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Prolegomena

Classical gravity

▶ Matter is classical
▶ Spacetime is classical

Semiclassical gravity

▶ Matter is quantum
▶ Spacetime is classical

Fully quantum gravity

▶ Matter is quantum
▶ Spacetime is quantum



Standard semiclassical gravity



“Standard” semi-classical gravity

A semi-classical theory of gravity tells 2 stories:
1. Quantum matter moves in a curved classical space-time
2. The classical space time is curved by quantum matter

1 is known (QFTCST), 2 is not

The crucial question of semi-classical gravity is to know how quantum matter should
source curvature.
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Møller-Rosenfeld semi-classical gravity

The CHOICE of Møller and Rosenfeld it to take:

Rµν −
1
2R gµν = 8πG ⟨T̂µν⟩

→ source gravity via expectation values

There are:
▶ technical relativistic difficulties [renormalization of ⟨Tµν⟩]
▶ conceptual non-relativistic difficulties [Born rule,· · · ].

Christian Møller

Leon Rosenfeld



Schrödinger-Newton

1. Non-relativistic limit of the “sourcing” equation:

∇2Φ(x , t) = 4πG ⟨ψt |M̂(x)|ψt⟩

2. Non-relativistic limit of QFTCST (just external field)

d
dt |ψ⟩ = −i

(
H0 +

∫
dx Φ(x , t)M̂(x)

)
|ψt⟩,

Putting the two together:

d
dt |ψt⟩ = −iH0|ψt⟩+ i G

∫
dx dy ⟨ψt |M̂(x)|ψt⟩ M̂(y)

|x − y | |ψt⟩.



The big question

What mathematical object can one
construct to source the gravitational field
while keeping things consistent?



The big question, generalized

How can one consistently couple
quantum and classical variables?

ρt ←→ zt



3 ways to do this

1. Continuous measurement and feedback
2. Spontaneous collapse models
3. General continuous dynamics with a classical subspace [used by Oppenheim]

Main result from 2403.19748: the 3 are mathematically equivalent



Continuous measurement and feedback



Continuous quantum measurement – derivation

Continuous measurement – without Zeno effect

▶ time between ancillas ∆t ∝ ε
▶ interaction strength ω ∝

√
ϵ



Continuous quantum measurement

Stochastic Master Equation (∼ 1987)

Density matrix:

dρt = −i [H, ρt ] dt
standard quantum dynamics

+D[ĉ](ρt) dt
decoherence

+ H[ĉ](ρt) dWt
measurement backaction

Signal:
drt = tr

[
(ĉ + ĉ†) ρt

]
dt + dWt

with:
▶ D[O](ρ) = OρO† − 1

2
(
O†Oρ+ ρO†O

)
▶ H[O](ρ) = Oρ+ ρO† − tr

[
(O+ O†) ρ

]
ρ

▶ dWt
dt “white noise”

V. Belavkin

A. Barchielli

L. Diósi



The measurement signal

The signal – or continuous result

drt = tr
[
(ĉ + ĉ†) ρt

]
dt + dWt

→ A noisy version of the quantum expectation value

Experimental aside
The signal yt is routinely measured, for various measured operators, in superconducting circuits
using via homodyne / heterodyne detection



Measurement based feedback

Step 1: Have the classical zt depend on rt

dzt = F (zt) dt + G(zt) drt

Step 2: Have the quantum depend on the classical

H −→ H + V (zt)

Consistent by construction since derivable as effective from Copenhaguen QM



Most general stochastic equations

Quantum stochastic master equation

dρ = −i [H0 + V (z), ρ] dt +
n∑

k=1
D[ĉk ](ρ) dt +√ηk M[ĉk ](ρ) dWk ,

Signal stochastic differential equation (the quantum classical glue)

drk =
1
2tr[(ĉk + ĉ†

k )ρ] dt + 1
2√ηk

dWk .

Classical stochastic differential equation

dza = Fa(z) dt + Gak(z)
√
ηk drk

F , G are functions – V (z), ĉk are operators



“Intuition pump” picture for gravity

AS IF – “There are detectors in space-time measuring the mass density continuously and curving
space-time accordingly.” → explains consistency



Spontaneous collapse models



The idea of collapse models

Other names: [Objective / spontaneous / dynamical] [reduction / collapse] [model / program]

Schödinger equation + tiny non-linear bit

d
dtψt = −

i
 h

H ψt + ε(ψ) ,

H is the Standard Model Hamiltonian (or non-relativistic approx)



Spontaneous collapse models

Mathematically, (continuous) Markovian spontaneous collapse models are equivalent to
continuous measurement of appropriate observables

O −→ M̂σ(x)



Metaphysics – Ontology – beables

What is real ? What is the world made of ?

