©f UNIVERSITY
“® OF AMSTERDAM

w.1.p. with Miranda Cheng

& Max Welling

Oiffusion models &

RG inspired perspective on diffusion models

RG

Mathis Gerdes — ECT* 2024 — Machine Learning and the Renormalization Group



Generative Models

Distribution to distripution

distribution space

- Map between distributions

- Map between samples

« Probabilistic, deterministic

sample space

Diffusion models Autoregressive models

o Energy based models
Normalizing flows VAES



Diffusion Models

nverting brownian Motion

Forward: iterative diffusion process ¢, 5, = \/1 —po,+pe

NoIsiNg

ML inverse noising

We want to learn the inverse “generative” process.



see e.g. [201113456] Song et al

Diffusion Models

Continuum limit

INn the continuum limit we get a Brownian motion SDE:

1
dp =~ = pdi+ paw
Solving the SDE starting at py(¢) leads to a path in distributions p,(¢).

All information about the flow is encoded in the Stein score:

Want to learn sy(¢, 1) & =V, logp(¢p) — Knowinverse SDE!



see e.g. [201113456] Song et al

Diffusion Models

1
What makes them work? dp = — > B dt+ fdw

Ornstein-

- We can solve the forward SDE exactly: ¢(f) = o,(0) + ¢ . Unlenbeck

process

Denoising
score-
matching

. Given p, (¢(t) | ¢(0)) we know a score loss function.

- Can train the score at each “noise level” f independently.

score matching + linear diffusion process + multi scale



Diffusion model design space

Design degrees of freedom

« Score network architecture

- Conditional training
- Score matching loss function, training scheme

- Combination with other methods and extensions (e.g. latent space
diffusion)



Diffusion Models

What makes them work?

score matching + linear diffusion process + multi scale

- Can we improve on the forward diffusion process?

- Can we understand and improve on the multi-scale structure?

What can we learn from an RG perspective?



RG Perspectives

Universality & iInformation erasure
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G A Blockspin RG Momentum space RG
WE - Erase/suppress momentum
amplitudes from high-k to low-k
RG flow
- Diffusion models: just add white
- Flows in distribution space noise to each pixell

- Diffusion models: always trivial f.p.
given by noise distribution

We want more control!

Can make connection to ERG & gradient flows more rigorous: [2308.12355]



Universality /

Power spectra

Information .

~rasure



Forward process

Component-wise schedules

General SDE: d¢p = F(¢, 1) dt + G(¢, t) dw _

Simultaneously diagonalizable: d¢p = UAU ¢ dt + UBU" dw

Ornstein-
Uhlenbeck

process

1
Variance preserving: d¢ = EUﬁUJ% dt + U\/ﬁSUT dw




Log | oPower

Nolse spectrum

Log1 Ospatialfrequency (cycles/image)

[Simoncelli-Olshausen 2001]

Empirically: Natural images often
have power-law spectra.

White noise diffusion: transition from
data spectrum to white noise.
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Noise spectrum

Initialize with (colored) Gaussian score: V¢logpnorm(qb) =319

Automatically match second order statistics!

Now network only has to learn higher order correction:

so(h, 1) = 27" p + NN(¢h, 1)

New “fixed point” is a free theory. Matches the data distribution.



Information Erasure

In the usual diffusion models

Diffusion models already implicitly
destroy information by-scale.

Forward OU: ¢(¢) = a,¢p(0) + o€
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€ « Multi-scale information

\ erasure implicit, depending

on data magnitude.

Spectrum (|¢s|?)
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] - No explicit control over this.



Information Erasure

Component-wise schedules
RG intuition: erase information scale-by-scale.

L dPk - | -
Recall Polchinski RG: 5A[¢]:/(27T)D/2¢(k)¢(_k) K (k) + Sint,A[9]

Kn(k) : cutoff kernel, Kx(k) — 0 as |k| > A

E.g. sigmoid cutoff:
K(k) = o(A — [k

Cutoff kernel

A We can translate this directly into o
Momentum k

component-wise B,() !



Forward process

Component-wise schedules

1
dop = EUﬁU?‘gb dt + U/BSU" dw

S B
Noise “color” Multi-scale
and fixed point information erasure
RG: Free theory Change theory cutoff
Good initialization Set how “autoregressive”

ML: . . .
matching 2nd order stats generative process is



SOt conditioning to auto-regressive

Multi-scale information erasure

standard diffusion

1.0 A
Forward OU: ¢(¢) = a,¢p(0) + o€ s
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Noising CIFAR-10

Matching power spectrum, component-speciiic NoISINg

Suppression of - t
Image noising —
components
1.0 A \)
0.8 - \ ;;;\
o 0.6 - ‘;
® 0.4 |
0.2 A
0.0 A
O.IO 0j2 0.I4 0.|6 0.8 1j0
t
Noise component that is added to data



Component spaces

dp = UAU ¢ dt + UBU" dw

Fourier space Principle components (PCA)
Momentum Whitened PCA
components components
Physics inspired Could reinterpret as momenta/
noise/match PS match 2nd order statistics
RG inspired

' -

schedule/optimize



Component spaces

Wavelet components

—>»>

modified, from [2208.05003]

Special case:
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. Linear change of basis U given by wavelets
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- "Hard” conditioning: generate each higher-
frequency wavelet components given fixed
|Ower—frequeﬂcy d(]t(_] 0.0 0.2 0.4 0.6 0.8 1.0

Suppression factor a

o
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o
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Wavelet Score-Based Generative Modeling [2208.05003]



oummary

Tried on 6x6 phi4 samples and experiments on CIFAR-10 (w.i.p.)

Matching noise + component-wise schedule is improvement!

Choice of local schedule has significant impact.

I Exploring various families of schedules, loss functions, datasets.
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