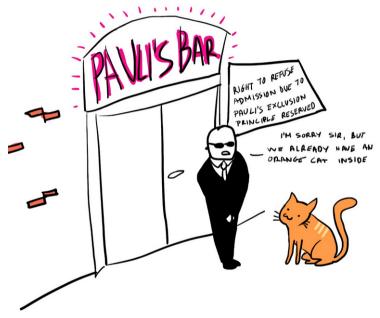
Search for Pauli Exclusion Principle Violations with Gator, a High-Purity Germanium Detector at LNGS

L. Baudis, R. Biondi, <u>A. Bismark</u>, A. Clozza, C. Curceanu, M. Galloway, F. Napolitano, K. Piscicchia, A. Porcelli, F. Piastra, D. Ramírez García

Trento, June 2024

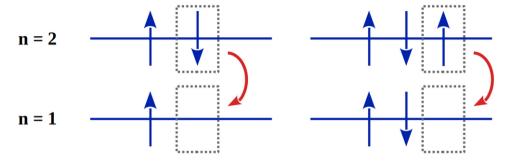


Pauli Exclusion Principle Violations

- Small violations of the Pauli Exclusion Principle suggested by physics beyond the Standard Model
- Possibility: altered particle properties, e.g., quon model [Phys. Rev. Lett. 59 (1987) 2507]:

 $a_k a_l^{\dagger} - q a_l^{\dagger} a_k = \delta_{k,l}$

- Subject to Messiah-Greenberg superselection rule [Phys. Rev. 136 (1964) B248]
 - \rightarrow can only be tested with open systems
- Typically classification of novelty of the fermionsystem interaction (Type I – III) [Found Phys 42 (2012) 1015]

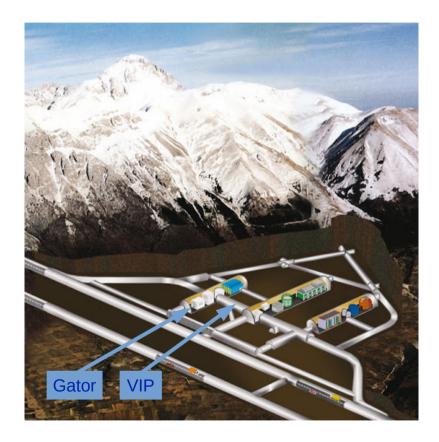

→ talk by Kristian Piscicchia

https://dingercatadventures.blogspot.com/

Ramberg-Snow Technique

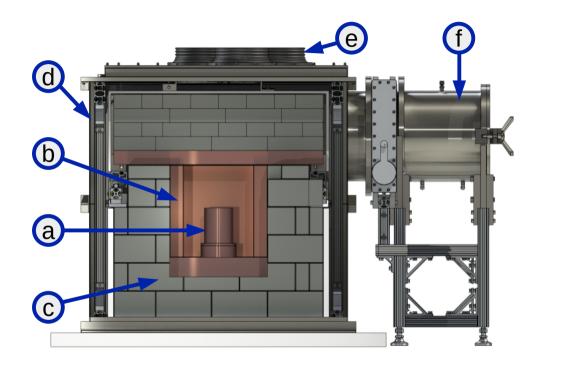
→ talk by Kristian Piscicchia

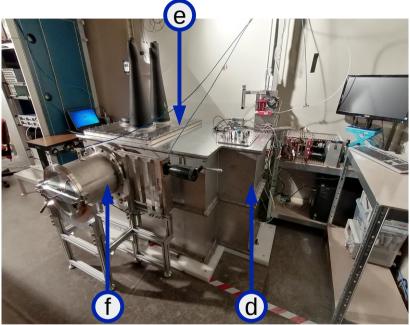
- Search for anomalous X-ray transitions performed by electrons introduced in a target through a direct current (Type II)
 - → lower energy PEP-forbidden transition due to screening of nucleus



