Renormalization Group Approach for Machine Learning Hamiltonian

Misaki Ozawa

Collaboration with

Tanguy Marchand, Giulio Biroli, and Stephane Mallat

Marchand, Ozawa, Biroli, and Mallat, Phy. Rev. X 2023

Machine Learning Hamiltonian

mmmmo

mmmm

 \mathbf{m}

Hamonic oscillator $\mathcal{H} = \frac{1}{2m}p^2 + \frac{1}{2}kx^2$

Ising model

 $\mathcal{H} = -J \sum_{ij} S_i S_j$

 φ^4 field model $\mathcal{H}(\varphi) = \int \mathrm{d}x \left(|\nabla \varphi|^2 + t\varphi^2 + \varphi^4 \right)$

Motivation

Can we construct probability distribution or Hamiltonian from data?

Motivation

Once we learn $p(\varphi)$, we can use it as an efficient generative model

Decelle, Furtlehner, and Seoane, Adv Neural Inf Process Syst NeurIPS 2021

Main messages

- Learning microscopic Hamiltonian from data

(Generative model with high interpretability)

- Overcoming critical slowing down in training process

- Overcoming critical slowing down in generation process

(RG is the key to achieve these goals)

Lattice field systems

Naive approach

Coupling parameters: $K = (J, c_1, c_2, c_3, \cdots, c_m)$ Operators: $O(\varphi) = \left(\varphi \varphi^{\top}, \sum_i \varphi_i, \sum_i \varphi_i^2, \sum_i \varphi_i^3, \cdots, \sum_i \varphi_i^m\right)$

Task: Determination of K from the training dataset

Naive approach

Minimize Kullback-Leibler Distance between $p(\varphi)$ and $p_K(\varphi) = \frac{e^{-\mathcal{H}_K(\varphi)}}{Z_K}$ with $D(p||p_K) = \int \mathrm{d}\varphi \ p(\varphi) \ln \frac{p(\varphi)}{p_K(\varphi)}$

$$\mathcal{H}_K(\varphi) = K^\top O(\varphi)$$

Gradient Descent for Convex Optimization

Zhu, Wu, and Mumford, Neural Comput. 1997

Decelle, Furtlehner, and Seoane, Adv Neural Inf Process Syst NeurIPS 2021

Naive approach

Problem

Convergences are very slow when long-range correlations appear

Critical slowing down appears in Machine Learning!

Renormalization Group (RG)

One step RG

Wilson and Kogut, Phys. Rep. 1974

$$\varphi = \varphi_{\rm slow} + \varphi_{\rm fast}$$

$$e^{-\mathcal{H}_1(\varphi_{\text{slow}})} = \int \mathrm{d}\varphi_{\text{fast}} e^{-\mathcal{H}(\varphi)}$$

RG steps scale by scale manner

$$\mathcal{H} \to \mathcal{H}_1 \to \mathcal{H}_2 \to \cdots$$

Inverse Renormalization Group

One step Inverse RG

Ron, Swendsen, and Brandt, PRL 2002 Bachtis, Aarts, Di Renzo, and Lucini, PRL 2022 Bachtis, arXiv 2024 **Demitrios' talk**

$$p(\varphi) = p(\varphi_{\text{slow}}, \varphi_{\text{fast}}) = p^{c}(\varphi_{\text{fast}} | \varphi_{\text{slow}}) p_{1}(\varphi_{\text{slow}})$$

Ansatz in Conditional probability $p_{K}^{c}(\varphi_{\text{fast}}|\varphi_{\text{slow}}) = \frac{e^{-\mathcal{H}_{K}^{c}(\varphi_{\text{fast}},\varphi_{\text{slow}})}}{Z_{K}^{c}}$ $\mathcal{H}_{K}^{c}(\varphi_{\text{fast}},\varphi_{\text{slow}}) = K^{\top}O(\varphi_{\text{fast}},\varphi_{\text{slow}})$

Gradient Descent minimizing KL distance

Overcoming the critical slowing down

Timescales do not depend on ξ

Some technical issues

Non-linear potential

Polynomial functions

$$c_1\varphi_i + c_2\varphi_i^2 + c_3\varphi_i^3 + \dots + c_m\varphi_i^m$$

Linear combination of Hat functions

Scale separation $\varphi = \varphi_{slow} + \varphi_{fast}$

Fourier transform

$$\varphi_{\text{slow}} = \int_{\text{Low } k} dk \ e^{ikx} \hat{\varphi}$$
$$\varphi_{\text{fast}} = \int_{\text{High } k} dk \ e^{ikx} \hat{\varphi}$$

Long-range interactions in the k-space

Wavelet transform $\varphi_{\text{slow}} = \mathbf{L}^{\top} \mathbf{L} \varphi^{\mathbf{u}}$ $\varphi_{\text{fast}} = \mathbf{H}^{\top} \mathbf{H} \varphi$

Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 1989

Localized in the real and k-spaces

Fourier transform

Different scales

of coefficients = N

••• (Repeat) ••

Wavelet transform

x

Fourier transform

(//////)'S form an orthonormal basis

Specified by scales

of coefficients = N

Wavelet transform

(—)'S form an orthonormal basis

Specified by scales and positions

of coefficients = $N/2 + N/4 + \cdots = N$

(vest Sparsity: Most of coefficients are nearly zero (e.g., JPEG 2000)

