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Brief summary

� causal fermion systems can describe non-smooth

spacetime structures;

in particular, spacetimes involving fluctuating fields

� causal action principle describes nonlinear dynamics

Main message of this talk:

gives rise to a effective collapse model,

has similarities with CSL model.

� Has been worked out in detail in the non-relavitivistic limit
with Johannes Kleiner and Claudio Paganini

� “Causal fermion systems as an effective collapse theory,”

arXiv:2405.19254 [math-ph]

� Collapse theory derived from first principles.

� Relativistic model in preparation.
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What is a causal fermion system?

� approach to fundamental physics

� novel mathematical model of spacetime

� physical equations are formulated in generalized

spacetimes

� Different limiting cases:

Continuum limit: Quantized fermionic fields interacting via

classical bosonic fields

QFT limit: fermionic and bosonic quantum fields
(ongoing, more towards the end of the talk)

� For overview, more details (papers, books, videos, online

course), physical applications, . . .

www.causal-fermion-system.com
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Effective description by nonlocal Dirac equation

� Consider causal fermion system in Minkowski space:

Thus Minkowski space, spacetime points (t , ~x)
ψ1(t , ~x), . . . , ψf (t , ~x) family of spinorial wave functions

� causal action principle describes the interaction of all these

wave functions

� the linearized interaction can be described effectively by a
nonlocal Dirac equation

� F.F., “Solving the linearized field equations of the causal
action principle in Minkowski space,” arXiv:2304.00965

[math-ph], to appear in Adv. Theor. Math. Phys. (2024)

� There are nonlinear corrections.

Felix Finster Causal Fermion Systems as an Effective Collapse Theory



Effective description by nonlocal Dirac equation

� Begin in one-particle description (Fock spaces later).

� Describe the dynamics of the causal action principle in

terms of a nonlocal Dirac equation

(

i∂/+B− m
)

ψ = 0

(

Bψ
)

(x) =

ˆ

M

B(x , y)ψ(y) d4y

B(x , y) =

N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)
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Linearized fields in Minkowski space

B(x , y) =

N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)

� The kernels La(y − x) are nonlocal on the scale ℓmin with

ℓPlanck ≪ ℓmin ≪ ℓmacro

(and ℓPlanck denotes the Planck scale)

La(ξ) = 0 if |ξ0|+ |~ξ| & ℓmin

� The number N of fields scales like

N ≃ ℓmin

ε

� multitiude of vectorial potentials A
j
a, a = 1, . . . ,N,

will later be described stochastically

� All potentials satisfy the homogeneous wave equation

2A
j
a = 0
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Linearized fields in Minkowski space

p

ξ

−ωmin
ℓmin

ϑ

ϑ

−1

ε

ϑ =
1√

ℓmin ωmin
with ϑmin =

√

ℓPlanck

ℓmin
.

� Different wave functions “feel” different potentials.

� The low-energy wave functions (i.e. |ω| . ℓ−1
Planck) “feel all

the potentials at the same time”.
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Conserved Scalar Product

� Noether-like theorem: conservation law for scalar product

〈ψ|φ〉t :=

ˆ

≺ψ | γ0 φ≻(t,~x) d3x

− i

ˆ

x0<t

d4x

ˆ

y0>t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

+ i

ˆ

x0>t

d4x

ˆ

y0<t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

Has structure of surface layer integral.

� Generalizes probability integral, gives probabilistic

interpretation.

� Note: Scalar product depends on stochastic potentials!
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The Non-Relativistic Limit

laboratory

∆t =
ℓ

c

t

~x

ℓ

Assume potentials are Gaussian and Markovian,

≪A
j
a(x)≫ = 0

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)
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The non-relativistic limit

� However, the nonlocality of the potential must be taken into

account. (Otherwise, no collapse occurs.)
(

i∂/+B− m
)

ψ = 0

Hamiltonian formulation:

i∂tψ =
(

H0 + V
)

ψ

H0 = −iγ0~γ~∇

(Vψ)(t) =

ˆ ∞

−∞

V (t , t ′) ψ(t ′) dt ′

(V (t , t ′)ψ)(~x) =

ˆ

R3

(

− γ0
B
(

(t , ~x), (t ′, ~y)
)

ψ(~y) d3y
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The non-local Dyson series

i∂tψ =
(

H0 + V
)

ψ

Can be solved with nonlocal Dyson series

ψ(t) = ψ(t0) +

ˆ t

t0

ψ̇(τ) dτ = ψ(t0)− i

ˆ t

t0

(Vψ)(τ) dτ

= · · · = (apply iteratively)

= ψ(t0) +

ˆ t

t0

dτ

ˆ ∞

−∞

dζ
(

− iV (τ, ζ)
)

