Operator content of quantum and classical lattice models from lossy compression theory

Maciej Koch-Janusz

Zohar Ringel

האוניברסיםה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Sebastian Huber Doruk Efe Gokmen

ETHzürich

Matthew Schmitt Michel Fruchart Vincenzo Vitelli

- MKJ and Zohar Ringel, Nature Physics 14, 578-582 (2018)
- P. Lenngenhager, D.E. Gokmen, Z. Ringel, S.D. Huber and MKJ, Phys. Rev. X 10, 011037 (2020)
- A. Gordon, A. Banerjee, MKJ and Z. Ringel, Phys. Rev. Lett. 126, 240601 (2021)
- D.E. Gokmen, Z. Ringel, S.D. Huber and MKJ, Phys. Rev. Lett. 127, 240603 (2021)
- D.E. Gokmen, Z. Ringel, S.D. Huber and MKJ, Phys. Rev. E 104, 064106 (2021)
- D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023) "ML for physical sciences" @NeurIPS 2023
- L. Oppenheim, MKJ, S. Gazit, Z. Ringel arXiv:2311.17994, "ML for physical sciences" @NeurIPS 2023
- M. Schmitt, MKJ, M. Fruchart, D. Seara, V. Vitelli arXiv:2312.06608, "ML for physical sciences" @NeurIPS 2023

Outline

- Intro and motivation: RG, compression, and ML
- Information Bottleneck lossy compression
- Equivalence of "relevance" in IB and in RG
- The RSMI coarse-graining
- Example 1: operators and symmetries with RSMI
- Example 2: RG for quasi-periodic tilings
- Example 3: Dynamical systems

Effective descriptions

- We seek effective descriptions of complex systems in terms of few variables
- We seek effective descriptions of complex systems in terms of few variables
- Coarse-graining connects microscopic and continuum descriptions
- We seek effective descriptions of complex systems in terms of few variables
- Coarse-graining connects microscopic and continuum descriptions

- We seek effective descriptions of complex systems in terms of few variables
- Coarse-graining connects microscopic and continuum descriptions

- Dynamical systems' model reductions

$$
\begin{aligned}
& m_{x}^{(1)}= \\
& \left.m_{y}^{(1)}=+i \cdot \infty+i \cdot \infty\right)
\end{aligned}
$$

- We seek effective descriptions of complex systems in terms of few variables
- Coarse-graining connects microscopic and continuum descriptions

- Dynamical systems' model reductions

- Can one systematically derive an effective theory?

Motivating example: real-space RG

Motivating example: real-space RG

$$
e^{\mathcal{K}^{\prime}\left(\left\{\mathcal{H}_{i}\right\}_{i}\right)} \leftarrow P\left(\left\{H_{i}\right\}_{i}\right)=\sum_{i} e^{\mathcal{K}\left(\left\{\mathcal{V}_{i}\right\}_{i}\right)} P\left(\mathcal{H}_{i} \mid \mathcal{V}_{i}\right)
$$

Task: find $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$ such that \mathcal{H} tracks the most relevant degrees of freedom within region \mathcal{V}

$$
e^{\mathcal{K}^{\prime}\left(\left\{\mathcal{H}_{i}\right\}_{i}\right)} \leftarrow P\left(\left\{H_{i}\right\}_{i}\right)=\sum_{i} e^{\mathcal{K}\left(\left\{\mathcal{V}_{i}\right\}_{i}\right)} P\left(\mathcal{H}_{i} \mid \mathcal{V}_{i}\right)
$$

Task: find $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$ such that \mathcal{H} tracks the most relevant degrees of freedom within region \mathcal{V}

Method: find $\max \left[I_{\Lambda}(\mathcal{H}: \mathcal{E})\right]$ over params Λ $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$

$$
e^{\mathcal{K}^{\prime}\left(\left\{\mathcal{H}_{i}\right\}_{i}\right)} \leftarrow P\left(\left\{H_{i}\right\}_{i}\right)=\sum_{i} e^{\mathcal{K}\left(\left\{\mathcal{V}_{i}\right\}_{i}\right)} P\left(\mathcal{H}_{i} \mid \mathcal{V}_{i}\right)
$$

Task: find $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$ such that \mathcal{H} tracks the most relevant degrees of freedom within region \mathcal{V}

Method: find $\max \left[I_{\Lambda}(\mathcal{H}: \mathcal{E})\right]$ over params Λ

The Real-Space Mutual Information (RSMI)
Nature Physics 14, 578-582 (2018)
Phys. Rev. X 10, 011037 (2020)

Task: find $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$ such that \mathcal{H} tracks the most relevant degrees of freedom within region \mathcal{V}

Method: find $\max \left[I_{\Lambda}(\mathcal{H}: \mathcal{E})\right]$ over params Λ

The Real-Space Mutual Information (RSMI)
Nature Physics 14, 578-582 (2018)
Phys. Rev. X 10, 011037 (2020)

Insight: the optimal $P_{\Lambda}(\mathcal{H} \mid \mathcal{V})$ give access to the RG-relevant operators
Phys.Rev.Lett.126, 240601 (2021)