1. GRW0 The wave-function ψt itself (but infinite literature of
subtleties)

2. GRWm The mass density ⟨M̂(x)⟩

⟨M̂(x)⟩ =
∑

k

∫
dx1 · · · dxn |ψ(x1, · · · , x , · · · , xn)|

2

x in kth position

3. GRWf The events (tf , xf ) where the wave-function collapse (the
flashes) – [Bell’s choice!]

Fact: (continuous) flashes = signal



Collapse model picture of hybrid dynamics

“The gravitational interaction is mediated by a stochastic field, which is the local beable of the
theory”



Embedding a classical sector in quantum dynamics

ρ(z , t)



Formulation of the problem
Quantum-classical state
A state diagonal in the classical variables z

ρQC =

∫
dz ρQ(z) |z⟩⟨z |

▶ used early on (Diosi, Halliwell, Gisin)
▶ starting point of Oppenheim



Most general second order PDE

Constraints:
▶ Assuming z evolves continuously → at most second order derivatives
▶ ρ(z) physical → positivity conditions

∂ρt(z)
∂t =− i [H, ρt(z)] +

n∑
k=1

D[ĉk ](ρt(z))

−
∂

∂za

[
Fa(z)ρt(z) +

√
ηk Gak(z)

2 (ĉkρt(z) + ρt(z)ĉ†
k )

]
+

1
2

∂2

∂za∂zb

[
Gak(z)Gbk(z)

4 ρt(z)
]



Equivalence via Ito’s lemma

This PDE is the “Fokker-Planck” version of the “Langevin” dynamics of measurement +
feedback:

Equivalence
Using Itô’s lemma, one has:

∀f E[ρt f (zt)]
measurement and feedback

=

∫
f (z) ρt(z) dz

hybrid PDE

.



Back to gravity



History

Newtonian early work
Source gravity by measuring the mass density:

∇2Φ(x) = 4πGSM̂(x)

toy model – [Kafri, Taylor, Milburn 2014]
full Newtonian potential – [Diósi & T 2015]

General relativistic extensions
Construct a PDE for ρ(z) for z the gravitational
degrees of freedom in ADM general relativity

[Oppenheim, Weller-Davies, Layton, Soda,
Russo, ... 2018 → today]



Markovian/Newtonian limit

Technically

Newtonian limit = Markovian feedback limit

z ∝ dr

=⇒ technically infinitely easier =⇒ one can say something

Experimentally

Hard to probe anything else in the near future



Model

1. Step 1: continuous mass density measurement
We imagine that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with

O→ M̂(x), ∀x ∈ R3

γ→ γ(x , y) coding detector strength and correlation

and there is a “mass density signal” S(x) in every point.

2. Step 2: Feedback

We take the mass density signal S(x) to source the
gravitational field φ:

∇2φ(x) = 4πG S(x)

which is formally equivalent to quantum feedback.
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Result

Standard quantum feedback like computations give for ρt = E[|ψt⟩⟨ψt |]:

∂tρ =− i
[
H0 +

1
2

∫∫
dxdyV (x , y)M̂(x)M̂(y), ρt

]
−

1
8

∫∫
dxdy D(x , y)

[
M̂(x),

[
M̂(y), ρt

]]
,

with the gravitational pair-potential

V =

[
4πG
∇2

]
(x , y) = −

G
|x − y | ,

and the positional decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V ⊤
]
(x , y)

Hence the expected pair potential has been generated consistently at the price of more
decoherence.



Principle of least decoherence

D(x , y) =
[γ

4 + V ◦ γ−1 ◦ V ⊤
]
(x , y)

There is still a (functional) degree of freedom γ(x , y):
▶ Large ∥γ∥ =⇒ strong “measurement” induced decoherence
▶ Small ∥γ∥ =⇒ strong “feedback” decoherence

There is an optimal kernel that minimizes decoherence.

Diagonalizing in Fourier, one gets a global minimum for

γ = 2
√

V ◦ V ⊤ = −2V

Hence:
D(x , y) = −V (x , y) = G

|x − y |
This is just the decoherence kernel of the Diósi-Penrose model (erstwhile heuristically derived)!
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Regularization

Even for the minimal decoherence prescription, the decoherence is infinite.

Adding a regulator at a length scale σ has 2 effects:
▶ It tames decoherence, making it finite
▶ It regularizes the pair potential ∝ 1

r for r ≲ σ

=⇒ there is a trade-off.