- Technique pioneered by Ramberg and Snow [Phys. Lett. B 238 (1990) 438]; presently strongest limit on β²/2 by VIP-2 experiment with Cu conductor [Symmetry 14 (2022) 893]
- Importance of testing the PEP violation probability for various elements
 - \rightarrow here: investigate for Pb
 - \rightarrow previous best limit with Ge detector:
 - $\beta^2/2 < 1.5 \cdot 10^{-27}$ [Found Phys 42 (2012) 1015]

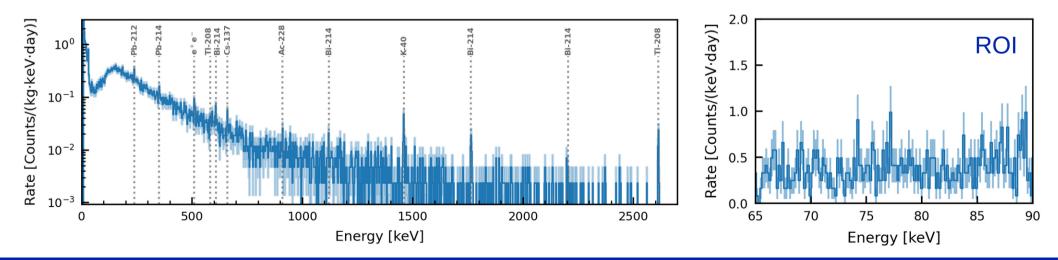
Transition	EM energy	PEPV energy
1s - 2p _{3/2} K _{α1}	74.969 keV	73.713 keV
1s - 2p _{1/2} K _{α2}	72.805 keV	71.652 keV


The Gator Facility


- Low-background germanium counting facility for high-sensitivity γ-ray spectrometry
- Located at the Gran Sasso underground laboratory in Italy (LNGS) at a depth of 3600 m water equivalent
- Core: p-type coaxial high-purity germanium (HPGe) detector with 2.2 kg sensitive mass and a relative efficiency of 100.5%
- Sample chamber volume: 25×25×33 cm³
- Currently used for material radioassay for rare-event search experiments in astroparticle physic (DARWIN/XLZD, LEGEND,...)

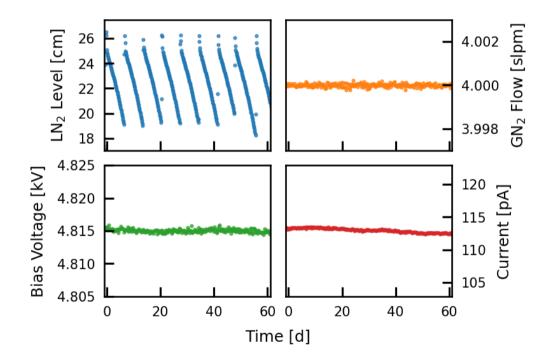
The Gator Detector

→ JINST 17 (2022) P08010

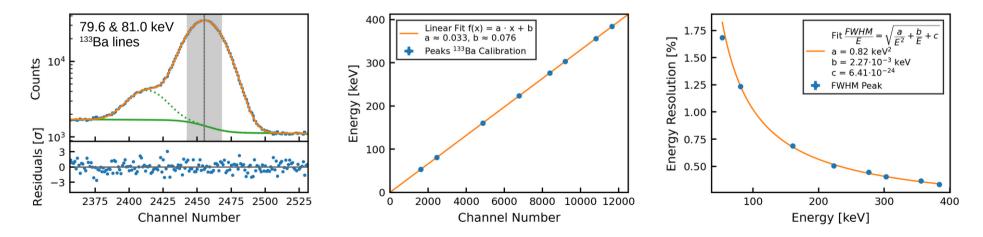


(a) HPGe detector inside Cu-OFE cryostat (cooled with LN_2 via copper coldfinger), (b) OFHC Cu cavity, (c) lead shield, polyethylene sheet, (d) airtight stainless steel enclosure (purged with GN_2), (e) glove ports, (f) sample load lock