ψ(t0)

+

ˆ t

t0

dτ1

ˆ ∞

−∞

dζ1

(

− iV (τ1, ζ1)
)

×
ˆ ζ1

t0

dτ2

ˆ ∞

−∞

dζ2

(

− iV (τ2, ζ2)
)

ψ(t0)

+ · · ·
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The non-local Dyson series

t t
τ1

ζ1

t0

τ2
ζ2

τ3

ζ3

V

V
V

∼ ℓmin

∼ ℓmin
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Gaussian pairings

B(x , y) =
N
∑

a=1

γj A
j
a

(x + y

2

)

La(y − x)

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)

∣

∣

∣
ψ
)

t

t + ζ

t + 2ζ

t + ζ + ν

t + ζ − ν

Xκ Yκ
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Gaussian pairings

� Take into account pairings between bra and ket

∣

∣

∣
ψ
〉〈

ψ
∣

∣

∣t
t + ζ

t

t + 2ζ

t + ζ − ν

t + ζ + ν

Z
†
κXκ

� Example in higher order

∼ ℓmin
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Main results of analysis

� Statistical operator σt has time evolution of

Kossakowski-Lindblad form

dσt

dt
= −i[H, σt ]−

1

2

∑

ˆ

κ

[

Kκ, [Kκ, σt ]
]

(

1 + O
(

ℓmin ‖V‖
)

)

� There is dynamical state reduction, in agreement with

Born’s rule.

� Similar to CSL model, but not the same, due to nonlocality

in time.
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Derivation of Lindblad dynamics

� Note: Standard scalar product

(ψ|φ)t :=

ˆ

≺ψ | γ0 φ≻(t,~x) d3x

is not conserved in time.

� Only the modified scalar product is conserved,

〈ψ|φ〉t = (ψ|φ)t

− i

ˆ

x0<t

d4x

ˆ

y0>t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

+ i

ˆ

x0>t

d4x

ˆ

y0<t

d4y ≺ψ(x) |B(x , y)φ(y)≻x

.
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Derivation of Lindblad dynamics

Transform one into the other:

〈ψ|φ〉t0 =
(

ψ | (11 + St0)φ
)

t0
for all ψ, φ ∈ Hm

ψ 7→ ψ̃ :=
√

11 + St0 ψ

〈ψ|φ〉t0= (ψ̃|φ̃)t0

Working with ψ̃, one can use the standard scalar product.

statistical operator σt := ≪ |ψ〉〈ψ| ≫ = ≪ |ψ̃)(ψ̃| ≫

Now compute

d

dt
σt = ≪ d

dt

(

|ψ̃)(ψ̃|
)

≫ = · · ·

to leading order in ℓmin ‖B‖.
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Reduction of the state vector

Try to use standard assumption:

� Observable O commutes with Hamiltonian.

� Typical example: Position measurement, use locality of

time evolution.

Problem: Operator St is nonlocal! Therefore:

� Work with the original (untilded) wave functions.

� Makes it necessary to also work with the time-dependent

scalar product 〈.|.〉t .
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Reduction of the state vector

Consider situation similar to a scattering process and rescale

the wave functions,

ψres(t) := c(t) ψ(t) with c(t) :=
1

√

≪(ψ(t)|ψ(t))≫

t0

t1

St = 0

St = 0

St 6= 0

ψ̃ = ψ = ψres

ψ̃ = ψ = ψres

ψ̃ 6= ψ 6= ψres
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Reduction of the state vector

d

dt
≪(ψres(t)|ψres(t))≫ = 0

d

dt
≪(ψres | Oψres)≫ = 0

d

dt
≪(ψres | O2 ψres)− (ψres | Oψres)2≫ ≤ 0

and strictly negative unless ψres is an eigenstate.

� Shows collapse

� Proves Born rule
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Effective description in Fock spaces

� System can be described at any time t by a

Quantum state ωt : A → C ,

where A is the algebra of observables.

� can be represented on Fock space F (fermionic and

bosonic)

ωt(A) = TrF
(

σtA)
if pure state

= <Ψ|A|Ψ>

� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,” arXiv:2101.10793 [math-ph],

Ann. Henri Poincaré 23 (2022) 1359–1398

� F.F., Kamran, N. and Reintjes, M., “Entangled quantum states of causal

fermion systems and unitary group integrals,” arXiv:2207.13157

[math-ph], to appear in Adv. Theor. Math. Phys. (2024)

� Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes.
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Effective description in Fock spaces

For our purpose, it suffices to consider Hartree-Fock state

Ψ = ψ1 ∧ · · · ∧ ψq

� Dynamics again described by the nonlocal Dirac equation

� Collapse happens as soon as one one-particle wave

function collapses.