Experimentally:
10−15 → 10−10m
decoherence constraint

≪ σ ⩽ 10−4m
gravitational constraint

Importantly σ > ℓCompton ≫ ℓPlanck.
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Summary

Conceptually: 3 equivalent ways to construct hybrid quantum-classical dynamics
1. Measurement and feedback which shows consistency
2. Spontaneous collapse which shows empirical effects + measurement problem solution
3. Quantum Classical PDE which shows generality

Quantum classical dynamics are possible and well understood

For gravity
▶ Newtonian limit: well defined model – minimizing decoherence gives DP + Newtonian

potential
▶ General case: being explored by Oppenheim et al. – big progress, but not clear all constraints

can be met



BONUS SLIDES



The problems with Schrödinger-Newton

The SN equation is problematic for a fundamental theory because of its deterministic
non-linearity (Gisin, Diósi, Polchinski)
▶ If there is no fundamental collapse [Many Worlds, Bohm,· · · ], super weird world unlike our

own
▶ If there is fundamental collapse [Copenhaguen, Collapse models]: break down of the

statistical interpretation of states & instantaneous signaling



The problems with Schrödinger-Newton

Without collapse upon measurement (Bohm, Many Worlds,· · · )

Decohered branches interact with each other → empirically inadequate

=⇒
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The problems with Schrödinger-Newton
With collapse upon measurement (either from pure Copenhaguen or collapse models).

Consider a mass entangled with a spin far away:

|Ψ⟩ ∝ |left⟩Alice ⊗ | ↑⟩Bob + |right⟩Alice ⊗ | ↓⟩Bob.

Bob can decide to whether or not he measures his spin:



Feedback approach



Measurement + feedback
In orthodox quantum theory, trivial way to do quantum-classical coupling: measurement &
feedback [Diósi & Halliwell]

The state of the controler is the classical variable

Idea:
Source gravity by measuring the mass density:

∇2Φ(x) = 4πGSM̂(x)

[Kafri, Taylor & Milburn 2014]
[Diósi & T 2015]
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feedback [Diósi & Halliwell]

The state of the controler is the classical variable

Idea:
Source gravity by measuring the mass density:

∇2Φ(x) = 4πGSM̂(x)

[Kafri, Taylor & Milburn 2014]
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Formal / “intuition pump” picture

“There are detectors in space-time measuring the mass density continuously and curving
space-time accordingly.” → this is why it works



Ontological picture

“The gravitational interaction is mediated by a stochastic field, which is the primitive ontology
of the theory” → this is how it should be understood physically



Model

1. Step 1: continuous mass density measurement
We imagine that space-time is filled with detectors weakly measuring the mass density:

The equation for matter is now as before with

O→ M̂(x), ∀x ∈ R3

γ→ γ(x , y) coding detector strength and correlation

and there is a “mass density signal” S(x) in every point.

2. Step 2: Feedback

We take the mass density signal S(x) to source the
gravitational field φ:

∇2φ(x) = 4πG S(x)

which is formally equivalent to quantum feedback.
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Regularization

Even for the minimal decoherence prescription, the decoherence is infinite.

Adding a regulator at a length scale σ has 2 effects:
▶ It tames decoherence, making it finite
▶ It regularizes the pair potential ∝ 1

r for r ≲ σ

=⇒ there is a trade-off.

Experimentally:
10−15m

decoherence constraint
≪ σ ⩽ 10−4m

gravitational constraint

Importantly σ > ℓCompton ≫ ℓPlanck.
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Summary of the approach

1. Most importantly: Constructing consistent models of semiclassical gravity is possible...
in the Newtonian limit

2. The intuition is to use measurement based Markovian feedback

3. The price to pay for semiclassical coupling is intrinsic and gravitational decoherence
4. Minimizing total decoherence gives a parameter free model
5. · · · up to regularization σ, which is upper bounded and lower bounded experimentally:

10−15m
decoherence constraint

≪ σ ⩽ 10−4m
gravitational constraint
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Experimental final word

Lucy Reading-Ikkanda/Quanta Magazine

l



How seriously should we take it?

Antoine, do you seriously believe the
world is like in your theory?

Sheldon Goldstein

I bet 99 to one that the outcome will be
consistent with gravity having quantum
properties.

Carlo Rovelli

NewScientist — 14 April 2018
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Conclusion
Does gravity need to be quantized? No
▶ Weak arguments grounded on hope and aesthetics
▶ Strong argument: standard approach to semiclassical gravity empirically inadequate

Counter example
▶ Semiclassical coupling ≡ Measurement based feedback
▶ Parameter free model up to regularization

Experimentally
▶ Quantitatively: additional decoherence with a very specific form
▶ Qualitatively: cannot entangle
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IV – Link with collapse models



Collapse models

Naive definition
Collapse models are an attempt to solve the
measurement problem of quantum mechanics through
an ad hoc, non-linear, and stochastic modification of
the Schrödinger equation.