The three ingredients

- The physical principle: lossy compression maximising $\mathbf{I}(\mathbf{H}: \mathbf{E})$

- The physical principle: lossy compression maximising $\mathbf{I}(\mathbf{H}: \mathbf{E})$
- The estimator of mutual information

$$
D_{K L}(\mathbb{P} \| \mathbb{Q})=\sup _{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T]-\log \left(\mathbb{E}_{\mathbb{Q}}\left[e^{T}\right]\right)
$$

- The physical principle: lossy compression maximising $\mathbf{I}(\mathbf{H}: \mathbf{E})$
- The estimator of mutual information
- The coarsegraining ansatz family $\mathbf{P}(\mathbf{H}$ I V)

[^0]We have a complicated signal V

We have a complicated signal \boldsymbol{V}

We'd like to compress it to a variable \boldsymbol{H}, using a mapping $\mathbf{p}(\mathbf{h} \operatorname{lv}$)

We have a complicated signal V

We'd like to compress it to a variable \boldsymbol{H}, using a mapping $\mathbf{p (h I v)}$

So that \boldsymbol{H} retains relevant information for the down-stream task, implicitly defined by correlations with \boldsymbol{Y}

The information bottleneck (IB) compression

The information bottleneck (IB) compression

- Relevance defined implicitly, by
correlations with a signal variable

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999) Tishby Slonim NeurIPS (2000)

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999) Tishby Slonim NeurIPS (2000)

- Optimal compression of relevant information is a variational problem

$$
\min _{P(H \mid V)} \mathcal{L}_{I B}[P(H \mid V)] \equiv \min _{P(H \mid V)} I(V ; H)-\beta I(H ; E)
$$

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999) Tishby Slonim NeurIPS (2000)

- Optimal compression of relevant information is a variational problem

$$
\min _{P(H \mid V)} \mathcal{L}_{I B}[P(H \mid V)] \equiv \min _{P(H \mid V)} I(V ; H)-\beta I(H ; E)
$$

- IB equations:

$$
\begin{aligned}
P(h \mid v) & =\frac{P(h)}{Z} \exp \left(-\beta \sum_{e} P(e \mid v) \log \left[\frac{P(e \mid v)}{P(e \mid h)}\right]\right) \\
P(h) & =\sum_{v} P(h \mid v) P(v) \\
P(e \mid h) & =\sum_{v} P(e \mid v) P(v \mid h)
\end{aligned}
$$

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999)
Tishby Slonim NeurIPS (2000)

- Optimal compression of relevant information is a variational problem

$$
\min _{P(H \mid V)} \mathcal{L}_{I B}[P(H \mid V)] \equiv \min _{P(H \mid V)} I(V ; H)-\beta I(H ; E)
$$

- IB equations:

$$
\begin{aligned}
P(h \mid v) & =\frac{P(h)}{Z} \exp \left(-\beta \sum_{e} P(e \mid v) \log \left[\frac{P(e \mid v)}{P(e \mid h)}\right]\right) \\
P(h) & =\sum_{v} P(h \mid v) P(v) \\
P(e \mid h) & =\sum_{v} P(e \mid v) P(v \mid h)
\end{aligned}
$$

- Optimal IB encoder goes through a sequence of permutation symmetry breaking transitions

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999)
Tishby Slonim NeurIPS (2000)

- Optimal compression of relevant information is a variational problem

$$
\min _{P(H \mid V)} \mathcal{L}_{I B}[P(H \mid V)] \equiv \min _{P(H \mid V)} I(V ; H)-\beta I(H ; E)
$$

- IB equations:

$$
\begin{aligned}
P(h \mid v) & =\frac{P(h)}{Z} \exp \left(-\beta \sum_{e}\right. \\
P(h) & =\sum_{v} P(h \mid v) P(v) \\
P(e \mid h) & =\sum_{v} P(e \mid v) P(v \mid h)
\end{aligned}
$$

- Optimal IB encoder goes through a sequence of permutation symmetry breaking transitions

Gedeon et al. Entropy (2012), 14(3) 456-479

The information bottleneck (IB) compression

- Relevance defined implicitly, by correlations with a signal variable

Tishby, Pereira, Bialek (1999)
Tishby Slonim NeurIPS (2000)

- Optimal compression of relevant information is a variational problem

$$
\min _{P(H \mid V)} \mathcal{L}_{I B}[P(H \mid V)] \equiv \min _{P(H \mid V)} I(V ; H)-\beta I(H ; E)
$$

- IB equations:

$$
\begin{aligned}
P(h \mid v) & =\frac{P(h)}{Z} \exp \left(-\beta \sum_{e}\right. \\
P(h) & =\sum_{v} P(h \mid v) P(v) \\
P(e \mid h) & =\sum_{v} P(e \mid v) P(v \mid h)
\end{aligned}
$$

- Optimal IB encoder goes through a sequence of permutation symmetry breaking transitions