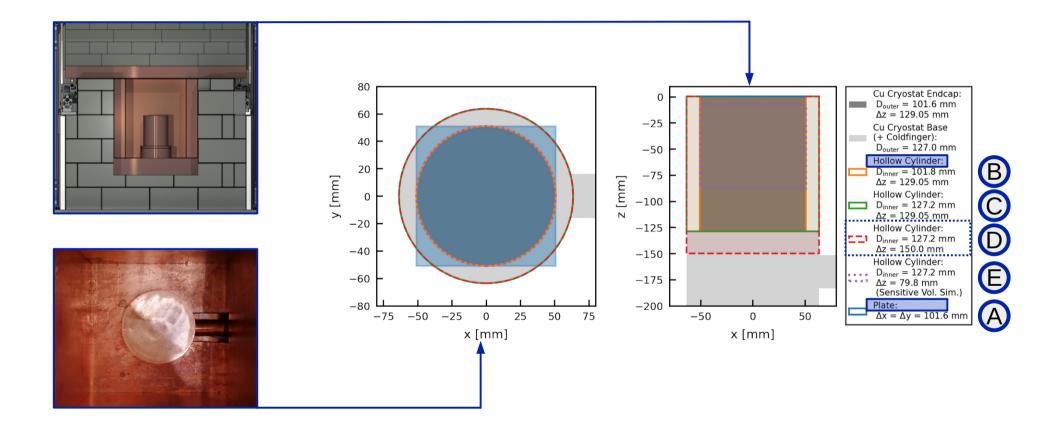
Strength: Low Background


Main contributions:

- detector & shielding materials (²²⁶Ra, ²²⁸Th, ⁴⁰K, ⁶⁰Co,...)
- environmental radon (222Rn in air)
- Integrated rate in range
- ⁻ 100-2700 keV: (82.0±0.7) d⁻¹kg⁻¹
- 65-90 keV: (4.4±0.3) d⁻¹kg⁻¹

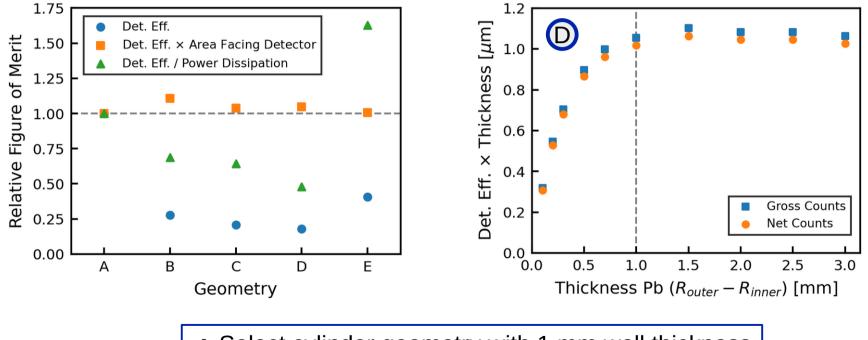

Data Acquisition and Slow Control

- Preamplified signal read out through
 - Ortec Model 672 spectroscopy amplifier and
 - self-triggering Ortec Model ASPEC-927 MCB
 - → record MCA spectra in 4h intervals (no pulse information available)
- Slow control monitoring operation parameters (HV, I_{leakage}, LN₂ level, temperature, rate,...)
 - → detector stability + data quality, removal refill-induced noise



Energy Scale and Resolution

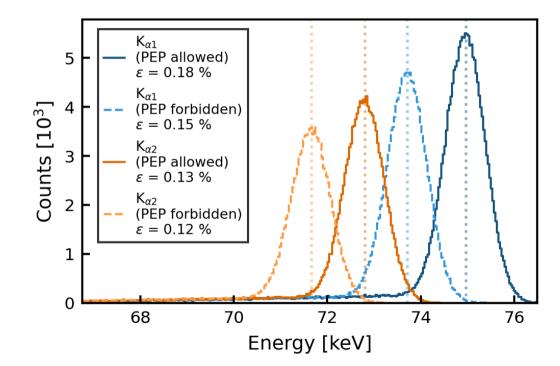
- Regular calibrations with ¹³³Ba and ²²⁸Th sources
 → monitoring stability response, verification MC simulations
- Energy range 0 540 keV (factor 5 reduction w.r.t. material radioassay)
- Linear energy scale with ~ 0.033 keV/channel
- Resolution ~ 1.0 keV (FWHM) at Pb K_{α} lines