� Thus collapse phenomena are predominant for

mesoscopic and macroscopic systems
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Parameters of the model

� The length scale ℓmin. Equivalently, the number N of fields

related to ℓmin by

N ≃ ℓmin

ε

� The strength of the stochastic field as described by the

covariance,

≪A
j
a(x)Ak

b(x)≫ = δ(x0 − y0) δab C jk (~y − ~x)

and the nonlocal kernels La(y − x)
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The nonlinear term

Interestingly, it does not need to be specified. Description on

various levels possible:

� Take into account nonlinear coupling,

−2(Aa)
k = e2Jk

a

Jk
a (z) =

ˆ

M

≺ψ(x)|γk La(x , y)ψ(y)≻
∣

∣

x=z−ξ/2, y=z+ξ/2
d4ξ

� Take the many-particle perspective:

Hartree-Fock state Ψ = ψ1 ∧ · · · ∧ ψq

In the causal fermion system description, the potential B is

encoded in this family of wave functions. Therefore, Dirac

equation for Ψ is nonlinear.
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The Nature of the Collapse

� It is not the gravitational field which triggers the collapse.

� Instead, it is a multitude of bosonic fields, specific to the

causal action principle

� Remark:

This multitude of fields can be described effectively by a
second-quantized electromagnetic field.

Therefore: collapse is closely related to the electromagnetic
interaction in QFT

� But: length scale of nonlocality comes into play. Related to

Planck scale. Also gives connection to strength of

gravitational field.
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Outlook: The Relativistic Model

ongoing work also with Simone Murro

� Dirac equation is already relativistic.

� Stochastic background fields break Lorentz invariance.

Concept: Stochastic background fields originate from the

early universe and/or are generated by the matter on earth
and of the surrounding stars and galaxies.

� Replace Markov property by propagation with speed of

light. Also gives rise to “smearing in time.”
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Summary

� Consider causal fermion systems in Minkowski space

� Described by family of fermionic wave functions, encoded

in wave evaluation operator Ψ

� Causal action principle gives rise to plethora of fields

� Coupling of these fields to the Dirac equation is nonlocal

on a scale ℓmin ≪ m−1.

� Similar to CSL model, we obtain a stochastic and a

nonlinear term.

� But: has a different mathematical structure, due to

nonlocality in time.
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www.causal-fermion-system.com

Thank you for your attention!
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How causal fermion systems developed (≈ 1989-90)

starting point: Course on relativistic QM and QFT

(following Bjorken-Drell / Itzykson-Zuber)

� Dirac’s hole theory (Dirac 1932)

ω

k

anti−particles

particles

Dirac sea
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How causal fermion systems developed (≈ 1989-90)

� Problems of the naive Dirac sea picture:

infinite charge density

infinite negative energy density

� Therefore, we were told in lecture:

Dirac sea is not visible due to symmetries
(homogeneous, isotropic)

Only “deviations” of the sea are observed as

particles and anti-particles
Forget about the Dirac sea, no longer needed.

� This procedure is implemented in the formalism:

Reinterpretation of creation as annihilation operators

Wick ordering of field operators in Hamiltonian
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How causal fermion systems developed (≈ 1989-90)

I was not convinced by this procedure:

� The interacting Dirac sea should be visible,

for example in presence of external potential

(

i∂/+ /A(x)− m
)

ψ = 0

� Pair creation seems an evidence that the Dirac sea is real.
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How causal fermion systems developed (≈ 1989-90)

What is the way out?

� Take all the sea states into account.

� In order to avoid the problems of naive Dirac sea,

formulate new type of equations,

different structure of the physical equations

Goal in general terms:

Formulate a variational principle

directly for the family of wave functions

Intuitive picture: wave functions “organize themselves” in

such a way that the Dirac sea configuration is a minimizer.

In interacting situation the wave functions organize to

solutions of the Dirac equation

(

iγ j∂j + eγ jA(x)− m
)

ψ = 0

This should serve as the definition of A.
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Motivating example: A discrete spacetime

Formulate a variational principle

directly for a family of wave functions

� For simplicity begin with a discrete spacetime, for example

2d-lattice

b

b

b

b

b

b

b

b

b

b

b

b

b

bbbbb

b b b b b b

∆x

∆t

lattice M

� Do not make use of nearest neighbor relation and lattice

spacing.