Gedeon et al. Entropy (2012), 14(3) 456-479

- RSMI arises in the infinite β limit, and finite alphabet

Equivalence of the IB and RG relevance

Equivalence of the IB and RG relevance

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L_{\infty}}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984) Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L_{\infty}}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984) Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β
- All quantities of interest are functions of matrix elements of RG-relevant operators:

$$
\begin{aligned}
P(v \mid e) & =N^{-1} P(v)\left[1+\frac{\left\langle\partial V_{R} \mid 1\right\rangle\left\langle 1 \mid \partial E_{L}\right\rangle}{\left\langle\partial V_{R} \mid 0\right\rangle\left\langle 0 \mid \partial E_{L}\right\rangle}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{L_{B}}\right] \\
& =N^{-1} P(v)\left[1+\epsilon r_{e} r_{v}\right]
\end{aligned}
$$

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L_{\infty}}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984)
Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β
- All quantities of interest are functions of matrix elements of RG-relevant operators:

$$
\begin{aligned}
P(v \mid e) & =N^{-1} P(v)\left[1+\frac{\left\langle\partial V_{R} \mid 1\right\rangle\left\langle 1 \mid \partial E_{L}\right\rangle}{\left\langle\partial V_{R} \mid 0\right\rangle\left\langle 0 \mid \partial E_{L}\right\rangle}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{L_{B}}\right] \\
& =N^{-1} P(v)\left[1+\epsilon r_{e} r_{v}\right]
\end{aligned}
$$

$$
\begin{aligned}
& r_{v}=\frac{\left\langle 1 \mid \partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle}=\frac{\langle 0| \phi_{\Delta_{1}}\left|\partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle} \\
& r_{e}=\frac{\left\langle\partial E_{L} \mid 1\right\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}=\frac{\left\langle\partial E_{L}\right| \phi_{\Delta_{1}}|0\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}
\end{aligned}
$$

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L_{\infty}}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984) Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β
- All quantities of interest are functions of matrix elements of RG-relevant operators:

$$
\begin{aligned}
P(v \mid e) & =N^{-1} P(v)\left[1+\frac{\left\langle\partial V_{R} \mid 1\right\rangle\left\langle 1 \mid \partial E_{L}\right\rangle}{\left\langle\partial V_{R} \mid 0\right\rangle\left\langle 0 \mid \partial E_{L}\right\rangle}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{L_{B}}\right] \\
& =N^{-1} P(v)\left[1+\epsilon r_{e} r_{v}\right]
\end{aligned}
$$

$$
\begin{aligned}
& r_{v}=\frac{\left\langle 1 \mid \partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle}=\frac{\langle 0| \phi_{\Delta_{1}}\left|\partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle} \\
& r_{e}=\frac{\left\langle\partial E_{L} \mid 1\right\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}=\frac{\left\langle\partial E_{L}\right| \phi_{\Delta_{1}}|0\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}
\end{aligned}
$$

- The IB-optimal encoder only depends on RG-relevant data:

$$
P(h \mid v)=P\left(h \mid r_{v}\right) \propto P(h) e^{\beta \epsilon^{2} r_{v}\left\langle r_{v}\right\rangle_{h}}
$$

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L_{\infty}}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984) Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β
- All quantities of interest are functions of matrix elements of RG-relevant operators:

$$
\begin{aligned}
P(v \mid e) & =N^{-1} P(v)\left[1+\frac{\left\langle\partial V_{R} \mid 1\right\rangle\left\langle 1 \mid \partial E_{L}\right\rangle}{\left\langle\partial V_{R} \mid 0\right\rangle\left\langle 0 \mid \partial E_{L}\right\rangle}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{L_{B}}\right] & r_{v}=\frac{\left\langle 1 \mid \partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle}=\frac{\langle 0| \phi_{\Delta_{1}}\left|\partial V_{R}\right\rangle}{\left\langle\mid \partial V_{R}\right\rangle} \\
& =N^{-1} P(v)\left[1+\epsilon r_{e} r_{v}\right] & r_{e}=\frac{\left\langle\partial E_{L} \mid\right\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}=\frac{\left\langle\partial E_{L}\right| \phi_{\Delta_{1}}|0\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}
\end{aligned}
$$

- The IB-optimal encoder only depends on RG-relevant data:

$$
P(h \mid v)=P\left(h \mid r_{v}\right) \propto P(h) e^{\beta \epsilon^{2} r_{v}\left\langle r_{v}\right\rangle_{h}}
$$

Equivalence of the IB and RG relevance

- Distributions in IB equations can be written using transfer matrices $Z=\operatorname{Tr}\left[\mathbb{T}^{L \infty}\right]$
- Eigenvectors/eigenvalues of transfer matrices have direct relation to CFT operator content

Cardy J. Phys. A: Math. Gen. 17, L385 (1984) Bloete et al. Phys. Rev.Lett. 56, 742 (1986)

