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Problems with neural networks

▶ black box: hard to understand the meaning of computations
▶ loss landscape: loss function non-convex and very rough, hard

to find (global) minimum (related to spin glass)
[1412.0233, Choromanska et al.; 1712.09913, Li et al.]

▶ complicated training: expensive computationally, convergence
issues. . .
[syncedreview.com/cost-of-training-sota-ai-models]

▶ hyperparameter tuning: mostly trial and errors or
random/Bayesian/bandit optimization

▶ expressibility: which functions can be approximated, under
which conditions?
[1606.05336, Raghu et al.]
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http://arxiv.org/abs/1412.0233
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Why physics?

▶ effective description (no need to know fundamental theory)
▶ efficient representation of statistical models (path integral,

Feynman diagrams)
▶ collective dynamics of degrees of freedom and organization by

scales (renormalization, phase transitions)

→ develop tools to improve analytical understanding of neural
network building and training

[1608.08225, Lin-Tegmark-Rolnick; 1903.10563, Carleo et al.; Zdeborová ’21]

See also talks by: Halverson, Maiti, Sohl-Dickstein, Yaida. . .
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NN-QFT

NN-QFT correspondence
For a very general class of architectures, it is possible to associate
a quantum field theory (QFT) to a statistical ensemble of neural
networks (NN).

[2008.08601, Halverson-Maiti-Stoner (HMS)]

See also: [2106.00694, HMS; 2106.10165, Roberts-Yaida-Hanin;
2109.13247, Grosnevor-Jefferson; 2305.02334, Banta-Cai-Craig-Zhang;
2405.06008, Howard-Jefferson-Maiti-Ringel. . . ]

6 / 33

http://arxiv.org/abs/2008.08601
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Plan

In this talk [2108.01403, HE-Lahoche-Samary]:
▶ describe the NN-QFT correspondence
▶ describe RG flow for the QFT
▶ provide numerical results

Main “experimental” result
Varying the standard deviation of the weight distribution induces a
renormalization flow in the space of neural networks.
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Neural network

▶ fully connected neural network (one hidden layer)

fθ,N : Rdin → Rdout

fθ,N(x) = W1
(
g(W0x + b0)

)
+ b1

▶ width N, activation function g
▶ parameters (weights and biases): Gaussian distributions

θ = (W0, b0, W1, b1)
W0 ∼ N (0, σ2

W /din), W1 ∼ N (0, σ2
W /N)

b0, b1 ∼ N (0, σ2
b)
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Dual description

▶ consider statistical ensemble of neural networks defined by
distribution in parameter space

▶ specific NN = sample from distribution

fθ,N ∼ P[θ]

▶ dual description: parameter dist. + architecture
induces distribution in function space

fθ,N ∼ p[f ]

▶ training = change parameter dist. = flow in function space

Note: no training in this talk
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Large N limit, Gaussian process and free QFT

Large N limit = infinite layer width:
▶ NN (function) distribution drawn from Gaussian process (GP)

with kernel K (consequence of central limit theorem) [Neal ’96]
▶ generalize to most architectures [1910.12478, Yang] and training

▶ log likelihood

S0[f ] = 1
2

∫
ddinxddinx ′ f (x)Ξ(x , x ′)f (x ′), Ξ := K−1

▶ n-point correlation (Green) functions (fixed by Wick theorem)

G(n)
0 (x1, . . . , xn) :=

∫
df e−S0[f ] f (x1) · · · f (xn)

→ looks like a free QFT
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Finite N and interactions
▶ for finite N, non-GP ⇒ deviations of Green functions

∆G(n) := G(n) − G(n)
0

▶ in QFT: non-Gaussian contributions = interactions

S[f ] = S ′
0[f ] + Sint[f ]

▶ free action S ′
0[f ] unknown

▶ n-point Green functions

G(n)(x1, . . . , xn) :=
∫

df e−S[f ] f (x1) · · · f (xn)

▶ effective (IR) 2-point function exactly known (G(2) N-indep.)

G(2)(x , y) = K (x , y) = G(2)
0 (x , y)

▶ N-scaling [2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]

G(2n)
c = O

( 1
Nn−1

)
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Summary of NN-QFT correspondence

QFT NN / GP
x spacetime points data-space inputs
p momentum space dual data-space

f (x) field neural network
K (x , y) propagator Gaussian kernel

S action log probability
S0 free action Gaussian log probability
Sint interactions non-Gaussian corrections
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Why is it interesting?

▶ correlation functions between
outputs give measure of
learning

▶ ex.: 1-point function ⟨f (x)⟩
= average prediction for input x
(relation with symmetry
breaking)

[adapted from Greg Yang]
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GaussNet

Setup in this talk and [2108.01403, HE-Lahoche-Samary]:
▶ take dout = 1
▶ translation-invariant activation function (exp: element-wise)

g(W0x + b0) = exp(W0x + b0)√
exp

[
2
(
σ2

b + σ2
W

din
x2

)]
(stricly speaking, activation func. + normalization)

▶ GP kernel [2008.08601, HMS]

K (x , y) := σ2
b + KW (x , y), KW (x , y) = σ2

W e−
σ2

W
2din

|x−y |2

▶ note: [2008.08601, HMS] also considers ReLU and Erf functions
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Numerical setup
[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]
▶ din = 1, σb = 1, N ∈ {2, 3, 4, 5, 10, 20, 50, 100, 500, 1000}
▶ nbags distinct statistical ensembles of nnets networks each
▶ “experimental” Green functions

