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Outline

influence of Hawking radiation on quantum entanglement
(E) for bimodal Gaussian states near a Schwarzschild
black hole is investigated
for a thermal squeezed state of a bimodal bosonic system
the Hawking radiation reduces and even can destroy E
between the mode of a Kruskal observer Alice and the
mode of Bob, who is an accelerated observer hovering
outside the event horizon of black hole
by contrary, the Hawking radiation increases and even can
generate q. E between Bob and anti-Bob, who is a
hypothetical observer inside event horizon
in both these scenarios the competition between the
contrary influences produced by Hawking temperature,
squeezing and field frequency, may favour the preservation
of q. E
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Outline

we investigate also the influence of the thermal
environment on the behaviour in time of E between the
considered observers and show that E is destroyed in a
finite time for both considered bipartite scenarios of
observers Alice and Bob, and respectively Bob and
anti-Bob, for non-zero values of the temperature of the
thermal environment, i.e. the phenomenon of
entanglement sudden death (ESD) takes place
for a zero temperature of the thermal bath the initial
existing E is decreasing over time, but it keeps for all finite
times a non-zero value and the logarithmic negativity tends
to zero only in the limit of infinite time
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Introduction

realistic q. ss. are essentially non-inertial and manifest
relativ. and gravit. characteristics, therefore relativ. q.
investigations are of basic importance, both for
applications in q. information protocols, and also to better
understand the features of the universe
investigations: behaviour of q. correls in relativ. framework
(E manifests a sudden death phenomenon in the case of
bosons, and it tends to a nonzero value in the case of
fermions, when the acceleration tends to∞; tasks of q.
information processing in relativ. framework by using q.
correls; in curved spacetime it is possible to generate q. E,
opening a large possibility to be applied for q. information
processing and transmission protocols; E is an important
ingredient in the physics of black holes; Gaussian q.
steering between a Kruskal observer and another one
accelerated, near a Schwarzschild black hole; q.
coherence of a bimodal Gaussian state in the
asymptotically flat region of a black hole) 4 / 48



Introduction

we describe the q. field dynamics of free massless bosonic
modes near a Schwarzschild black hole
we consider a system consisting of a stationary observer
Alice in a region that is asymptotically flat (or who is freely
falling in the black hole), with the associated mode A, an
observer Bob hovering uniformly accelerated near the
black hole event horizon, with the associated mode B, and
anti-Bob, a hypothetical observer situated inside of the
event horizon, with the associated mode B̄
we suppose that a Gaussian bimodal squeezed thermal
state is shared by Alice and Bob, and we intend to
investigate the influence of Schwarzschild black hole on q.
E, by considering different scenarios
we extend the study of the E of Schwarzschild modes by
immersing them in a thermal reservoir and investigate its
influence on the dynamics of q. E for all observers
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Unruh-Hawking effect

the radiation produced by the black hole through the
Unruh-Hawking effect can be expressed in terms of an
amplification Gaussian bosonic channel
we take a metric characterizing the background of the
spacetime in the region of an asymptotically flat and static
Schwarzschild black hole of the form (we set the natural
units ~ = G = c = kB = 1)

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2

+r2
(

dθ2 + sin2 θdϕ2
)
, (1)

where r is the radial coordinate, t denotes the time, angles
(θ, ϕ) define the metric on the two-sphere and M denotes
the black hole mass
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Unruh-Hawking effect

- massless bosonic field φ satisfies in the background of the
black hole the following Klein-Gordon equation:

1√
−g

∂

∂xµ

(√
−ggµν

∂φ

∂xν

)
= 0, (2)

where xµ = (t , r , θ, ϕ) denotes the general coordinate and
g = det gµν
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Unruh-Hawking effect

the bosonic field may be split into a region inside and a
region outside of the black hole event horizon
by solving the Klein-Gordon equation near the event
horizon of the Schwarzschild black hole, we obtain the
outgoing modes of positive frequency Ω in the form of
plane waves:

Φ+
Ω,in ∼ eiΩu,

Φ+
Ω,out ∼ e−iΩu,

(3)

where Φ+
Ω,in and Φ+

Ω,out denote the modes located inside
the Schwarzschild black hole, respectively outside the
region of the black hole, and we introduced the tortoise
coordinate

u = t − (r + 2M ln
r − 2M

2M
) (4)
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Unruh-Hawking effect

- using the Schwarzschild modes (3), the expression of the
scalar field becomes:

φ =

∫
dΩ
[
âΩ,outΦ

+
Ω,out + b̂†Ω,outΦ

−
Ω,out + âΩ,inΦ+

Ω,in + b̂†Ω,inΦ−Ω,in

]
,

(5)
where by âΩ,out and b̂†Ω,out are denoted the boson annihilation
and antiboson creation operators that act on states outside the
black hole, respectively, while by âΩ,in and b̂†Ω,in we denote the
boson annihilation and antiboson creation operators that act on
inside states, respectively
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Unruh-Hawking effect

relation between the bosonic field at the black hole and the
bosonic field in the flat spacetime can be obtained by
introducing Unruh operators, which are connected with the
Schwarzschild operators through the following Bogoliubov
transformations:

CΩ,R =
(

cosh rΩ âΩ,out − sinh rΩ b̂†Ω,in
)
,

CΩ,L =
(

cosh rΩ âΩ,in − sinh rΩ b̂†Ω,out

)
,

(6)

therefore the Unruh operators relate the creation and
annihilation operators of particles and antiparticles in the
regions outside and inside of the Schwarzschild black hole

sinh rΩ =

(
e

Ω
TH − 1

)− 1
2

and TH denotes the Hawking

temperature
Hawking temperature parameter rΩ is a function that
monotonically increases with TH

10 / 48



Unruh-Hawking effect

we introduce the generic Schwarzschild-Fock state
|nn,mm >Ω, which describes the particles and
antiparticles of the event horizon:

|nn,mm >Ω= |nΩ >+
out |n−Ω >−in |m−Ω >−out |mΩ >+

in, (7)

where the superscripts {+,−} are used to indicate the
particle and antiparticle modes, respectively
by employing the Bogoliubov transformations between the
Unruh modes and the Schwarzschild modes, the Unruh
vacuum can be expressed as

|0Ω >U=
1

cosh2 rΩ

∞∑
n,m=0

(tanh rΩ)n+m |nn,mm >Ω, (8)

each Unruh mode Ω corresponding to a Schwarzschild
mode Ω
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Unruh-Hawking effect

we consider a bipartite system, where Alice is a stationary
observer in asymptotically flat region, and Bob is a
Schwarzschild observer who hovers uniformly accelerated
near event horizon of the black hole
Unruh vacuum state in single-mode approximation, when
only bosons exist outside the event horizon (only particles
can be detected as Hawking radiation, i.e. we assume that
Bob has a detector sensitive only to particle modes) and
antibosons are living inside event horizon, reduces to a
two-mode squeezing state

|0Ω >H=
1

cosh rΩ

∞∑
n=0

(tanh rΩ)n |n >out |n >in, (9)

where by |n >out and |n >in are denoted the bosonic and
antibosonic states, outside and inside of the event horizon,
that belong to the observer Bob and, respectively, to the
imaginary observer anti-Bob
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Amplification bosonic channel

we write the expression in Eq. (9) as the action of the
following bimodal squeezing operator Û(r) on associated
states |n >in and |n >out, inside and outside regions of
event horizon (we abreviate rΩ ≡ r for simplicity):

Û(r) = er
(

b̂†
Ω,outb̂

†
Ω,in−âΩ,out âΩ,in

)
. (10)

therefore, from Eq. (9) it follows that the Unruh-Hawking
radiation can be expressed as an amplification bosonic
channel with the squeezing operator Û(r)
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Squeezing transformation

the two-mode squeezing transformation Û(r) is a
Gaussian operation which preserves the Gaussianity of the
input states, and it has the following symplectic phase
space representation:

SB,B̄(r) =


cosh r 0 sinh r 0

0 cosh r 0 − sinh r
sinh r 0 cosh r 0

0 − sinh r 0 cosh r

 (11)

indeed, a unitary Gaussian operation Û amounts, in phase
space, to a symplectic transformations S (which preserves
the symplectic form Ω = STΩS) acting by congruence on a
covariance matrix σ, i.e., so that σ → SσST

then for instance, the two-mode squeezing operator Û (10)
corresponds to the symplectic transformation (11)
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Bimodal Gaussian states

we consider that the scalar massless field φ has two Unruh
modes A and B, that share a bimodal Gaussian state with
the density matrix ρAB
we denote by R = {x ,px , y ,py}T the operators of canonical
quadratures of two bosonic modes and by σAB the
two-mode covariance matrix, whose elements are given by
the statistical moments of second order of quadrature
operators, that completely characterise the two-mode
Gaussian states:

σij = Tr[(RiRj + RjRi)ρAB], i , j = 1, . . . ,4. (12)

we neglect the moments of the first order, since they can
be made zero by performing local displacements in the
phase space
the phase space operators Ri satisfy the canonical
commutation relations [Ri ,Rj ] = iΩij and the covariance
matrix fulfils the uncertainty relation σAB + iΩAB ≥ 0, where
ΩAB = ⊕2

1

(
0 1
−1 0

)
is the symplectic form 15 / 48



Amplification channel

the change between Unruh modes and Schwarzschild
modes, given by the previously introduced amplification
channel is expressed by the bimodal squeezing operation
associated with symplectic transformation (11)
the amplification maps the mode B into the modes B and B̄
situated outside and inside of event horizon, respectively;
therefore, from the point of view of a Schwarzschild
observer, becomes relevant an additional mode B̄
consequently, the initial bipartite state is transformed into a
three-partite state, with the Alice mode A, mode B of the
Schwarzschild observer Bob, and mode B̄ of a hypothetical
observer anti-Bob, situated inside event horizon of
Schwarzschild black hole
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Covariance matrix

- therefore, the three-mode system can be described by the
following covariance matrix:

σABB̄(s, r) =
[
IA ⊕ SB,B̄(r)

] [
σ0

AB(s)⊕ IB̄
] [

IA ⊕ SB,B̄(r)
]T
,

(13)
where by σ0

AB(s) we denote the covariance matrix of the
bimodal Gaussian state of bosonic fields, shared by Alice and
Bob (s is the squeezing parameter)
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Bimodal squeezed thermal state

we suppose that Alice and Bob share a bimodal squeezed
thermal state, which has the following covariance matrix in
the asymptotically flat region:

σ0
AB =


a0 0 c0 0
0 a0 0 −c0
c0 0 b0 0
0 −c0 0 b0

 , (14)

a0 = 2n1 cosh2 s + 2n2 sinh2 s + cosh 2s,

b0 = 2n2 cosh2 s + 2n1 sinh2 s + cosh 2s,
c0 = (n1 + n2 + 1) sinh 2s

(15)

s denotes the parameter of squeezing parameter of the
state and n1,n2 denote the associated average thermal
photon numbers; a two-mode thermal squeezed state is
entangled if it is satisfied the relation

s > se, cosh2 se =
(n1 + 1)(n2 + 1)

n1 + n2 + 1
(16)
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Case I.

an observer situated outside black hole is causally
disconnected from the inside region→ Alice, who lives in
asymptotically flat region, and Bob, who hovers uniformly
accelerated near event horizon cannot access mode B̄
covariance matrix for the outside region can be obtained
by performing trace over mode B̄ situated inside black
hole, associated with the hypothetical observer anti-Bob
we obtain from Eq. (13) the following covariance matrix of
Alice and Bob:

σAB(s, r) =

(
A C
CT B

)
, (17)

where:
A = a0I2,

B =
[
b0 cosh2 r + sinh2 r

]
I2,

CAB = c0 cosh rZ2,

(18)

I2 is identity matrix and Z2 is Z -Pauli matrix
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Logarithmic negativity

to quantify quantum entanglement we use as a measure
the logarithmic negativity, which can be expressed through
the symplectic invariants of covariance matrix σAB:

EN = − log2 g(σ), (19)

where

g(σ) =
1√
2

√
detA+ detB − 2detC

−
√

(detA+ detB − 2detC)2 − 4detσAB

(20)

for EN ≤ 0 the state is separable and EN > 0 determines
the strength of the entanglement
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Figure 1: Alice-Bob logarithmic negativity EN versus Hawking
temperature TH and squeezing parameter s: STS (left), SVS (right).
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Figure 2: Alice-Bob logarithmic negativity EN versus frequency Ω and:
Hawking temperature TH (left), and average thermal photon number
n1 (right).
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Case II.

recently there have been obtained interesting results by
studying quantum correlations between causally
disconnected regions of spacetime
investigation of quantum entanglement between physically
inaccessible regions would contribute to better understand
the connection between black hole physics and quantum
information
covariance matrix of Bob and anti-Bob is obtained by
taking in Eq. (13) the partial trace over the Alice mode:

σBB̄(s, r) =

(
A C
CT B

)
, (21)

where:
A =

[
b0 cosh2 r + sinh2 r

]
I2,

B =
[
cosh2 r + b0 sinh2 r

]
I2,

CBB̄ = [(1 + b0) sinh r cosh r ]Z2

(22)
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Figure 3: Bob-anti-Bob logarithmic negativity EN versus Hawking
temperature TH and: squeezing parameter s (left), and frequency Ω
(right).
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Figure 4: Bob-anti-Bob logarithmic negativity EN versus Hawking
temperature TH and: thermal photon number n1 (left), and for
different values of frequency Ω (right) for SVS.
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Dependence on s

in general, the physically inaccessible quantum
correlations and coherence increase by increasing the
parameter s
at the same time, in our case the logarithmic negativity
between Bob and Anti-Bob decreases as the parameter s
increases; however, the decreasing of the logarithmic
negativity by increasing the initial parameter s is very
weak, and it takes place for relatively small values of s,
while the main feature of the behaviour of the logarithmic
negativity is that it tends to reach a plateau in the limit of
large values of s
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Case III.

finally, we analyse the existence of quantum correlations of
Alice and anti-Bob modes
their covariance matrix can be obtained by performing in
Eq. (13) the partial trace over the Bob mode:

A = a0I2,

B =
[
cosh2 r + b0 sinh2 r

]
I2,

CAB̄ = c0 sinh rZ2,

(23)

and the calculations show that EN < 0, so that the state of
Alice and anti-Bob is always separable
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Figure 5: Logarithmic negativity EN for different scenarios: Alice and
Bob (green), Alice and anti-Bob (red), Bob and anti-Bob (blue) for
s = 0.4,Ω = 1,n1 = 25,n2 = 0.

28 / 48



Open quantum systems

we will investigate the time evolution of the entanglement
between the observers by considering that the two bosonic
modes are immersed in a common thermal bath, and they
evolve also under the influence of the Hawking radiation,
manifested in the curved space-time associated with the
Schwarzschild black hole
to study the dynamics of the considered system, we use
the axiomatic formalism based on completely positive
quantum dynamical semigroups
in this framework the Markovian irreversible time evolution
of an open system is described by the following
Gorini-Kossakowski-Sudarshan-Lindblad master equation
for the density operator:

dρ(t)
dt

= −i[H, ρ(t)] +
1
2

∑
j

(2Bjρ(t)B†j − {ρ(t),B†j Bj}+) (24)
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Open quantum systems

for identical frequencies ω = 1 for the two modes

H =
1
2

(x2 + p2
x + y2 + p2

y ) (25)