GEANT4 MC Simulations – Pb Conductor Geometry

06.2024

GEANT4 MC Simulations – Geometry + Thickness

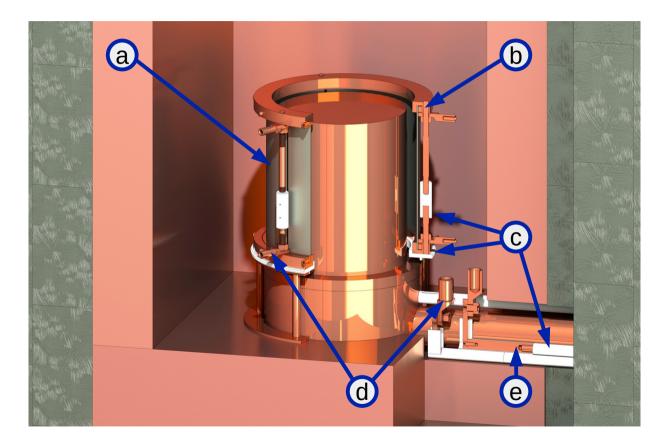
Investigate impact Pb conductor geometry and thickness on detection efficiency:



 \rightarrow Select cylinder geometry with 1 mm wall thickness

GEANT4 MC Simulations – Final Geometry

(122 + 2·1) mm 2·6) mm (108 +


Absorption-induced energy dependence detection efficiency ϵ :

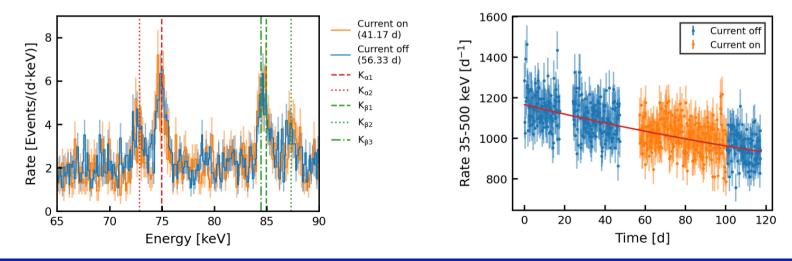
Target Geometry

(a) Tripartite Pb foil cylinder

- (b) Copper rings with segmented clamping elements + set screws
- (c) PTFE insulation
- (d) Copper cable lugs for 2 sets of 3 cables each (10 mm², not shown)
- (e) Segmented high current feedthrough rod

Target Geometry (Photographs)

Inside Gator cavity


Low-Activity Materials

- Material selection:
 - Custom cast and rolled Roman lead sheets from Lemer Pax with <0.2 Bq/kg
 - Oxygen-free high-conductivity copper from XENONnT array support plate [Eur.Phys.J.C 82 (2022) 7, 599]
 - PTFE plates from XENON1T [Eur.Phys.J.C 77 (2017) 12, 890]
 - Tinned fine-strand copper conductor solar cables
 material radioassay with Gator
- Minimize component mass to suppress radioactive background; still ensure mechanical stability (→ SolidWorks simulations) and sufficient conductor cross-sectional and surface areas to reduce heat-up (→ calculations + thermal tests)

Measurements

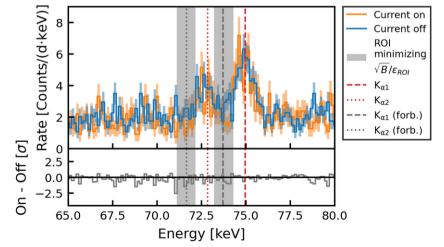
- Data taking April August 2023:
 - 41.17 d current ON (40 A DC from current-stabilized Agilent N5761A Power Supply)
 - 56.33 d current OFF (as background reference)
- Time-dependent background rate from activated radioisotopes
 → expected 5–7% mean rates difference

