

w.i.p. with Miranda Cheng & Max Welling

Diffusion models & RG

RG inspired perspective on diffusion models

Mathis Gerdes – ECT* 2024 – Machine Learning and the Renormalization Group

Generative Models

Distribution to distribution

- Map between distributions
- Map between samples
- Probabilistic, deterministic

sample space

Diffusion models

Autoregressive models

Normalizing flows

VAEs

Energy based models

• • •

Inverting Brownian Motion

Forward: iterative diffusion process $\phi_{t+\delta t} = \sqrt{1-\beta} \phi_t + \beta \epsilon$

ML inverse noising

We want to learn the inverse "generative" process.

Continuum limit

In the continuum limit we get a Brownian motion SDE:

$$d\phi = -\frac{1}{2}\beta\phi\,dt + \beta\,dw$$

Solving the SDE starting at $p_0(\phi)$ leads to a path in distributions $p_t(\phi)$.

All information about the flow is encoded in the Stein score:

Want to learn $s_{\theta}(\phi, t) \approx -\nabla_{\phi} \log p_t(\phi) \longrightarrow$ Know inverse SDE!

What makes them work?

 $d\phi = -\frac{1}{2}\beta\phi\,dt + \beta\,dw$

- We can solve the forward SDE exactly: $\phi(t) = \sigma_t \phi(0) + \alpha_t \epsilon$.

Ornstein-Uhlenbeck process

• Given $p_t\left(\phi(t) \mid \phi(0)
ight)$ we know a score loss function.

Denoising scorematching

• Can train the score at each "noise level" *t* independently.

score matching + linear diffusion process + multi scale

Diffusion model design space

Design degrees of freedom

- Form of diffusion process (prior, noising scheme, scaling)
- Score network architecture
- Conditional training
- Score matching loss function, training scheme
- Combination with other methods and extensions (e.g. latent space diffusion)

What makes them work?

score matching + linear diffusion process + multi scale

- Can we improve on the forward diffusion process?
- Can we understand and improve on the multi-scale structure?

What can we learn from an RG perspective?

RG Perspectives

Universality & information erasure

- Flows in distribution space
- Diffusion models: always trivial f.p. given by noise distribution


```
Blockspin RG
```

Momentum space RG

- Erase/suppress momentum amplitudes from high-k to low-k
- Diffusion models: just add white noise to each pixel!

We want more control!

Can make connection to ERG & gradient flows more rigorous: [2308.12355]

Universality/ Power Spectra

Information Erasure

Forward process Component-wise schedules

General SDE: $d\phi = F(\phi, t) dt + G(\phi, t) dw$

Need simple, solvable process to get $p_t(\phi(t) \mid \phi(0))$

Simultaneously diagonalizable: $d\phi = UAU^{\dagger}\phi dt + UBU^{\dagger} dw$

Ornstein-Uhlenbeck process

Variance preserving:
$$d\phi = \frac{1}{2}U\beta U^{\dagger}\phi dt + U\sqrt{\beta}SU^{\dagger}dw$$

S $\beta(t)$ Noise "color" Multi-scale and fixed point information erasure

Noise Spectrum

Empirically: Natural images often have power-law spectra.

$$\langle |\phi_k|^2 \rangle = \Sigma_{kk} \sim \frac{1}{k^2}$$

White noise diffusion: transition from data spectrum to white noise.

White Noise

Free Theory Noise

Noise Spectrum

Free Theory Noise

Initialize with (colored) Gaussian score: $\nabla_{\phi} \log p_{\rm norm}(\phi) = -\Sigma^{-1} \phi$

Automatically match second order statistics!

Now network only has to learn higher order correction:

$$s_{\theta}(\phi, t) = \Sigma^{-1} \phi + \text{NN}(\phi, t)$$

New "fixed point" is a free theory. Matches the data distribution.

Information Erasure

In the usual diffusion models

Diffusion models already *implicitly* destroy information by-scale.

Forward OU: $\phi(t) = \alpha_t \phi(0) + \sigma_t \epsilon$

- Multi-scale information erasure implicit, depending on data magnitude.
- No explicit control over this.

Information Erasure

Component-wise schedules

RG intuition: erase information scale-by-scale.

Recall Polchinski RG:
$$S_{\Lambda}[\phi] = \int \frac{d^D k}{(2\pi)^{D/2}} \tilde{\phi}(k) \tilde{\phi}(-k) \frac{k^2 + m^2}{K_{\Lambda}(k)} + S_{\text{int},\Lambda}[\phi]$$

 $K_{\Lambda}(k)$: cutoff kernel, $K_{\Lambda}(k) \rightarrow 0$ as $|k| \gg \Lambda$

E.g. sigmoid cutoff:

$$K_{\Lambda}(k) = \sigma(\Lambda - |k|)$$

We can translate this directly into a component-wise $\beta_k(t)$!

Forward process

Component-wise schedules

$$d\phi = \frac{1}{2} U\beta U^{\dagger} \phi \, dt + U \sqrt{\beta} S U^{\dagger} \, dw$$

S Noise "color" and fixed point **β**(t) Multi-scale information erasure

RG: Free theory

ML: Good initialization matching 2nd order stats

Change theory cutoff

Set how "autoregressive" generative process is

Soft conditioning to auto-regressive

Multi-scale information erasure

Forward OU:
$$\phi(t) = \alpha_t \phi(0) + \sigma_t \epsilon$$

New hyper-parameter space to optimize!

standard diffusion

Noising CIFAR-10

Matching power spectrum, component-specific noising

Noise component that is added to data

Component spaces

$d\phi = UAU^{\dagger}\phi \, dt + UBU^{\dagger} \, dw$

Fourier spacePrinciple components (PCA)Momentum
componentsWhitened PCA
componentsPhysics inspired
noise/match PSCould reinterpret as momenta/
match 2nd order statistics

RG inspired schedule/optimize

Component spaces

Wavelet components

modified, from [2208.05003]

Special case:

- Linear change of basis U given by wavelets
- "Hard" conditioning: generate each higherfrequency wavelet components given fixed lower-frequency data

Wavelet Score-Based Generative Modeling [2208.05003]

Summary

Tried on 6x6 phi4 samples and experiments on CIFAR-10 (w.i.p.)

- Matching noise + component-wise schedule is improvement!
- Choice of local schedule has significant impact.
- Exploring various families of schedules, loss functions, datasets.