- We want to solve the IB eqs. for the optimal encoder $P(h \mid v)$ at a fixed β
- All quantities of interest are functions of matrix elements of RG-relevant operators:

$$
\begin{aligned}
P(v \mid e) & =N^{-1} P(v)\left[1+\frac{\left\langle\partial V_{R} \mid 1\right\rangle\left\langle 1 \mid \partial E_{L}\right\rangle}{\left\langle\partial V_{R} \mid 0\right\rangle\left\langle 0 \mid \partial E_{L}\right\rangle}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{L_{B}}\right] & r_{v}=\frac{\left\langle 1 \mid \partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle}=\frac{\langle 0| \phi_{\Delta_{1}}\left|\partial V_{R}\right\rangle}{\left\langle 0 \mid \partial V_{R}\right\rangle} \\
& =N^{-1} P(v)\left[1+\epsilon r_{e} r_{v}\right] & r_{e}=\frac{\left\langle\partial E_{L} \mid 1\right\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}=\frac{\left\langle\partial E_{L}\right| \phi_{\Delta_{1}}|0\rangle}{\left\langle\partial E_{L} \mid 0\right\rangle}
\end{aligned}
$$

- The IB-optimal encoder only depends on RG-relevant data:

$$
P(h \mid v)=P\left(h \mid r_{v}\right) \propto P(h) e^{\beta \epsilon^{2} r_{v}\left\langle r_{v}\right\rangle_{h}}
$$

- Expand around first transition $\beta=\beta_{c, 1}+t$:
- Expand around first transition $\beta=\beta_{c, 1}+t: \quad \begin{aligned} P\left(h \mid r_{v}\right) & =\frac{1}{|H|}+t b_{r_{v}}(h) \\ \sum_{h} b_{r_{v}}(h) & =0,\end{aligned}$
$\begin{aligned} \text { - Expand around first transition } \beta=\beta_{c, 1}+t: & P\left(h \mid r_{v}\right)=\frac{1}{|H|}+t b_{r_{v}}(h) \\ \begin{aligned} \text { Differentiation from } \\ \text { trivial encoder }\end{aligned} & \sum_{h} b_{r_{v}}(h)=0,\end{aligned}$
- Expand around first transition $\left.\beta=\beta_{c, 1}+t: \quad \begin{array}{rl}P\left(h \mid r_{v}\right) & =\frac{1}{|H|}+t b_{r_{v}}(h) \\ \begin{array}{rl}\text { Differentiation from } \\ \text { trivial encoder }\end{array} & \sum_{h} b_{r_{v}}(h)\end{array}\right)=0$,
- Trivial solution exists always, but a nontrivial one appears when: $\beta_{c, 1}^{-1}=\epsilon^{2}+o\left(\epsilon^{2}\right)$
- Expand around first transition $\beta=\beta_{c, 1}+t: \quad P\left(h \mid r_{v}\right)=\frac{1}{|H|}+t b_{r_{v}}(h)$ Differentiation from trivial encoder

$$
\sum_{h} b_{r_{v}}(h)=0
$$

- Trivial solution exists always, but a nontrivial one appears when: $\beta_{c, 1}^{-1}=\epsilon^{2}+o\left(\epsilon^{2}\right)$

$$
I(X: Y):=H(X)-H(X \mid Y)
$$

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right]
\end{aligned}
$$

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right]
\end{aligned}
$$

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =: D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =: D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Estimation by optimising variational bounds:
- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =: D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Estimation by optimising variational bounds:

$$
D_{K L}(\mathbb{P} \| \mathbb{Q})=\sup _{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T]-\log \left(\mathbb{E}_{\mathbb{Q}}\left[e^{T}\right]\right)
$$

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =: D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Estimation by optimising variational bounds:

$$
D_{K L}(\mathbb{P} \| \mathbb{Q})=\sup _{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T]-\log \left(\mathbb{E}_{\mathbb{Q}}\left[e^{T}\right]\right)
$$

Make T a neural network! [MINE, Belghazi et al. (2018)]

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Estimation by optimising variational bounds:

$$
D_{K L}(\mathbb{P} \| \mathbb{Q})=\sup _{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T]-\log \left(\mathbb{E}_{\mathbb{Q}}\left[e^{T}\right]\right)
$$

Make T a neural network! [MINE, Belghazi et al. (2018)]

- MINE can be improved in many respects (e.g. variance)

InfoNCE, van den Oord et al. (2018)
Poole et al. ICMLR (2019) "On variational bounds of mutual information"

- Common methods are computationally demanding and/or not differentiable

$$
\begin{aligned}
I(X: Y) & :=H(X)-H(X \mid Y) \\
& =\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =D_{\mathrm{KL}}[p(x, y) \| p(x) p(y)]
\end{aligned}
$$

- Estimation by optimising variational bounds:

$$
D_{K L}(\mathbb{P} \| \mathbb{Q})=\sup _{T: \Omega \rightarrow \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T]-\log \left(\mathbb{E}_{\mathbb{Q}}\left[e^{T}\right]\right)
$$

- MINE can be improved in many respects (e.g. variance)

InfoNCE, van den Oord et al. (2018)
Poole et al. ICMLR (2019) "On variational bounds of mutual information"

