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Introduction 

lower bounds

request the collapse the smallest 
visible object

in a spatial superposition
on a time scale that is comparable

with the time resolution of the human eye

Different predictions of DP with respect to QM
experimental bounds 

upper bound• Theoretical

• if 𝑅0 too large
collapse effect too weak

collapse not sufficiently strong 
to collapse macro objects

DP model
𝑅0

length
parameter

• Measurement problem
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The DP model



DP master equation 

DP non-unitary term responsible for the collapse



DP master equation 

mass density

effective radius 

free parameter
radius of the particle

rigid body approximation

𝑚𝑖 , 𝑅𝑖 , ෝ𝒙𝑖

M

→

DP non-unitary term responsible for the collapse
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Aim

CM density matrix

collapse timescale

Upper bound on 𝑹𝟎

Dynamics  of the CM degrees of freedom

interested in the collapse dynamics

→ neglect the free evolution
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CM system in a spatial superposition d

compute the collapse time τ(d)

time-scale after which the collapse is effective

exp
if after t the system is still observed

in a superposition

𝑅0 determining τ is exp excluded

lower bound on 𝑅0

theo

upper bound on 𝑅0

DP model must collapse

any macroscopical object

within the observational time-scale 𝜏𝑜𝑏𝑠

τ(d) < 𝜏𝑜𝑏𝑠

We don’t have to see

macro quantum superpositions

ambiguity
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The measurement is performed with the human eye

Plate made of a single layer of graphene

CM spatial superposition

superposition distance

cat
state

Fix the system of interest

𝑑 = 4𝐿 = 100𝜇𝑚

𝜏𝑜𝑏𝑠 = 0.01𝑠

𝐿𝑜𝑏𝑠 = 25𝜇𝑚

here there+
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Quantify τ(d) by explicitly computing ΔE(d)

sum of 𝑵𝟐 terms 

the atoms lie in a periodic lattice

r is a function of the basis vector 𝒂i

and lattice index 𝒏i

this sum and thus τ(d)

are computed numerically

for different values of 𝑅0 and N 

ഥ𝒂1

ഥ𝒂2

ഥ𝒂1

ഥ𝒂2

(𝑛1, 𝑛2)=(1,2)

4x

ത𝒓 = 𝑛1ഥ𝒂1 + 𝑛2ഥ𝒂2

𝑛𝑖 ∊ ℕ

sum of 𝐎(𝑵) terms 

f(𝐫ij , 𝑅0, 𝒅) depends only on 𝐫ij

ത𝒓



t∼𝑁

t∼𝑁2

Smart ∼ 5 min
Direct ∼ 12817 centuries!!

Marco’s PC
processor Intel Core i7-8750H

computation on CPU 
parallelized on 12 threads

Computational time 
(𝑅0 = 10−5Å)
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of the graphene plate in a superposition of d=4L 

Comparison of τ(d) with 𝜏𝑜𝑏𝑠
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Comparison of τ(d) with 𝜏𝑜𝑏𝑠

values of 𝑅0 for which
τ(d) > 𝜏𝑜𝑏𝑠

are excluded



DP model does not collapse the 
graphene plate fast enough

values of 𝑅0 for which
τ(d) > 𝜏𝑜𝑏𝑠

are excluded

Behaviour of τ(d) varying 𝑅0 for different number of atoms N (and thus length l) 
of the graphene plate in a superposition of d=4L 

Comparison of τ(d) with 𝜏𝑜𝑏𝑠



𝑑 = 4𝐿

DP model → τ(d)

τ(d) > 𝜏𝑜𝑏𝑠
plate made 

of a single layer of graphene

human eye as the measurement apparatus

𝜏𝑜𝑏𝑠 = 0.01𝑠

𝐿𝑜𝑏𝑠 = 25𝜇𝑚

Arbitrarity
choice of measurement system



time 𝜏𝑜𝑏𝑠

τ(d) ~ 0.01𝑠

no collapse

macroscopic!!

τ(d) ~3𝑠

𝐿 fixed 
25μm

Taking longer 𝜏𝑜𝑏𝑠 allows the collapse of smaller systems 

About the time 

collapse

~0.01𝑠

~3𝑠

L( )



Behaviour of τ(d) varying 𝑅0 for different superposition distances 𝒅
(L = 25𝜇𝑚, 𝑁 = 2 × 1010)

The collapse is not fast enough
to occur before 𝝉𝒐𝒃𝒔

𝑅0> L
the collapse effect becomes stronger 

for larger values of d

d < L
the collapse effect loses strength

∀ 𝑅0



L ∼ 1/5mm

excluded

𝑅0 > 106Å

upper bound

dimension 𝐿 → 𝑑

A system collapsing fast enough

Changing 𝐿𝑜𝑏𝑠 allows changing 𝐿

L ∼ 10 𝐿𝑜𝑏𝑠

About the system 



3d τ(d) = 𝜏𝑜𝑏𝑠

cubic system 
made of stacked layers

of graphene

Comparison of τ(d) with 𝜏𝑜𝑏𝑠 varying 𝑅0

for different number of atoms N (and thus length L)
of a cubic  graphene system with d=4L

3d system
collapses faster

than a 2d one

same length L
3d has much more atoms involved

same number of atoms N
3d atoms are more densily disposed

the Newtonian interaction is stronger
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Not all macroscopic objects collapse effectively

Our analysis shows that the quantum-to-classical transition occurs 
roughly at the border (1010 − 1012 atoms) between macro/micro

Experimental verification on DP model
→ how effective the DP collapse is in predicting the emergence 

of a macroscopic classical  world from an underlying quantum structure

conclusions

The collapse is roughly independent from 𝑅0

for a large range of values (1 − 106Å)

relevant



Various are the theories 
but Beauty is all one however

which brings them out

paraphrasing the

Orlando Furioso 
XXIV,2, first verses

Ludovico Ariosto
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Backup slides



ΔE can be well approximated
by 4 linear functions

for different values of 𝑅𝑒𝑓𝑓

Behaviour of ΔE as a function of 𝑅0 in a logarithmic plot
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δ(t) → f(t) 

non-trivial two-time correlation function

CM density matrix evolves with a time-dependent timescale τ(d,t)

Neglecting the free evolutionColored version of the DP model
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Colored version of the DP model

δ(t) → f(t) 

non-trivial two-time correlation function

CM density matrix evolves with a time-dependent timescale τ(d,t)

cutoff frequency of the noise
parameter of the DP model

the collapse requires more time 
to become effective ∀ Ω𝐶

τ(d, t) longer than that
of the standard DP

Neglecting the free evolution
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