Hard diffraction with hadronic final states with (mostly) CMS

Cristian Baldenegro (Sapienza Università di Roma) Diffraction and gluon saturation at the LHC and the EIC June 10th-14th 2024

Outline

Mostly discuss four LHC results:

- ATLAS & CMS photonuclear jets in PbPb (ATLAS-CONF-2022-021, CMS, Phys. Rev. Lett. 131 (2023) 051901)
- Single-diffractive dijets in pp collisions (ATLAS, CMS) <u>CMS-TOTEM, Eur. Phys. J. C 80, 1164 (2020)</u>
- Jet-gap-jet, (CMS-TOTEM) <u>CMS-TOTEM PRD 104, 032009 (2021)</u>

CMS detector recap

Tracker & muon chambers acceptance up to $|\eta| < 2.5$; $p_T > 200$ MeV for tracks hadronic calorimeter coverage up to $|\eta| < 5.2$; noise threshold E \ge 5 GeV in fwd region

Jet reconstruction spans wide range in $|\eta| < 4.7$ and as low as $p_{\tau} > 20$ GeV

Run-1 measurements of diffractive jets (no Roman pots)

~20% nondiffractive contamination

Larger rapidity gaps \Leftrightarrow smaller $\xi \sim \ln(1/\Delta \eta_{gap})$;

CMS-TOTEM setup

Roman pots: Near-beam Si tracker detectors

CMS:

- General purpose detector at IP5 of the CERN LHC.
- Jets with R = 0.4 reconstructed within $|\eta^{jet}| < 4.7$.

TOTEM:

▶ Roman pots: Forward tracking detectors at ≈ 220m w.r.t. IP5 that measure the protons scattered at small angles w.r.t. the beam.

Hard diffraction with intact protons (CMS+TOTEM)

Intact proton is an unambiguous signature of diffraction

Gives access to:

- Four-momentum transfer at the proton vertex |t| (0.03 < |t| < 1 GeV²)
- ξ (x_p in HERA notation), proxy for the energy carried away by the pomeron/reggeon

 $(0.0 < \xi < 0.1 \text{ for Run-1 in high-}\beta^*, up to \xi ~ 0.2 in Run-2)$

6

|t| distribution for single-diffractive jets

Exponential slope $b = 6.5 \pm 0.6 \text{ GeV}^{-2}$ consistent w/ other hard diffractive probes (e.g., exclusive VM)

Bare POMWIG overshoots data (survival probability of 7.4%)

PYTHIA8 predictions systematically off by a factor of \sim 2 at low-|*t*|

PYTHIA8 with dynamical gap (DG) model

correctly describes the rate and shape of the distribution, *no additional correction factor*

CMS-TOTEM, EPJC 80, 1164 (2020

Fractional momentum loss ξ

Significantly extending reach based on forward gaps only $\xi < 0.01$

Pomeron and reggeon exchange (**POMWIG**) yield the same shapes as pomeron-only (**PYTHIA8**)

<u>CMS-TOTEM, EPJC 80, 1164 (2020)</u>

8

Data corrected to particle-level

Proxy for Bjorken-x from all jets:

$$x^{\pm} = rac{\sum_{ ext{jets}} \left(E^{ ext{jet}} \pm p_z^{ ext{jet}}
ight)}{\sqrt{s}}$$
 ,

POMWIG (pomeron & reggeon exchanges) describes qualitatively well the shapes

PYTHIA8 (pomeron-only) predictions off at high- and low-*x*.

PYTHIA8 with "dynamical gap"

(pomeron-only) describes the observed rate, no need for fudge factors

Suppression of single-diffractive jets as a function of \sqrt{s} ¹⁰

Fraction of diffractive jets decreases with energy (**Tevatron** \rightarrow **LHC**), qualitatively expected from survival probability dependence on \sqrt{s} .

