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▪ Intro and motivation: RG, compression, and ML
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▪ Effective descriptions

▪ We seek effective descriptions of complex 
systems in terms of few variables

▪ Dynamical systems’ model reductions
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The three ingredients

▪ The physical principle: 
lossy compression 
maximising I(H:E)

▪ The estimator of mutual 
information

▪ The coarse-
graining ansatz 
family P(H | V)

https://github.com/RSMI-NE/RSMI-NE
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Lossy compression 

{ }…
dim d = Npixels

We have a complicated signal V 

{ }…
dim d = 4 ≪ Npx

We’d like to compress it to a variable H, 
using a mapping  p(h | v)

{ }…So that H retains relevant information 
for the down-stream task, implicitly 
defined by correlations withY
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The information bottleneck (IB) compression

▪ Relevance defined implicitly, by 
correlations with a signal variable

Tishby, Pereira, Bialek (1999) 
Tishby Slonim NeurIPS (2000)

▪ Optimal compression of relevant 
information is a variational problem

▪ IB equations:

▪ Optimal IB encoder goes through a sequence of 
permutation symmetry breaking transitions

Gedeon et al. Entropy (2012), 14(3) 456-479

▪ RSMI arises in the infinite      limit, and finite alphabet
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▪ Common methods are computationally 
demanding and/or not differentiable

▪ Estimation by optimising variational bounds:

Make T a neural network! [MINE, Belghazi et al. (2018)]

▪ MINE can be improved in many respects (e.g. variance)

Poole et al. ICMLR (2019) “On variational bounds of mutual information”

InfoNCE, van den Oord et al. (2018)

▪ We get a parametric, differentiable, and tight lower bound on MI

Estimating MI with neural networks
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▪ The coarse-graining network(s)

▪ The RSMI estimator and the coarse-grainer are stacked

Bengio, Leonard, Courville arXiv:1308:3432 
Jang, Gu, Poole  ICLR (2017) 
Maddison, Mnih, Teh ICLR (2017)

▪ Differentiable discretization

▪ Co-trained with SGD as a single network (differentiable, upper bounded!) 

https://github.com/RSMI-NE/RSMI-NE Phys.Rev.Lett 127, 240603 (2021) 
Phys.Rev. E, 104, 064106 (2021) 

The RSMI-NE network
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RG of dimer model: 
mapping to height field

Example: the interacting dimer model



Phys.Rev.Lett 127, 240603 (2021) https://github.com/RSMI-NE/RSMI-NE
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▪ Total RSMI with the optimal  filter

▪ The optimal filters depend on T

Phys.Rev.Lett 127, 240603 (2021) https://github.com/RSMI-NE/RSMI-NE
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▪ Pairs of C/P filters label broken symmetry states ▪ Filters define order parameters:

Alet et al. PRE 74, 041124 (2006)

▪ Filters are relevant operators:

Papanikolaou et al. PRB 76, 134514 (2007)

(Also: staggered filters are gradients of the height field)
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PRL 127, 240603 (2021) 
PRE, 104, 064106 (2021) 

The action of symmetries of the physical state are 
represented on the space of filters

Emergent U(1):
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RG for quasi-periodic systems

▪ The quasiperiodic Amman Beenker (AB) tiling is generated hierarchically:

▪ AB tiling admits perfect dimer covering, and shows evidence of power-law 
dimer correlations: Phys. Rev. B 106, 094202 (2020)
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RG for quasi-periodic systems

▪ The compression map reveals effective super-dimers on a larger scale:

▪ The same compression maps persist across multiple scales
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▪ IB learns the transfer operator eigenmodes
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Outlook

▪ Applications to 3D stat.mech. models 

▪ Automating discovering the algebraic properties 

satisfied by the operators 

▪ Dynamical graphs 

▪ Application to experimental data: soft-matter, 

Operator content of theories on different lattices, 
equilibrium or not, can be extracted using 
compression theory tools from raw data alone.
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▪ The staggered filters:

Papanikolaou et al. PRB 76, 134514 (2007)

▪ Expanding sin/cos and averaging we obtain:



Critical exponents for the Self-dual Ising-Higgs Gauge 
theory and the Ashkin-Teller model
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