In practice, we can use PyWavelets (Software)

Test case study

Lattice
$$\varphi^4$$
 field model

Milchev, Heermann, and Binder, J. Stat. Phys. 1986

$$\mathcal{H}(\varphi) = \int \mathrm{d}x \left(|\nabla \varphi|^2 + t\varphi^2 + \varphi^4 \right)$$

Reconstruction of Hamiltonian

Non-linear potentials

Self-similarity of the potential appears near the critical point

New fast Monte-Carlo sampling algorithm

Once we learn $p_K^c(\varphi_{\text{fast}}|\varphi_{\text{slow}})$ across scales, we use them for a fast MC sampling method

-1

Ó

 φ_i

 $au_{\mathrm{MC}} \sim \xi^z$

Standard algorithms: $z \simeq 2$ Cluster algorithms: $z \simeq 0.2 - 0.3$ Swendsen and Wang, PRL 1987 Wolff, Phys. Lett. B 1989

Our algorithm: z = 0

Application for Astrophysics

Weak Gravitational Lensing map

Manuel Zorrilla Matilla, Himan, Hsu, Gupta, and Petri, PRD 2016

Inherently non-equilibrium field where we do not know $p(\varphi)$ and $\mathcal{H}(\varphi)a$ priori

 $\mathcal{H}(\varphi)$ is a sort of effective Hamiltonian to represent $\ p(\varphi)$ compactly

Construction of Hamiltonian

The emergence of non-linear potentials for $\varphi_{\rm slow}$

Long-range interactions

Application for Astrophysics

Fast MC sampling from coarse to fine

Conclusions

- Learning microscopic Hamiltonian from data

(Generative model with high interpretability)

- Overcoming critical slowing down in training process

- Overcoming critical slowing down in generation process

(RG is the key to achieve these goals)

1) Prepare training data set

Field φ_0

• • •

2) Decompose fields

Orthogonal wavelet transform

Coarse-grained field

$$\varphi_j = \gamma_j^{-1} \, G \, \varphi_{j-1}$$

Wavelet field
$$\overline{\varphi}_j = \gamma_j^{-1} \, \overline{G} \, \varphi_{j-1}$$

Reconstruction

$$\varphi_{j-1} = \gamma_j G^T \varphi_j + \gamma_j \overline{G}^T \overline{\varphi}_j$$

3) Conditional probabilities

Chain rule $p_{j-1}(\varphi_{j-1}) = \overline{p}_j(\overline{\varphi}_j | \varphi_j) p_j(\varphi_j)$

Applying the chain rule many times

$$p_{0}(\varphi_{0}) = \overline{p}_{1}(\overline{\varphi}_{1}|\varphi_{1}) \overline{p}_{2}(\overline{\varphi}_{2}|\varphi_{2}) \overline{p}_{3}(\overline{\varphi}_{3}|\varphi_{3}) \cdots \overline{p}_{J}(\overline{\varphi}_{J}|\varphi_{J}) p_{J}(\varphi_{J})$$
$$= \left[\Pi_{j=1}^{J} \overline{p}_{j}(\overline{\varphi}_{j}|\varphi_{j})\right] p_{J}(\varphi_{J})$$

Tasks: Estimation of $p_J(\varphi_J)$ and $\overline{p}_j(\overline{\varphi}_j|\varphi_j)$

4) Estimations

Estimation of $p_J(\varphi_J)$:

$$p_{\theta_J}(\varphi_J) = \frac{1}{Z_J} e^{-\theta_J^T U_J(\varphi_J)} \quad \text{by} \quad \min_{\theta_J} D_{\text{KL}}(p_J || p_{\theta_J})$$

Estimation of $\overline{p}_j(\overline{\varphi}_j|\varphi_j)$:

$$\overline{p}_{\overline{\theta}_{j}}(\overline{\varphi}_{j}|\varphi_{j}) = \overline{Z}_{j}^{-1} \exp\left[-\overline{\theta}_{j}^{T} \overline{U}_{j}(\varphi_{j-1}) + \overline{F}_{j}(\varphi_{j})\right] \quad \text{by} \quad \min_{\overline{\theta}_{j}} D_{\mathrm{KL}}(p_{j-1} \| \overline{p}_{\overline{\theta}_{j}} p_{j})$$

5) Sampling from coarse to fine

6) Estimation of the microscopic Hamiltonian

Estimation of $\overline{F}_j(\varphi_j)$:

$$\overline{F}_{j}(\varphi_{j}) \approx \widetilde{\theta}_{j}^{T} \widetilde{U}_{j}(\varphi_{j}) \quad \text{by} \quad \min_{\widetilde{\theta}_{j}} \left\langle \left(\overline{F}_{j} - \widetilde{\theta}_{j}^{T} \widetilde{U}_{j} \right)^{2} \right\rangle_{p_{j}}$$
(Linear regression)

Estimation of
$$p_0(\varphi_0) = \frac{1}{Z_0} e^{-\mathcal{H}_0(\varphi_0)}$$

$$\mathcal{H}_0 \approx \theta_J^T U_J(\varphi_J) + \sum_{j=1}^J \left(\overline{\theta}_j^T \overline{U}_j(\varphi_{j-1}) - \widetilde{\theta}_j^T \widetilde{U}_j(\varphi_j) \right) + c_0$$

Guth, Coste, De Bortoli, and Mallat, NeurIPS 2022