Lesson/thoughts:

• Rapidity gap based diffraction gives access to $10^{-4} < \xi < 10^{-2}$

 Diffractive jets at LHC energies consistent with pomeron-only exchange (0 < ξ < 10⁻¹, with Roman pots)

• Stronger suppression at LHC than at CDF

• How can it be extended?

Mueller-Tang jets (a.k.a., "jet-gap-jet")

t-channel color-singlet exchange between partons \rightarrow *rapidity gaps between final-state jets*

In the high-energy limit (large $\Delta \eta_{jj}$), it is expected to be mediated by **BFKL pomeron** exchange. A. Mueller and W-K. Tang, PLB 284 (1992) 123.

Experimentally, a signal with a controllable QCD background.

CMS event displays (single proton-proton collisions)

Color-exchange event candidate (Background-like)

Color-singlet exchange event candidate (Signal-like)

tracks with pT > 0.2 GeV are plotted here.

Rapidity gap definition

Number of charged-particles with p_T> 200 MeV in -1 < η < 1 is measured, *rapidity gap corresponds to absence of N_{tracks}*.

Each jet has $|\eta_{jet}| > 1.4$, with $\eta_{jet1}^* \eta_{jet2} < 0$, with $p_T > 40$ GeV.

Color-octet fluctuations subtract

Color-singlet fraction $\rm f_{CSE}\,$ by CMS at 13 TeV

About ~0.7% of dijets are produced by hard color-singlet exchange

Pure BFKL predictions get the trend with data wrong as a function of $\Delta \eta_{jj}$ (Royon, Marquet, Kepka, PRD 83:034036, 2011)

BFKL + soft-color interaction for gap survival probability correctly describes $\Delta \eta_{jj}$ trend (<u>Ekstedt, Enberg, Ingelman, Motyka, arXiv:1703.10919</u>)

ISR "screens" central gap between Mueller-Tang jets

ISR on \rightarrow central gap is destroyed

ISR off \rightarrow central gap remains

 $ISR = off \rightarrow fewer particles between the jets (unclustered wide-angle hadrons).$

Unexpected (?) sensitivity to ISR at central pseudorapidities (see talk by C. Royon next!)

Suppression of jet-gap-jet fraction with \sqrt{s}

Decrease from Tevatron to LHC energies, consistent with single-diffractive dijet trend

Partial restoration of factorization; intact proton enhances the probability that the central gap "survives" the collision.

Analogous to restoration of factorization observed by <u>CDF Collaboration for</u> <u>double-pomeron exchange/single-diffractive dijets</u>.

Gap between jets with intact proton

CMS-TOTEM PRD 104, 032009 (2021)

Similar enhancement in other two-gap diffractive topologies

CMS-TOTEM PRD 104, 032009 (2021)

<u>CDF PRL 85 (2000) 4215 for</u> <u>double-pomeron jets/single-diffractive dijets</u>

-1

Lessons/thoughts:

- Clear "jet-gap-jet" signal in data
- Enhancement when tagging intact proton compatible with other topologies (DPE/SD dijet double-ratios by CDF)
- Central gap introduces nontrivial sensitivity to ISR & color-flow effects (according to Pythia8!)
- Mueller–Tang spin-offs that retain sensitivity to genuine pQCD effects?

Dijet photoproduction (resolved or direct)

Photonuclear dijet in ATLAS in PbPb at 5.02 TeV

Forward neutrons on zero degree calorimeter to tag photon emission (**0nXn**, **X** > **0**) + rapidity gap

ZDC helps clean up event from "hadronic" dijet (peripherals)

Probe of gluon nuclear PDFs at small-x and perturbative Q²

>= 2 jets with $p_{T,jet}$ > 15 GeV, up to acceptance $|\eta_{jet}|$ < 4.4

In general, ZDC topology "filters" different impact parameters, which affects the photon flux modeling