Analysis – General Assumptions

- Investigate PEP-violating $K_{\alpha 1}$ (BR = 0.47) and $K_{\alpha 2}$ (BR = 0.23) lines
- Total number of interacting new electrons taken as

$$N_{CE} = \frac{I \cdot \Delta t}{e} \cdot \frac{D}{\mu} \cdot P_{cpt}$$

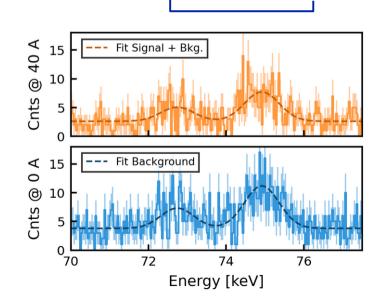
- with -I = 40 A (current)
 - $\Delta t = 41.17$ d (current-on live time) # introduced current electrons
 - $e = 1.602 \cdot 10^{-19} C$ (elementary charge)
 - D = 10.8 cm (effective length Pb conductor)
 - $\mu = 2.34 \cdot 10^{-7}$ cm (mean free path current electron in Pb)
 - $P_{cpt} = 0.9\%$ (electron capture probability)


electron-atom interactions per e⁻

Analysis – Simple Counting Method

- Estimate following [Found Phys 42 (2012) 1015] for comparability
- Gross difference On Off in ROI minimizing sqrt(B)/ε_{ROI}: N_{α1} = -(16±14) cnts ≡ (9±8)%; N_{α2} = -(19±12) cnts ≡ (14±9)%
 → time dependence background + local underfluctuation
 → assume vanishing difference for conservative estimate
- Current-off livetime corrected, weighted average net count Poisson error yields 3σ upper limit electron-atom interactions $N_{3\sigma}/\epsilon_{tot} \approx 3 \times 1.65 \cdot 10^4$ (with ϵ_{tot} including $\epsilon_{detection}$, BR, and ϵ_{ROI})
- Resulting limit factor ~ 11 improvement:

$$\frac{1}{2}\beta^2 < \frac{N_{3\sigma}}{\varepsilon_{tot} \cdot N_{CE}} = 1.3 \cdot 10^{-28}$$


Analysis – Fitting

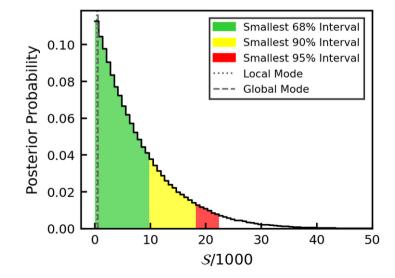
- Background / signal model: PEP-allowed peaks Background continuum $\mathcal{F}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) = \begin{bmatrix} y_1 \cdot K_{\alpha_1}(\theta_1, \theta_2) + y_2 \cdot K_{\alpha_2}(\theta_3, \theta_4) + y_3 \cdot \operatorname{Pol}_1(\theta_5) \\ + \mathcal{S} \cdot \varepsilon_{det,1} \cdot \varepsilon_{BR,1} \cdot \operatorname{PEPV}_1(\theta_2) + \mathcal{S} \cdot \varepsilon_{det,2} \cdot \varepsilon_{BR,2} \cdot \operatorname{PEPV}_2(\theta_4) \end{bmatrix} \begin{array}{c} \text{PEP-violating} \\ \text{peaks} \end{bmatrix}$
- Likelihood for simultaneous fit:

$$\begin{aligned} \mathcal{L}(\mathcal{D}^{on}, \mathcal{D}^{off} | \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) &= \operatorname{Poiss}(\mathcal{D}^{on} | \mathcal{F}^{on}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})) \\ &\cdot \operatorname{Poiss}(\mathcal{D}^{off} | \mathcal{F}^{off}(\boldsymbol{\theta}, \boldsymbol{y} \cdot \mathcal{R})) \end{aligned}$$