- We get a parametric, differentiable, and tight lower bound on MI

$$
p_{\wedge}(h \mid v): v \mapsto h=\tau \circ(\wedge \cdot v)
$$

$$
p_{\wedge}(h \mid v): v \mapsto h=\tau \circ(\wedge \cdot v)
$$

- The coarse-graining network(s)

$$
p_{\wedge}(h \mid v): v \mapsto h=\tau \circ(\wedge \cdot v)
$$

- The coarse-graining network(s)
- Differentiable discretization

Bengio, Leonard, Courville arXiv:1308:3432 Jang, Gu, Poole ICLR (2017) Maddison, Mnih, Teh ICLR (2017)

$$
p_{\wedge}(h \mid v): v \mapsto h=\tau \circ(\wedge \cdot v)
$$

- The coarse-graining network(s)
- Differentiable discretization

Bengio, Leonard, Courville arXiv:1308:3432 Jang, Gu, Poole ICLR (2017) Maddison, Mnih, Teh ICLR (2017)

- The RSMI estimator and the coarse-grainer are stacked

Phys.Rev. E, 104, 064106 (2021) Phys.Rev.Lett 127, 240603 (2021)

$$
p_{\wedge}(h \mid v): v \mapsto h=\tau \circ(\wedge \cdot v)
$$

- The coarse-graining network(s)
- Differentiable discretization

Bengio, Leonard, Courville arXiv:1308:3432 Jang, Gu, Poole ICLR (2017) Maddison, Mnih, Teh ICLR (2017)

- The RSMI estimator and the coarse-grainer are stacked
- Co-trained with SGD as a single network (differentiable, upper bounded!)

Example: the interacting dimer model

Alet et al. PRE 74, 041124 (2006)

Example: the interacting dimer model

Alet et al. PRE 74, 041124 (2006)

RG of dimer model: mapping to height field

- Total RSMI with the optimal filter

- The optimal filters depend on T

Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$	\|111 1111			
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

Pairs of C/P filters label broken symmetry states

- Filters define order parameters:

$C(\mathbf{r})$				
$\begin{array}{cc} \Lambda_{c} & \Lambda_{P_{1}} \\ 0+0 & 0 \\ 0+0 & 0+0 \\ 0+0 & 0+0 \end{array}$	$(-1,-1)$	$(-1,+1)$	($+1,-1$)	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	($+1,-1$)

- Filters define order parameters:

$$
D_{i}:=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right]
$$

Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				프
	$(-1,-1)$	$(-1,+1)$	($+1,-1$)	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

- Filters define order parameters:

$$
\begin{aligned}
D_{i} & :=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right] \\
\mathrm{DSB} & :=\mathbb{E}\left[\sum_{k} \tau \circ\left(\Lambda_{\mathrm{C}} \cdot \mathcal{V}_{k}\right)\right]
\end{aligned}
$$

Alet et al. PRE 74, 041124 (2006)

Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				
$\begin{array}{\|cc\|} \Lambda_{c} & \Lambda_{P_{1}} \\ 0 & 0 \end{array}$	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

- Filters define order parameters:

$$
\begin{aligned}
D_{i} & :=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right] \\
\mathrm{DSB} & :=\mathbb{E}\left[\sum_{k} \tau \circ\left(\Lambda_{\mathrm{C}} \cdot \mathcal{V}_{k}\right)\right]
\end{aligned}
$$

Alet et al. PRE 74, 041124 (2006)

Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

- Filters are relevant operators:
- Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				
$\begin{array}{\|cc\|} \hline \Lambda_{c} & \Lambda_{P_{1}} \\ 0+0 & +0 \\ 0+0 & +0 \\ 0+0 & 0 \end{array}$	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
$\begin{array}{\|cc\|} \hline \Lambda_{P_{1}} & \Lambda_{P 2} \\ 0 & 0 \\ 0 & 0 \end{array}$	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$

- Filters are relevant operators:
$\mathcal{O}_{n}(\varphi)=(\cos (n \varphi), \sin (n \varphi))$
Papanikolaou et al. PRB 76, 134514 (2007)
- Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$
$\varphi(\mathbf{r})$	$\frac{\pi}{2}$	$\frac{3 \pi}{2}$	π	0
$\mathcal{O}_{1}(\varphi)=(\cos \varphi, \sin \varphi)$	$(0,1)$	$(0,-1)$	$(-1,0)$	$(+1,0)$
$\mathcal{O}_{2}(\varphi)=\cos (2 \varphi)$	-1	-1	+1	+1

- Filters define order parameters:

$$
\begin{aligned}
D_{i} & :=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right] \\
\mathrm{DSB} & :=\mathbb{E}\left[\sum_{k} \tau \circ\left(\Lambda_{\mathrm{C}} \cdot \mathcal{V}_{k}\right)\right]
\end{aligned}
$$

Alet et al. PRE 74, 041124 (2006)

- Filters are relevant operators:

$$
\mathcal{O}_{n}(\varphi)=(\cos (n \varphi), \sin (n \varphi))
$$

Papanikolaou et al. PRB 76, 134514 (2007)

- Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				프
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$
$\varphi(\mathbf{r})$	$\frac{\pi}{2}$	$\frac{3 \pi}{2}$	π	0
$\mathcal{O}_{1}(\varphi)=(\cos \varphi, \sin \varphi)$	$(0,1)$	$(0,-1)$	$(-1,0)$	$(+1,0)$
$\mathcal{O}_{2}(\varphi)=\cos (2 \varphi)$	-1	-1	+1	+1

- Filters define order parameters:

$$
\begin{aligned}
D_{i} & :=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right] \\
\mathrm{DSB} & :=\mathbb{E}\left[\sum_{k} \tau \circ\left(\Lambda_{\mathrm{C}} \cdot \mathcal{V}_{k}\right)\right]
\end{aligned}
$$

Alet et al. PRE 74, 041124 (2006)

- Filters are relevant operators:

$$
\mathcal{O}_{n}(\varphi)=(\cos (n \varphi), \sin (n \varphi))
$$

Papanikolaou et al. PRB 76, 134514 (2007)

$$
\begin{aligned}
\left(\Lambda_{\mathrm{P} 1}, \Lambda_{\mathrm{P} 1}\right) \circ \varphi & =(\cos (\varphi+\pi / 4), \sin (\varphi+\pi / 4)) \\
\Lambda_{\mathrm{C}} \circ \varphi & =\cos (2 \varphi)
\end{aligned}
$$

- Pairs of C/P filters label broken symmetry states

$C(\mathbf{r})$				= $=$
	$(-1,-1)$	$(-1,+1)$	$(+1,-1)$	$(+1,+1)$
	$(-1,-1)$	$(+1,+1)$	$(-1,+1)$	$(+1,-1)$
$\varphi(\mathbf{r})$	$\frac{\pi}{2}$	$\frac{3 \pi}{2}$	π	0
$\mathcal{O}_{1}(\varphi)=(\cos \varphi, \sin \varphi)$	$(0,1)$	$(0,-1)$	(-1, 0)	$(+1,0)$
$\mathcal{O}_{2}(\varphi)=\cos (2 \varphi)$	-1	-1	+1	+1

- Filters define order parameters:

$$
\begin{aligned}
D_{i} & :=\mathbb{E}\left[\frac{1}{N_{\mathcal{V}}} \sum_{k} \tau \circ\left(\Lambda_{i} \cdot \mathcal{V}_{k}\right)\right] \\
\mathrm{DSB} & :=\mathbb{E}\left[\sum_{k} \tau \circ\left(\Lambda_{\mathrm{C}} \cdot \mathcal{V}_{k}\right)\right]
\end{aligned}
$$

Alet et al. PRE 74, 041124 (2006)

- Filters are relevant operators:

$$
\mathcal{O}_{n}(\varphi)=(\cos (n \varphi), \sin (n \varphi))
$$

Papanikolaou et al. PRB 76, 134514 (2007)

$$
\begin{aligned}
\left(\Lambda_{\mathrm{P} 1}, \Lambda_{\mathrm{P} 1}\right) \circ \varphi & =(\cos (\varphi+\pi / 4), \sin (\varphi+\pi / 4)) \\
\Lambda_{\mathrm{C}} \circ \varphi & =\cos (2 \varphi)
\end{aligned}
$$

(Also: staggered filters are gradients of the height field)

The action of symmetries of the physical state are

Symmetries in the RSMI ensemble

Symmetries in the RSMI ensemble

Lattice gauge theories

L. Oppenheim, MKJ, S. Gazit, Z. Ringel arXiv:2311.17994

Lattice gauge theories

$$
\mathcal{S}_{\mathrm{SD}-\mathrm{IHG}}=K \sum_{\square} \prod_{\langle i, j\rangle \in \square} \sigma_{i j}+J \sum_{\langle i, j\rangle} \tau_{i} \sigma_{i j} \tau_{j}
$$

Lattice gauge theories

$$
\mathcal{S}_{\mathrm{SD}-\mathrm{IHG}}=K \sum_{\square} \prod_{\langle i, j\rangle \in \square} \sigma_{i j}+J \sum_{\langle i, j\rangle} \tau_{i} \sigma_{i j} \tau_{j}
$$

- We can identify subleading
operators (or the absence of the expected ones)

AT-TFI				SD-IHG			
RSMI-NEScalingDimension$\left\{\right.$ Expected $\left.^{[46]}\right\}$	Analytic Operator \{Deg.\}	Neural Operator Projection		RSMI-NEScalingDimension$\left\{\right.$ Expected $\left.^{[17]}\right\}$	Analytic Operator \{Deg.\}	Neural Operator Projection	
		Maximum	Minimum			Maximum	Minimum
1.24(1)	$\langle\sigma\rangle^{2}-\langle\tau\rangle^{2}$						
$1.22(1)$ $\{1.23629\}$	$\langle\sigma\rangle\langle\tau\rangle$			$\begin{aligned} & 1.24(1) \\ & \{1.222\} \end{aligned}$	$\begin{gathered} \langle A\rangle \\ \{1\} \end{gathered}$		
\{1.23629\}							
1.49(2)	$\langle\sigma\rangle^{2}+\langle\tau\rangle^{2}$			1.54(2)	$\langle S\rangle$		
\{1.51136\}	\{1\}			\{1.502\}	\{1\}		
2.02(3)	$\langle\sigma\rangle\langle\partial \tau\rangle-\langle\tau\rangle\langle\partial$			$2.20(6)$	$\langle\partial A\rangle$		
\{2.0\}	$\{3\}$			$\{2.222\}$	\{3\}		