Better and simpler: spacetime M is a discrete set of m points.
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Motivating example: A discrete spacetime

� Consider wave functions ψ1, . . . , ψf : M → C (with f <∞)

� Introduce scalar product; orthonormalize,

〈ψk |ψl〉 = δkl ,

gives f -dim Hilbert space (H, 〈.|.〉H).

important object: for any lattice point x introduce

local correlation operator F (x) : H → H

� define matrix elements by

(F (x))j
k = ψj(x)ψk (x)

basis invariant:

〈ψ,F (x)φ〉H = ψ(x)φ(x) for all ψ, φ ∈ H

� Hermitian matrix

� Has rank at most one, is positive semi-definite

F (x) = e∗e with e : H → C , ψ 7→ ψ(x)
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Motivating example: A discrete spacetime

F :=
{

F Hermitian, rank one, positive semi-definite
}

0

F ⊂ L(H)

M

F

bb b b b

bb b b b

bb b b b

bb b b b

b b
b

b

b

b

b
b

b
b

b
b

b b b

b
b

b b b

F (M)

general idea:

� disregard objects on the left

(nearest neighbors, lattice spacing)

� work instead with the objects on the right

(only local correlation operators)
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Motivating example: A discrete spacetime

How to set up equations in this setting?

Explain idea in simple example:

� local correlation operators F1, . . . ,Fm ∈ F

� product Fi Fj tells about correlation of wave functions

at different space-time points

� Tr(FiFj) is real number

� minimize

S =
m
∑

i ,j=1

Tr(FiFj)
2

under suitable constraints.
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Causal Fermion Systems

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

� x is symmetric and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F

M
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Causal action principle

Let x , y ∈ F. Then x and y are linear operators.

x ·y ∈ L(H):

rank ≤ 2n

in general not symmetric: (x ·y)∗ = y ·x 6= x ·y
thus non-trivial complex eigenvalues λxy

1 , . . . , λ
xy
2n
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Causal action principle

Nontrivial eigenvalues of xy : λ
xy
1 , . . . , λ

xy
2n ∈ C

Lagrangian L(x , y) = 1

4n

2n
∑

i ,j=1

(

|λxy
i | − |λxy

j |
)2 ≥ 0

action S =
x

F×F

L(x , y) dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:

ˆ

F

tr(x) dρ(x) = const

boundedness constraint:
x

F×F

2n
∑

i=1

|λxy
i |2 dρ(x)dρ(y) ≤ C

� F.F., “Causal variational principles on measure spaces,”

J. Reine Angew. Math. 646 (2010) 141–194
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Example: Dirac spinors in Lorentzian space-time

Let (M,g) be a Lorentzian space-time,

for simplicity 4-dimensional, globally hyperbolic,

then automatically spin,

(SM,≺.|.≻) spinor bundle

SpM ≃ C
4

spin scalar product

≺.|.≻p : SpM × SpM → C

is indefinite of signature (2,2)

(D − m)ψm = 0 Dirac equation
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Example: Dirac spinors in Lorentzian space-time

� Cauchy problem well-posed, global smooth solutions

(for example symmetric hyperbolic systems)

� finite propagation speed

C∞
sc (M,SM) spatially compact solutions

(ψm|φm)m := 2π

ˆ

N

≺ψm|/νφm≻x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)
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Example: Dirac spinors in Lorentzian space-time

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf )

� To x ∈ R
4 associate a local correlation operator

〈ψ|F (x)φ〉 = −≺ψ(x)|φ(x)≻x ∀ψ, φ ∈ H

Is symmetric, rank ≤ 4

at most two positive and at most two negative eigenvalues

� Here ultraviolet regularization may be necessary:

〈ψ|F (x)φ〉 = −≺(Rεψ)(x)|(Rεφ)(x)≻x ∀ψ, φ ∈ H

Rε : H → C0(M,SM) regularization operators

ε > 0 : regularization scale (Planck length)
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Example: Dirac spinors in Lorentzian space-time

� Thus F (x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

⊲ F is symmetric and has rank ≤ 4
⊲ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Example: Dirac spinors in Lorentzian space-time

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

Take push-forward measure

ρ := F∗(µM) (i.e. ρ(Ω) := µM

(

F−1(Ω)
)

)
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Example: Dirac spinors in Lorentzian space-time

M :=supp ρ

F ⊂ L(H)

We thus obtain a causal fermion system of spin dimension two.
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A few general remarks

One basic object: measure ρ on set F of linear operators on H,

describes spacetime as well as all objects therein

� Underlying structure: family of fermionic wave functions

� Geometric structures encoded in these wave functions

Matter encodes geometry

Quantum spacetime

� Causal action principle describes spacetime as a whole

(similar to Einstein-Hilbert action in GR)

� Causal action principle is a nonlinear variational principle

(similar to Einstein-Hilbert action or classical field theory)

� Linear dynamics of quantum theory recovered in limiting

case (more details later)
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