• Empirical normalization factor:

$$\mathcal{R} = \int_{\mathcal{D}^{on}} \int_{E} f \, \mathrm{d}t \, \mathrm{d}E \Big/ \int_{\mathcal{D}^{off}} \int_{E} f \, \mathrm{d}t \, \mathrm{d}E$$

Results – Fitting (Bayesian)


• Gaussian priors for θ (\rightarrow calibrations) and \Re (\rightarrow background time-dependence, t^{on}/t^{off})

• Posterior probability:
$$p(\theta, y, S | D^{on}, D^{off}) = \frac{\mathcal{L}(D^{on}, D^{off} | \theta, y, S) p(\theta, y, S)}{\int \mathcal{L}(D^{on}, D^{off} | \theta, y, S) p(\theta, y, S) \, \mathrm{d}\theta \, \mathrm{d}y}$$

- Marginalized posterior probability distribution of signal yield \mathcal{S} via MCMC integration:

$$p(\mathcal{S}|\mathcal{D}^{on}, \mathcal{D}^{off}) = \int p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}|\mathcal{D}^{on}, \mathcal{D}^{off}) \,\mathrm{d}\boldsymbol{\theta} \,\mathrm{d}\boldsymbol{y}$$

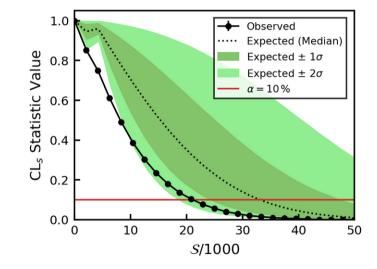
- Mode at $\mathcal{S} = 0 \rightarrow$ upper limits using $\beta^2/2 = \mathcal{S}/N_{CE}$:
 - 90% C.L.: $S < 1.84 \cdot 10^4 \Rightarrow \beta^2/2 < 4.8 \cdot 10^{-29}$
 - 99% C.L.: S < 32.9 · 10⁴ → β²/2 < 8.7 · 10⁻²⁹

Results – Fitting (Frequentist)

- Cross-check with modified frequentist CL_s analysis
- Exclusion requirement at nominal C.L. of $1-\alpha$:

$$CL_s = \frac{p_S}{1 - p_0} < \alpha$$

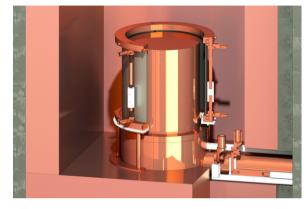
with p-value:


$$p_{\mathcal{S}} = P(t_{\mathcal{S}} \ge t_{obs} | \mathcal{S}) = \int_{t_{obs}}^{\infty} f(t_{\mathcal{S}} | \mathcal{S}) \, \mathrm{d}t_{\mathcal{S}}$$

• Resulting 90% C.L. upper limit ($\alpha = 0.1$) of

 $\mathcal{S} < 2.1 \cdot 10^4 \twoheadrightarrow \beta^2/2 < 5.7 \cdot 10^{-29}$

slightly more conservative than Bayesian approach


- $\sim 1.5\sigma$ deviation from the median expected CL_s statistic

Summary and Conclusion

→ Manuscript in preparation

- Search for small Pauli Exclusion Principle violations with Gator, a low-background HPGe detector at LNGS
- Applied Ramberg-Snow technique to probe PEP-forbidden K_{α1} and K_{α2} transitions in a current-carrying Pb conductor in compliance with the Messiah-Greenberg superselection rule (type II experiment)

 V_{0} 15 V_{0} 10 V_{0} 5 V_{0} 7 V_{0}

No signs of PEP violations observed

 \rightarrow set limits improving previous most stringent bounds for this type of measurement and material by more than one order of magnitude:

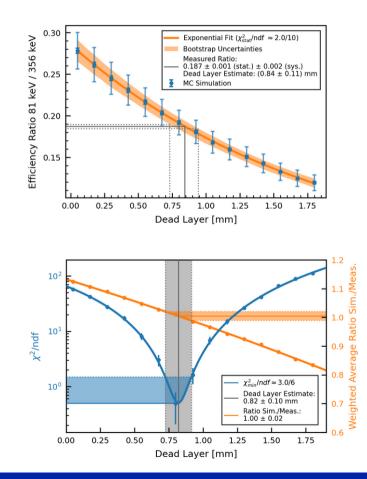
 $\frac{1}{2}\beta^2 < 4.8 \cdot 10^{-29}$

Bayesian analysis (90% C.L.)

Appendix

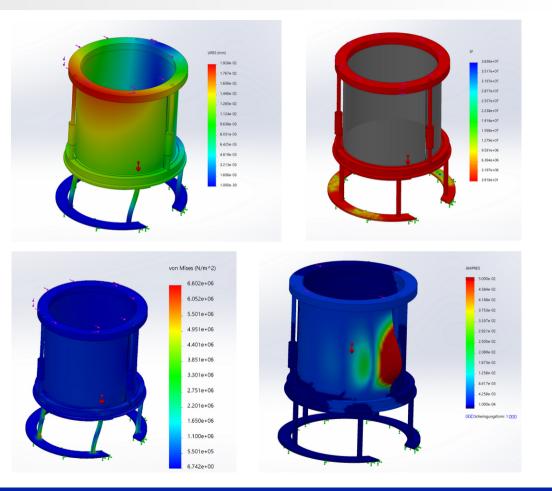
Novelty Fermions

- Categorization experiments by how "new" the fermion-system interaction can be assumed to be according to [Found Phys 42 (2012) 1015]:
 - **Type I:** fermion has not previously interacted with any other fermions
 - primordial system formation
 - \rightarrow recently created fermions, e.g., from β-decay or pair production (Type Ia)
 - **Type II:** fermion has not previously interacted with that investigated system
 - distant fermions brought to interact with system, e.g., Ramberg-Snow technique employed here
 - nearby fermions brought to interact with system, e.g., electrons in the Fermi sea of a conductor (Type IIa)
 - **Type III:** fermion within investigated system
 - violate the MG superselection rule, but can set stringent bounds on the spinstatistics deformation induced by Non-Commutative Quantum Gravity models

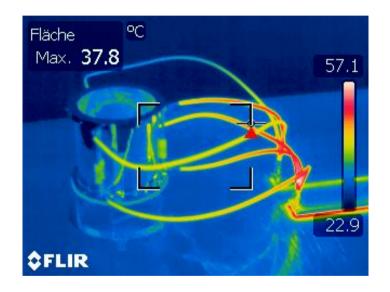

Detector	Location (Depth m.w.e.)	Mass [kg]	Efficiency [%]	FWHM [keV]	Rate 60-2700 keV [cnts/(kg·day)]	Ref.
Gator	LNGS (3600)	2.2	100.5	1.98	89.0 ± 0.7	
Maeve	SURF (4300)	2.0	85	3.19	956.1	[1]
GeMPI 3	LNGS (3600)	2.2	98.7	2.20	24 ± 1	[2]
Belmont	Boulby (2805)	3.2	160	1.92	135.0	[1]
GeOroel	LSC (2450)	2.2	109	1.85	165.3	[3]
GeMSE	LVdA (620)	2.0	107.7	1.96	88 ± 1	[4]

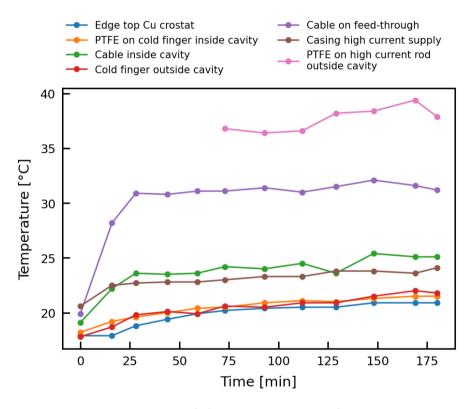
Eur. Phys. J. C 80 (2020) 1044
 N. Ackermann, private communication