(Hamiltonian of the open system)
operators Bj ,B

†
j , defined on the Hilbert space of H,

describe the interaction of the system with a general
environment
if the operators Bj are taken polynomials of first degree in
the canonically conjugated quadrature operators
x ,px , y ,py of the two bosonic modes and if we choose
initial Gaussian states, then Gaussianity is preserved in
time due to the linear character of the dynamics
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Open quantum systems

from the master equation (24) we obtain that the time
evolution of the corresponding bimodal covariance matrix
σ(t) is given by the following equation of motion, in the
form of the Lyapunov equation:

dσ(t)
dt

= Yσ(t) + σ(t)Y T + D, (26)

where

Y =


−λ 1 0 0
−1 −λ 0 0
0 0 −λ 1
0 0 −1 −λ

 (27)

is the drift matrix, λ is the dissipation rate

31 / 48



Open quantum systems

D is the diffusion matrix:

D = 2 diag{λ coth
1

2kBT
, λ coth

1
2kBT

, λ coth
1

2kBT
, λ coth

1
2kBT

},
(28)

where kB is the Boltzmann constant and T is the
temperature of the thermal reservoir
the time-dependent solution of Eq. (26) is given by

σ(t) = γ(t)[σXY (s, r)− σT ]γT(t) + σT , (29)

where σXY (s, r) is the initial covariance matrix given by Eq.
(17) for the observers Alice and Bob and, respectively, by
Eq. (21) for Bob and anti-Bob, and γ(t) ≡ exp(Yt), with
γ(t)→ 0 when t →∞
the described evolution generated by a Gaussian
completely positive map is determined by the two 4 x 4 real
matrices γ and A = σT − γσTγ

T, which satisfy
A + iΩAB ≥ iγΩABγ

T
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Open quantum systems

the covariance matrix corresponding to the asymptotic
Gibbs state of the system of two bosonic modes,
interacting with the thermal bath of temperature T , is given
by (we set Boltzmann constant kB = 1):

σT =


coth 1

2T 0 0 0
0 coth 1

2T 0 0
0 0 coth 1

2T 0
0 0 0 coth 1

2T


to describe the time evolution of the logarithmic negativity
as a measure of the Gaussian quantum entanglement
between the considered observers, we suppose that Alice
and Bob share initially a bimodal symmetric thermal
squeezed state, with the covariance matrix given by Eq.
(14) in which we denote n ≡ n1 = n2 = 1
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Figure 6: Logarithmic negativity EN versus bath temperature T and
time t for Alice-Bob (left), and for Bob-anti-Bob (right).
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Figure 7: Logarithmic negativity EN versus Hawking parameter r and
time t for Alice-Bob (left), and for Bob-anti-Bob (right).
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Figure 8: Logarithmic negativity EN versus squeezing parameter s
and time t for Alice-Bob (left), and for Bob-anti-Bob (right)
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Figure 9: Logarithmic negativity EN versus bath temperature T and
Hawking parameter r for Alice-Bob (left), and for Bob-anti-Bob (right).
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Figure 10: Logarithmic negativity EN versus bath temperature T and
squeezing s for Alice-Bob (left), and for Bob-anti-Bob (right).
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Figure 11: Logarithmic negativity EN versus Hawking parameter r and
squeezing parameter s for Alice-Bob (left), and for Bob-anti-Bob
(right).
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Figure 12: Evolution of logarithmic negativity EN over time for both
Alice-Bob and Bob-anti-Bob for a non-zero temperature of the bath
(left) and zero temperature (right).
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Conclusions

we investigated the influence of the Hawking effect on
Gaussian q. E for the modes of a massless scalar field in
the presence of a Schwarzschild black hole in various
scenarios
for a system consisting of a Kruskal observer Alice and an
accelerated observer Bob hovering outside the event
horizon of black hole, E depends on the squeezing of
modes, the average numbers of thermal photons of the
squeezed thermal state, and on the Hawking parameter,
through the Hawking temperature and frequency
E of Alice and Bob is decreasing by increasing Hawking
temperature.
Hawking radiation induces a thermal noise that can cause
the decay of q. E in the system
q. E increases with the squeezing parameter of modes,
tending to a definite value for large values of squeezing,
and decreases by increasing the numbers of thermal
photons 41 / 48



