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Machine Learning Hamiltonian

Hamonic oscillator
DATA

Machine learning

Ising model

field model
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Inverse problem

by machine learning
Standard physics

approach

Motivation

Training data

Field  

?

(Magnetization fields, dark matter distribution, etc.)

Can we construct probability distribution or Hamiltonian from data?

Cocco et al., Rep. Prog. Phys. 2018

Lingxiao’s talk on Friday
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Inverse problem

by machine learning
Generate new data

Training data

Field  (Magnetization fields, dark matter distribution, etc.)

Once we learn         , we can use it as an efficient generative model

Cocco et al., Rep. Prog. Phys. 2018Gabrié, Rotskoff, Vanden-Eijnden, PNAS 2022

Motivation

Decelle, Furtlehner, and Seoane, Adv Neural Inf Process Syst NeurIPS 2021



Main messages

- Learning microscopic Hamiltonian from data

(Generative model with high interpretability)

- Overcoming critical slowing down in training process

- Overcoming critical slowing down in generation process

(RG is the key to achieve these goals)



Field  

sites

Lattice field systems

on site 



is an estimate of true distribution,

Naive approach

Ansatz Gaussian Non-linear potential

Task: Determination of      from the training dataset

Coupling parameters:

Operators:



Minimize Kullback-Leibler Distance between           and 

Zhu, Wu, and Mumford, Neural Comput. 1997

Naive approach

Gradient Descent for Convex Optimization

Training dataMonte-Carlo

by 

with

Decelle, Furtlehner, and Seoane, Adv Neural 

Inf Process Syst NeurIPS 2021



Problem

Naive approach

Convergences are very slow when long-range correlations appear

Critical slowing down appears in Machine Learning!

Timescale for Monte-Carlo (MC)

Timescale for Gradient Descent (GD)

(Results from Gaussian field theory)

Correlation length

Long-range

Long-range



Renormalization Group (RG)
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One step RG

RG steps scale by scale manner

Wilson and Kogut, Phys. Rep. 1974
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Inverse Renormalization Group

One step Inverse RG

Gradient Descent minimizing KL distance

Training dataMonte-Carlo by

Ansatz in Conditional probability

Ron, Swendsen, and Brandt, PRL 2002

Bachtis, Aarts, Di Renzo, and Lucini, PRL 2022

Bachtis, arXiv 2024 Demitrios’ talk



Overcoming the critical slowing down

Long-range Long-range Short-range

= +

Short-range

Short-range

Timescales do not depend on



Some technical issues

Scale separation

Fourier transform Wavelet transform

Non-linear potential

Polynomial functions
Linear combination

of Hat functions

P
o
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n
ti

al

Long-range interactions in the k-space

Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 1989

Localized in the real and k-spaces
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Fourier transform

data points

(                 )’s form an orthonormal basis

# of coefficients = 
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Coarse Fine
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Coarse Fine

+++ +・・・

Coarse Fine
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Scale 1 Scale 2 Scale J

Wavelet transform
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Different positions

Scale 2

Scale J
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Fourier transform

(                 )’s form an orthonormal basis

Wavelet transform

(           )’s form an orthonormal basis

Specified by scales

Specified by scales and positions

# of coefficients = 

# of coefficients = 

Sparsity: Most of coefficients are nearly zero (e.g., JPEG 2000)



Haar wavelet (1909) Shannon wavelet (1940’s)

Real space (localized)

k-space (delocalized)

Modern wavelets (1980’s-)

Real space (delocalized)

k-space (localized)

Real space (localized)

k-space (localized)

Kadanoff’s block averaging Wilson, PRB 1971Many different wavelets

were developped

In practice, we can use PyWavelets (Software)



Test case study

Lattice        field model

Milchev, Heermann, and Binder, J. Stat. Phys. 1986

Reconstruction of Hamiltonian

Gaussian term Non-linear potentials
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Disordered phase Ordered phaseCritical point

Self-similarity of the potential appears near the critical point



Synthesized data

Training data

Standard algorithms:

Cluster algorithms:

Our algorithm:

Swendsen and Wang, PRL 1987

: System size

New fast Monte-Carlo sampling algorithm
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H
is

to
g
ra

m

Once we learn                           across scales,

          we use them for a fast MC sampling method

Wolff, Phys. Lett. B 1989 



Application for Astrophysics

Construction of Hamiltonian

Weak Gravitational Lensing map

Manuel Zorrilla Matilla, Himan, Hsu, Gupta, and Petri, PRD 2016

Gaussian term
Non-linear potentials
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Inherently non-equilibrium field where we do not know            and             a priori  

is a sort of effective Hamiltonian to represent            compactly

The emergence of non-linear potentials for Long-range interactions
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Fast MC sampling from coarse to fine

Application for Astrophysics



- Learning microscopic Hamiltonian from data

(Generative model with high interpretability)

- Overcoming critical slowing down in training process

- Overcoming critical slowing down in generation process

(RG is the key to achieve these goals)

Conclusions
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Field  

1) Prepare training data set



2) Decompose fields

Coarse-grained field

Wavelet field

Reconstruction

Orthogonal wavelet transform



3) Conditional probabilities

Chain rule

Applying the chain rule many times 

Tasks: Estimation of                and               



4) Estimations

Estimation of               : 

by

Estimation of                   : 

by



5) Sampling from coarse to fine

・
・
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6) Estimation of the microscopic Hamiltonian

Estimation of                  : 

by

Estimation of             

(Linear regression)



Guth, Coste, De Bortoli, and Mallat, NeurIPS 2022
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