L. Oppenheim, MKJ, S. Gazit, Z. Ringel arXiv:2311.17994

Lattice gauge theories

$$
\mathcal{S}_{\mathrm{SD}-\mathrm{IHG}}=K \sum_{\square} \prod_{\langle i, j\rangle \in \square} \sigma_{i j}+J \sum_{\langle i, j\rangle} \tau_{i} \sigma_{i j} \tau_{j}
$$

- We can identify subleading
operators (or the absence of the expected ones)

AT-TFI				SD-IHG			
RSMI-NEScalingDimension\{Expected $\left.{ }^{[46]}\right\}$	Analytic Operator \{Deg.\}	Neural Operator Projection		RSMI-NEScalingDimension$\left\{\right.$ Expected $\left.{ }^{[17]}\right\}$	Analytic Operator \{Deg.\}	Neural Operator Projection	
		Maximum	Minimum			Maximum	Minimum
1.24(1)	$\langle\sigma\rangle^{2}-\langle\tau\rangle^{2}$						
1.22(1)	$\langle\sigma\rangle\langle\tau\rangle$			$\begin{aligned} & 1.24(1) \\ & \{1.22\} \end{aligned}$	$\langle A\rangle$ $\{1\}$		
\{1.23629\}	\{2\}						
1.49(2)	$\langle\sigma\rangle^{2}+\langle\tau\rangle^{2}$			1.54(2)	$\langle S\rangle$		
\{1.51136\}	\{1\}			\{1.502\}	\{1\}		
2.02(3)	$\langle\sigma\rangle\langle\partial \tau\rangle-\langle\tau\rangle\langle\partial \sigma$						
$\{2.0\}$	$\{3\}$			$\{2.222\}$	\{3\}		

L. Oppenheim, MKJ, S. Gazit, Z. Ringel arXiv:2311.17994

- The quasiperiodic Amman Beenker (AB) tiling is generated hierarchically:

- The quasiperiodic Amman Beenker (AB) tiling is generated hierarchically:

- The quasiperiodic Amman Beenker (AB) tiling is generated hierarchically:

- AB tiling admits perfect dimer covering, and shows evidence of power-law dimer correlations: Phys. Rev. B 106, 094202 (2020)

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

RG for quasi-periodic systems

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

RG for quasi-periodic systems

$$
\begin{gathered}
\Lambda_{1} \\
\Lambda_{2} \\
\Lambda_{3} \\
\Lambda_{4}
\end{gathered} \xrightarrow[C_{8}]{\pi / 4 \text { rotation }} \begin{gathered}
\Lambda_{4} \\
-\Lambda_{3} \\
-\Lambda_{1} \\
-\Lambda_{2}
\end{gathered}
$$

D.E. Gokmen, S. Biswas, S.D. Huber, Z. Ringel, F. Flicker and MKJ, arXiv:2301:11934 (2023)

RG for quasi-periodic systems

$\mathrm{C}_{8} \equiv 1$ bit-flip

H

- The compression map reveals effective super-dimers on a larger scale:

- The compression map reveals effective super-dimers on a larger scale:

- The same compression maps persist across multiple scales

Dynamical systems

$$
p_{\beta}^{*}(h \mid x)=\frac{1}{\mathcal{N}(x)} p_{\beta}^{*}(h) \exp \left[\beta \sum_{n} \mathrm{e}^{\lambda_{n} \Delta t} \phi_{n}(x) f_{n}(h)\right]
$$

Dynamical systems

b

$$
\mathcal{L}_{\mathrm{IB}}\left[p_{H_{t} \mid X_{t}}\right]=I\left(X_{t}, H_{t}\right)-\beta I\left(X_{t+\Delta t}, H_{t}\right)
$$

- Compress to preserve information about the future state of the system.

$$
p_{\beta}^{*}(h \mid x)=\frac{1}{\mathcal{N}(x)} p_{\beta}^{*}(h) \exp \left[\beta \sum_{n} \mathrm{e}^{\lambda_{n} \Delta t} \phi_{n}(x) f_{n}(h)\right]
$$

Dynamical systems

$$
\mathcal{L}_{\mathrm{IB}}\left[p_{H_{t} \mid X_{t}}\right]=I\left(X_{t}, H_{t}\right)-\beta I\left(X_{t+\Delta t}, H_{t}\right)
$$

- Compress to preserve information about the future state of the system.
- The IB-optimal encoder is determined by the eigenmodes of the transfer operator

$$
p_{\beta}^{*}(h \mid x)=\frac{1}{\mathcal{N}(x)} p_{\beta}^{*}(h) \exp \left[\beta \sum_{n} \mathrm{e}^{\lambda_{n} \Delta t} \phi_{n}(x) f_{n}(h)\right]
$$