Conclusions

in the limit of large frequency of the bosonic field, the
Hawking effect tends to vanish, and therefore the loss of
entanglement, caused by Hawking effect, can be reduced
by increasing the frequency of the field, and, moreover, it is
also possible even to generate entanglement, for definite
values of the frequency
consequently, the competition between these contrary
influences, produced by the Hawking temperature,
squeezing parameter and frequency of the field, may
facilitate the preservation of the accessible entanglement,
that can be useful for the quantum information processing
in relativistic setting, and possibly for applications in
quantum technologies
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Conclusions

while there exists no entanglement between the causally
disconnected mode of a Kruskal observer Alice and a
mode associated with an imaginary observer anti-Bob, in
the case of modes that are causally disconnected,
associated with observers Bob and anti-Bob, by increasing
the Hawking temperature strengthens the entanglement of
modes, in comparison with the first scenario of modes
associated with Alice and Bob, where logarithmic negativity
decreases by increasing the Hawking temperature
it is also possible even the generation of quantum
entanglement for the observers Bob and anti-Bob, due to
the effect of Hawking radiation, in other words the
Gaussian amplification operation can create quantum
entanglement
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Conclusions

this behaviour of quantum entanglement is also proved by
the fact that the increase of squeezing of the modes leads
to a slight degradation of quantum entanglement, while, for
a given value of the squeezing parameter, the logarithmic
negativity increases with Hawking temperature
in this scenario the competition between the influences
produced by Hawking temperature, squeezing and
frequency of the field, may lead to the survival of the
entanglement, that could present interest in the
investigation of black holes
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Conclusions

we have also described the influence of the thermal
environment on the behaviour in time of the entanglement
between the considered observers, evolving also under the
influence of the Hawking radiation
due to decoherence and dissipation induced by the
environment, the entanglement is destroyed in a finite time
for both considered bipartite scenarios of observers Alice
and Bob, and respectively Bob and anti-Bob, for non-zero
values of the temperature of the thermal environment, i.e.
the phenomenon of entanglement sudden death takes
place
the only exception is that for a zero temperature of the
thermal bath, the initial existing entanglement is
decreasing over time, but it keeps for all finite times a
non-zero value and the logarithmic negativity tends to zero
only in the limit of infinite time
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Conclusions

we have also illustrated that the logarithmic negativity is
decreasing by increasing the temperature of the
environment and that the survival time of the entanglement
is decreasing by increasing the temperature in both
scenarios, while the survival time decreases by increasing
the Hawking parameter for the observers Alice and Bob,
and it increases with the Hawking parameter for the
observers Bob and anti-Bob
conversely, the survival time of the entanglement increases
with the squeezing parameter for the observers Alice and
Bob and slightly decreases by increasing the squeezing
parameter for the observers Bob and anti-Bob
in addition, for the modes associated with Bob and
anti-Bob the logarithmic negativity is increasing with the
Hawking parameter, so that for sufficiently large values of
it, the entanglement can be generated at a given moment
of time
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Conclusions

since the realistic systems evolve under the influence of
the environment, manifested through the quantum
decoherence, it may present interest to describe, besides
quantum entanglement and quantum steering, the time
evolution in curved spacetime of other quantum
correlations (for instance quantum discord), mutual
information and quantum coherence, for a system
composed of bimodal bosonic fields interacting with a
thermal environment or a squeezed thermal environment

47 / 48



Thank you!
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