Klein, Steinberg, Ann Rev Nucl Part Sci Vol. 70:323-354

Jet-based proxy for parton momentum fraction wrt Pb nucleus

 $x_A \equiv \frac{M_{jets}e^{-y_{jets}}}{\sqrt{s_{NN}}}$ Jet-based proxy for small x_A dominated by direct photoproduction, high x_A by resolved photoproduction

 x_A strongly correlated with x_2 used in nPDF evaluation

Triple differential cross section measurement (ATLAS)

ATLAS-CONF-2022-021

Unfolded to particle-level, reported for three variables

$$H_T \equiv \sum_i p_T^i \qquad x_A \equiv \frac{M_{jets} e^{-y_{jets}}}{\sqrt{s_{NN}}} \qquad z_\gamma \equiv \frac{M_{jets} e^{+y_{jets}}}{\sqrt{s_{NN}}}$$
$$\sim Q^2 \qquad \text{parton momentum} \qquad \text{momentum fraction} \\ \text{fraction wrt target} \qquad \text{momentum fraction} \\ \text{carried by photon} \end{cases}$$

Precision limited by jet calibration unc.

(particle-flow low p_T jets are hard to calibrate!)

Triple differential cross section measurement (ATLAS) <u>ATLAS-CONF-2022-021</u>

Fully unfolded to particle-level, reported for three variables

$$H_T \equiv \sum_i p_T^i \qquad x_A \equiv \frac{M_{jets} e^{-y_{jets}}}{\sqrt{s_{NN}}} \qquad z_\gamma \equiv \frac{M_{jets} e^{+y_{jets}}}{\sqrt{s_{NN}}}$$
$$\sim Q^2 \qquad \text{parton momentum} \qquad \text{momentum fraction} \\ \text{fraction wrt target} \qquad \text{carried by photon}$$

Experimental precision currently limited by jet energy scale uncertainty

 $(particle-flow \ low \ p_T \ jets \ are hard \ to \ calibrate!)$

Exclusive* dijet with 0n0n + two rapidity gaps [ATLAS]

One would expect QED **yy**→**qqbar** to dominate (large photon flux)

NB:

"Exclusive" up to detector-noise, & jet p_T threshold

Exclusive dijet with 0n0n + two rapidity gaps [ATLAS]

ATLAS-CONF-2022-021

Pure **QED** $\gamma\gamma \rightarrow$ qqbar contribution accounts only for 10% of the observed rates in data

Could be due to coherent diffractive photoproduction of dijets in PbPb: <u>V. Guzey, M. Klasen, arXiv:1603.06055</u>

A

P

Jet

Jet

B

If so, could be used as a probe of saturation:

H. Mäntysaari, N. Mueller, F. Salazar, B. Schenke, PRL 124, 112301 (2020)

E. Iancu, A.H. Mueller, Remnant D.N. Triantafyllopoulos, S.Y. Wei, arXiv:2304.12401

Exclusive dijet production in PbPb (CMS)

Proposed to probe elliptic polarization of gluons in unpolarized nuclei, Hatta, et al, PRL 116, 202301 (2016) CMS,

to polarization

CMS exclusive dijet angular correlations

CMS, PRL 131 (2023) 051901

Calculations with out-of-cone soft radiation effects are able to describe the data. **No experimental sensitivity to polarization effects**

Lessons/thoughts:

 QED rate accounts for ~10% of 0n0n exclusive dijet rate in PbPb (ATLAS), is remaining 90% coherent diffractive?

 Observables proposed to be sensitive to gluon elliptic polarization are sensitive to final-state radiation effects

 Measurements challenge low p_T jet calibration! Other "hard" probes? (see Gian Michele Innocenti's talk!)

Summary

• Run-1 & Run-2 results on hard diffraction & photoproduction with jets

• Trade-offs between clean experimental signatures and control over calculations

 Interested on feedback on different decisions (low p_T jets, rapidity gap definitions, ZDC & Roman pot tagging, ...)