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Present-Future Information

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Present-Future
 Information

- IB learns the transfer operator eigenmodes

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

Present-Future Information

- IB learns the transfer operator eigenmodes

Brownian particle in a potential

$$
\begin{aligned}
\dot{x}_{t} & =-\partial_{x} V\left(x_{t}\right)+\sigma \eta_{t} . \\
V(x) & =\frac{1}{4}\left(\mu-x^{2}\right)^{2}
\end{aligned}
$$

- IB learns the transfer operator eigenmodes

Cyanobacteria experiments

Cyanobacteria experiments

Cyanobacteria experiments

$t=36 \mathrm{hr}$

Cyanobacteria experiments

$t=36 \mathrm{hr}$

- Dynamics in latent space reveals populations differing by synchronisation

Cyanobacteria experiments

- Dynamics in latent space reveals populations differing by synchronisation

Outlook

- Applications to 3D stat.mech. models
- Automating discovering the algebraic properties
satisfied by the operators
- Dynamical graphs
- Application to experimental data: soft-matter,

Operator content of theories on different lattices, equilibrium or not, can be extracted using compression theory tools from raw data alone.

$$
\begin{aligned}
& \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y} N_{\mid}(\mathbf{r}), \\
& \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y+1} N_{-}(\mathbf{r})
\end{aligned}
$$

$$
\begin{gathered}
N_{\mid}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y+1}}{2 \pi} \partial_{x} \varphi(\mathbf{r})+(-1)^{y} \sin \varphi(\mathbf{r}) \\
N_{-}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y}}{2 \pi} \partial_{y} \varphi(\mathbf{r})+(-1)^{x} \cos \varphi(\mathbf{r}) \\
\text { Papanikolaou et al. PRB } 76,134514(2007)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{H}_{1} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right] \\
& \mathcal{H}_{2} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]
\end{aligned}
$$

$\mathcal{H} \propto \tau \circ \nabla\langle\varphi(\mathbf{r})\rangle_{\mathbf{r} \in \mathcal{V}}$

- The staggered filters:

$$
\begin{aligned}
& \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y} N_{\mathrm{l}}(\mathbf{r}), \\
& \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y+1} N_{-}(\mathbf{r})
\end{aligned}
$$

$$
\begin{array}{r}
N_{\mid}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y+1}}{2 \pi} \partial_{x} \varphi(\mathbf{r})+(-1)^{y} \sin \varphi(\mathbf{r}) \\
N_{-}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y}}{2 \pi} \partial_{y} \varphi(\mathbf{r})+(-1)^{x} \cos \varphi(\mathbf{r})
\end{array}
$$

Papanikolaou et al. PRB 76, 134514 (2007)

$$
\begin{aligned}
& \mathcal{H}_{1} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right] \\
& \mathcal{H}_{2} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]
\end{aligned}
$$

$$
\mathcal{H} \propto \tau \circ \nabla\langle\varphi(\mathbf{r})\rangle_{\mathbf{r} \in \mathcal{V}}
$$

- The staggered filters:

$$
\begin{aligned}
& \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y} N_{\mathrm{l}}(\mathbf{r}), \\
& \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=(-1)^{x+y+1} N_{-}(\mathbf{r})
\end{aligned}
$$

$$
\begin{array}{r}
N_{\mathrm{l}}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y+1}}{2 \pi} \partial_{x} \varphi(\mathbf{r})+(-1)^{y} \sin \varphi(\mathbf{r}) \\
N_{-}(\mathbf{r})=\frac{1}{4}+\frac{(-1)^{x+y}}{2 \pi} \partial_{y} \varphi(\mathbf{r})+(-1)^{x} \cos \varphi(\mathbf{r})
\end{array}
$$

Papanikolaou et al. PRB 76, 134514 (2007)

$$
\begin{aligned}
& \mathcal{H}_{1} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 1} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{x} \varphi(\mathbf{r})}{2 \pi}+(-1)^{x} \sin \varphi(\mathbf{r})\right] \\
& \mathcal{H}_{2} \sim \sum_{\mathbf{r} \in \mathcal{V}} \Lambda_{\mathrm{S} 2} \cdot \mathcal{V}(\mathbf{r})=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{(-1)^{x+y}}{4}+\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]=\sum_{\mathbf{r} \in \mathcal{V}}\left[\frac{\partial_{y} \varphi(\mathbf{r})}{2 \pi}+(-1)^{y} \cos \varphi(\mathbf{r})\right]
\end{aligned}
$$

- Expanding sin/cos and averaging we obtain:

$$
\mathcal{H} \propto \tau \circ \nabla\langle\varphi(\mathbf{r})\rangle_{\mathbf{r} \in \mathcal{V}}
$$

Critical exponents for the Self-dual Ising-Higgs Gauge theory and the Ashkin-Teller model

- They can used as operators in correlation functions
- They can used as operators in correlation functions

- They can used as operators in correlation functions

[^0]: coarse-graining network: $p_{\wedge}(h \mid v)$