[3] Bandac, "Ultra-Low Background Services in the LSC", DS-Mat Meeting, GSSI, 2019[4] JINST 17 (2022) P04005


Dead Layer Estimation

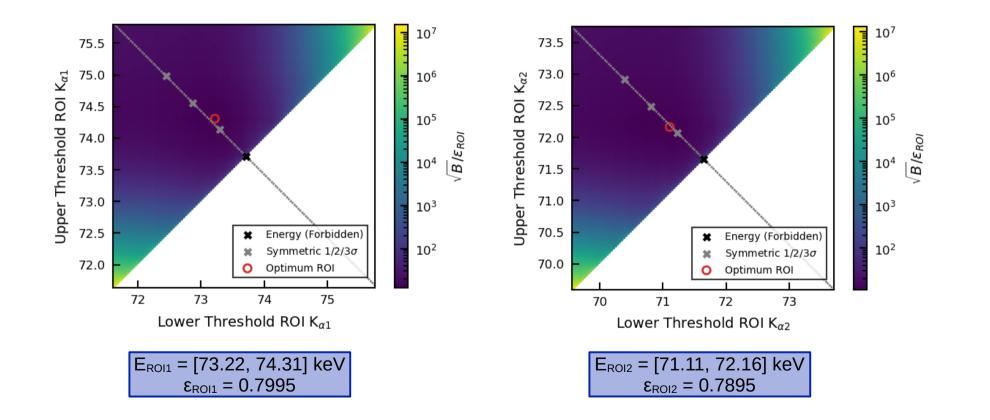
- Thickness insensitive volume from Ba-133 calibration data:
 - Top and lateral source position in Marinelli beaker
 - Consistent estimates from ratio dominant lines with large energy difference and χ^2 minimization of all lines w.r.t. variable ratio sim./meas.
- Resulting values implemented in GEANT4 simulation code

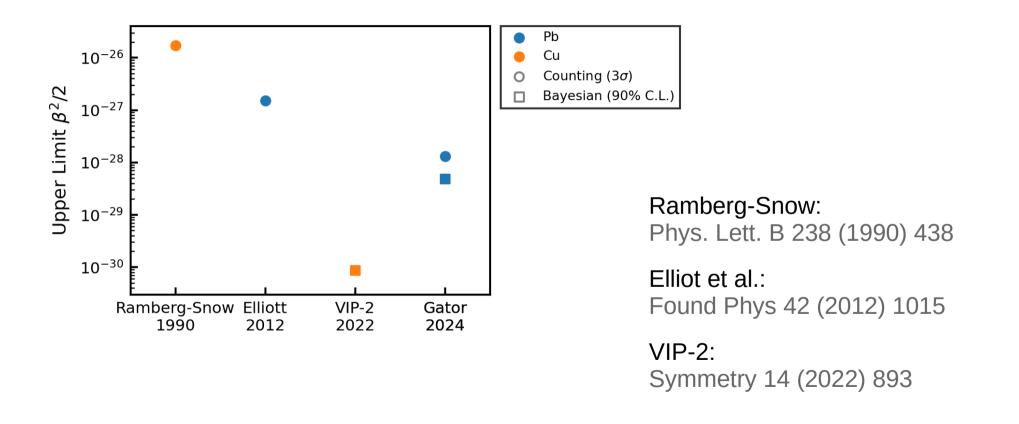



Stability Simulations

- SolidWorks stability simulations: static (stress, displacement, strain, safety factor) + buckling
- Gravity + different force / torque scenarios (shown: extreme case, i.e. gravity + 10 N lateral force top + 1 Nm torque)
- Minimum safety factor:
 - 570 (gravity only)
 - 39 (extreme case)

Thermal Tests (100 A)




Inside Gator cavity (contact thermometer)

Test assembly at UZH (FLIR camera)

Optimization ROI

Comparison Other RS-Technique Experiments