∂t |ψt⟩ = −iH |ψt⟩+ ε fξ(|ψt⟩)

A few names:

Pearle, Ghirardi, Rimini, Weber,
Diósi, Adler, Gisin, Tumulka,
Bedingham, Penrose, Percival,
Bassi, Ferialdi, Weinberg ...



Collapse models

The modification is such that:

Weak collapse
A single particle extremely rarely
collapses in the position basis
▶ Microscopic dynamics unchanged

Amplification
The effective collapse rate is renormalized for
macroscopic superpositions:
▶ Macroscopic superpositions almost instantly

collapse



We have a collapse model!

Actually, the continuous measurement of the regularized mass density gives:
▶ The Continuous Spontaneous Localization (CSL) model for γ(x , y) ∝ δ(x , y) i.e. maximally

local (up to regularization)
▶ The Diósi-Penrose (DP) model for γ(x , y) minimizing decoherence

Consequences
1. Our model solves the measurement problem. There are no macroscopic superpositions
2. It is tempting make an analog construction for GRW
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The GRW model
GRW model for N spinless particles

▶ Standard linear evolution between jumps

∂t |ψt⟩ = −iH |ψt⟩

▶ Jump hitting particle k in xf at a rate λ

|ψt⟩ →
L̂k(xf )|ψt⟩
∥L̂k(xf )|ψt⟩∥

with
P(xf ) = ∥L̂k(xf )|ψt⟩∥2

and
L̂k(xf ) =

1
(πr2

c )
3/2 e(x̂k−xf )

2/(2r2
c )

Ghirardi, G. C., Rimini, A., & Weber, T. (1986) Phys. Rev. D, 34(2), 470.



GRW with massive flashes

Sourcing equation –general case–
Gravitational Φ field created by a single flash
(xf , tf ):

∇2Φ(x , t) = 4πGmkλ
−1f (t − tf , x − xf )

Sourcing equation –sharp limit–
Gravitational Φ field created by a single flash
(xf , tf ):

∇2Φ(x , t) = 4πGmkλ
−1δ(t − tf , x − xf )



GRW with massive flashes

Add the gravitational field in the Schrödinger equation

V̂G =

∫
dx Φ(x)M̂(x)

= −Gλ−1
N∑

ℓ=1
mkml

∫
dx f (t − tf , x − xf )

|x − x̂ℓ|

with M̂(x) =
∑N

ℓ=1 mℓδ(x − x̂ℓ).

In the limit of sharp sources, V̂G is ill-defined but the corresponding unitary is fine:

Ûk(xf ) = exp
(
−

i
 h

∫+∞
tf

dtV̂G(t)
)

= exp
(

i G
λ h

N∑
ℓ=1

mkmℓ

|xf − x̂ℓ|

)



GRW with massive flashes

Just after a jump, a jump dependent unitary is applied to the N-particle system:

|ψt⟩ → Ûk(xf )
L̂k(xf )|ψt⟩
∥L̂k(xf )|ψt⟩∥

=
Ûk(xf )L̂k(xf )|ψt⟩
∥Ûk(xf )L̂k(xf )|ψt⟩∥

:=
B̂k(xf )|ψt⟩
∥B̂k(xf )|ψt⟩∥

It is just like changing the collapse operators to non self-adjoint ones!

In the end, all the empirical content lies in the master equation:

∂tρt = −
i
 h
[H, ρt ] + λ

n∑
k=1

∫
dxf B̂k(xf )ρt B̂k(xf ) − ρt



GRW with massive flashes: phenomenology

Single particle master equation
Consider the density matrix

ρ : R3 ×R3 −→ C

(x , y) 7−→ ρ(x , y)

It obeys:
∂tρt(x , y) = λ (Γ(x , y) − 1) ρ(x , y)

with

Γ(x , y)=
∫ dxf

(πr2
C )

3/2 exp
(

i Gm2

λ h

[
1

|x − xf |
−

1
|y − xf |

])
× exp

(
−
(x − xf )

2 + (y − xf )
2

2r2
C

)

Lemma 1:

▶ Γ(x , y) is real → pure
decoherence

▶ No self-attraction

Lemma 2:

▶ The model is falsifiable
for “all” values of λ



GRW with massive flashes: recovering Newtonian gravity

Two lengths scales in the problem:
▶ rc the collapse regularization radius
▶ rG = Gm2/( hλ) a new gravitational length scale

For distances d larger than these two length scales:
▶ One can neglect the Gaussian smearing of the collapse
▶ The fact that gravity “kicks” instead of being continuous can be neglected on the average

evolution:

Uk(xf ) ≃ 1 + i G
λ h

N∑
ℓ=1

mkmℓ

|xf − x̂ℓ|

We then recover Newton’s potential! (+ decoherence)



Bonus: Survival bias


