mathcal{O}(\epsilon)\right]
$$

Remainder: need to construct "shockwave like correction" for the $n$ reggeized gluon state (can't use directly the Wilson line as in [MH, 1802.06755] )
expect: JIMWLK evolution at 1-loop (to be confirmed, work in progress)
next step: combine central/factorized and quasi-elastic correction using subtraction + transition function
requires complete 1-loop correction to $n$ reggeized gluon state; but can anticipate what happens to the UV terms (essentially the same as for the dilute case)

## Preliminary final result for UV enhanced terms

$$
\begin{aligned}
& \cdot\left[\theta\left(p^{+}\right)[W(\boldsymbol{z})-1]-\theta\left(-p^{+}\right)\left[W^{\dagger}(\boldsymbol{z})-1\right]\right], \\
& W(\boldsymbol{z})=W^{(0)}(\boldsymbol{z})\left\{1-\frac{\alpha_{s}}{4 \pi}\left[\frac{\beta_{0}}{2} \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}-\frac{67 C_{A}}{18}+\frac{10 n_{f}}{18}\right]\right. \\
& +\frac{\alpha_{s} C_{A}}{4 \pi} \frac{\beta_{0}}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n-1}\left[i g \alpha^{a}(\boldsymbol{z}) t^{a}\right]^{k} \\
& \left.\int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\left[i g \alpha^{b}(\boldsymbol{z}) t^{b}\right]^{n-k-1}\right\} \\
& =\exp \left[i g \alpha^{a}(\boldsymbol{z}) t^{a}\left\{1-\frac{\alpha_{s}}{4 \pi}\left[\frac{\beta_{0}}{2} \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}-\frac{67 C_{A}}{18}+\frac{10 n_{f}}{18}\right]\right\}\right. \\
& \left.+\frac{\alpha_{s}}{4 \pi} \frac{\beta_{0}}{2} \int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

## Final result for UV enhanced terms

note:

$$
W^{(0)}(\mathbf{z})=\exp \left(i g \alpha^{a}(\mathbf{z}) t^{a}\right), \quad \alpha^{a}(\mathbf{z})=\frac{2}{i g} \operatorname{tr}\left[t^{a} \ln W^{(0)}(\mathbf{z})\right]
$$

the Wilson line enters somehow the optimal scale of the running coupling

$$
\begin{aligned}
W(\boldsymbol{z})= & W^{(0)}(\boldsymbol{z})\left\{1-\frac{\alpha_{s}}{4 \pi}\left[\frac{\beta_{0}}{2} \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}-\frac{67 C_{A}}{18}+\frac{10 n_{f}}{18}\right]\right. \\
+ & \frac{\alpha_{s} C_{A}}{4 \pi} \frac{\beta_{0}}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n-1}\left[i g \alpha^{a}(\boldsymbol{z}) t^{a}\right]^{k} \\
& \left.\quad \int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\left[i g \alpha^{b}(\boldsymbol{z}) t^{b}\right]^{n-k-1}\right\} \\
= & \exp \left[i g \alpha^{a}(\boldsymbol{z}) t^{a}\left\{1-\frac{\alpha_{s}}{4 \pi}\left[\frac{\beta_{0}}{2} \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}-\frac{67 C_{A}}{18}+\frac{10 n_{f}}{18}\right]\right\}\right. \\
& \left.\quad+\frac{\alpha_{s}}{4 \pi} \frac{\beta_{0}}{2} \int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

## Discussion

$$
\begin{aligned}
\exp \left[i g \alpha ^ { a } ( \boldsymbol { z } ) t ^ { a } \left\{1-\frac{\alpha_{s}}{4 \pi}[ \right.\right. & {\left.\left[\frac{\beta_{0}}{2} \ln \frac{4 e^{-2 \gamma_{E}}}{\mu^{2} \delta}-\frac{67 C_{A}}{18}+\frac{10 n_{f}}{18}\right]\right\} } \\
& \left.+\frac{\alpha_{s}}{4 \pi} \frac{\beta_{0}}{2} \int \frac{d^{2} \boldsymbol{x}}{\pi} \frac{\theta\left[(\boldsymbol{x}-\boldsymbol{z})^{2}-\delta\right]}{(\boldsymbol{x}-\boldsymbol{z})^{2}} i g \alpha^{c}(\boldsymbol{x}) t^{c}\right]-1
\end{aligned}
$$

- Can we absorb these corrections into the "target"?

Technically (I believe) yes: a special scheme (a special choice for the "f" function)
Argument against: depends on the "projectile" renormalization scale Also: needs this for correct anomalous dimension of TMD operator Effective action: "projectile" not "target" correction

- In this work we separated UV and conventional shock wave contributions through different characteristics of look integrals
Question: is there a more general organizing principle?


## Discussion \& Conclusion

- We have many impressive NLO results, e.g.

```
Caucal, Salazar, Schenke, Stebel, Venugopalan; 2308.00022 Beuf, Lappi, Mäntysaari, Paatelainen, Penttala, 2401.17251
Boussarie, Grabovsky, Wallon; 1905.07371
Bergabo, Jalilian-Marian; 2301.03117
Balitsky, Chirilli; 1207.3844
```

but to my understanding, high energy factorization at NLO with a dense target is not yet fully worked out;

- My take home message: Don't ignore UV divergencies, even if they do not seem to manifest, they are there \& should be taken into account
- Still in work in progress;

Appendix

## Tool: propagators in background field

use light-cone gauge, with $k=n \cdot \cdot k,(n-)^{2}=0, n-\sim$ target momentum


$$
\tilde{S}_{F}^{(0)}(p)=\frac{i \not p+m}{p^{2}-m^{2}+i 0} \quad \tilde{G}_{\mu \nu}^{(0)}(p)=\frac{i d_{\mu \nu}(p)}{p^{2}+i 0}
$$

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], .
interaction with the background field:


$$
\begin{aligned}
&=2 \pi \delta\left(p^{-}-q^{-}\right) \nVdash^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot \boldsymbol{p}-\boldsymbol{q})} \\
& \cdot\left\{\theta\left(p^{-}\right)[V(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[V^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered exponentials (Wilson lines)

$$
\begin{aligned}
& \stackrel{p}{\underset{O O D}{\text { ®OO }}} \stackrel{q}{=}=-2 \pi \delta\left(p^{-}-q^{-}\right) 2 p^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(p-q)} \\
& \cdot\left\{\theta\left(p^{-}\right)[U(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[U^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

issue: "shockwave approach", only 2 diagrams

$\rightarrow$ difference between different gauges do not cancel $\rightarrow$ gauge dependent
is this to be
expected?


YES: non-abelian gauge theory requires 3 diagrams for current conservation

connected