Ḡ(n)
exp(x1, . . . , xn) := 1

nbags

nbags∑
A=1

G(n)
exp(x1, . . . , xn)

∣∣
bag A

G(n)
exp(x1, . . . , xn) := 1

nnets

nnets∑
α=1

fα(x1) · · · fα(xn)

∆G(n)
exp := Ḡ(n)

exp − G(n)
0 , mn := ∆G(n)

exp

G(n)
0

▶ x (1), . . . , x (6) ∈ {−0.01, −0.006, −0.002, 0.002, 0.006, 0.01}
→ evaluate Green functions for all inequivalent combinations
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Effective action

▶ numerical results

∀N : m2 ≈ 0, ∀n ≥ 2 : m2n = O
( 1

N

)

▶ compute 1PI action with quartic and sextic interactions:

Γ = Γ0 + u4
4!

∫
ddinx f (x)4 + u6

6!

∫
ddinx f (x)6

reminder: Γ0 defined by K
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Green function deviations: histogram
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Extract quartic coupling
[2008.08601, HMS; 2108.01403, HE-Lahoche-Samary]
▶ 4-point Feynman diagrams (1PI → no loops)

= + perms −

▶ measure u4 from G(4)
exp

u4(x1, x2, x3, x4) = −∆G(4)
exp(x1, x2, x3, x4)

NK (x1, x2, x3, x4)

NK :=
∫

ddinx KW (x , x1)KW (x , x2)KW (x , x3)KW (x , x4)

▶ result: u4 ≈ constant < 0
→ need u6 > 0 (or higher coupling) for path integral

stability

19 / 33
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Quartic coupling
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Non-perturbative RG

▶ partition function and microscopic action

Z [j] := eW [j] :=
∫

dϕ e−S[ϕ]−j·ϕ

S[ϕ] encodes microscopic (UV) physics

▶ classical field and 1PI effective action

φ(x) := δW
δj , Γ[φ] := j · φ − W [j]

Γ[φ] encodes effective (IR) physics

22 / 33
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Wilson RG: momentum-shell integration
▶ split field in slow and fast modes with respect to scale k

ϕ(p) = ϕ<(p) + ϕ>(p),

ϕ<(p) := θ(|p| < k) ϕ(p)
ϕ>(p) := θ(|p| ≥ k) ϕ(p)

▶ kinetic operator decomposes

Ξ(p) = Ξ<(p) + Ξ>(p),

Ξ<(p) := θ(|p| < k) Ξ(p)
Ξ>(p) := θ(|p| ≥ k) Ξ(p)

▶ Wilsonian effective action for ϕ<

Seff[ϕ<] := 1
2 ϕ< · Ξ< · ϕ< + Seff,int[ϕ<]

e−Seff,int[ϕ<] :=
∫

dϕ> e− 1
2 ϕ>·Ξ>·ϕ>−Sint[ϕ<+ϕ>]

ϕ< background, ϕ> fluctuations
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Wilson–Polchinski RG
▶ hard cutoff not convenient, use smooth regulator

Ξk(p) := Rk(p) Ξ(p), Rk(p) →
{

1 p ≪ k
0 p ≫ k

▶ measure factorization ⇒ field decomposition

ϕ(p) = χ(p) + Φ(p)∫
dϕ e− 1

2 ϕ·Ξ·ϕ =
(∫

dχ e− 1
2 χ·Ξk ·χ

)
×

(∫
dΦ e− 1

2 Φ·(Ξ−Ξk)·Φ
)

▶ effective action at scale k (UV cut-off for χ)

e−Sint,k [χ] :=
∫

dΦ e− 1
2 Φ·(Ξ−Ξk)·Φ−Sint[χ+Φ]

▶ Polchinski equation

k dSint,k
dk =

∫ ddp
(2π)d k dΞk(p)

dk

[
δ2Sint,k

δχ(p)δχ(−p) − δSint,k
δχ(p)

δSint,k
δχ(−p)

]
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Wetterich formalism
▶ non-perturbative truncation with Polchinski equation difficult

→ Wetterich formalism
▶ regularize path integral

Zk [j] := eWk [j] :=
∫

dϕ e−S[ϕ]− 1
2 ϕ·Rk ·ϕ−j·ϕ

▶ Rk cutoff function s.t. Wk=∞ = S, Wk=0 = W

Rk=∞(p) = ∞, Rk=0(p) = 0, Rk(|p| > k) ≈ 0

▶ effective average action action at scale k (IR cutoff for φ)

φ(x) := δWk
δj , Γk [φ] := j · φ − Wk [j] − 1

2 φ · Rk · φ

▶ Legendre transform requires correction to satisfy:

Γk=0[φ] = Γ[φ], Γk=∞[φ] = S[φ]
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Wetterich equation

▶ Wetterich equation

dΓk
dk = 1

2
dRk
dk tr

(
Γ′′

k + Rk
)−1

Γ′′
k second derivatives of Γk w.r.t. φ

▶ solving requires approximation
▶ restrict theory space to finite-dimensional subspace
▶ derivative / local potential expansion

▶ non-perturbative formalism, finite coupling constants

▶ large N expansion: keeping up to ϕ2n ↔ O(1/Nn−1) effects
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RG for NN-QFT
▶ machine learning: find patterns in large dataset, ignoring noise

→ similar to RG flow

▶ action: effective (IR) known, microscopic (UV) unknown
▶ opposite as usual, need to reverse flow
▶ since information is lost, no 1-to-1 map UV / IR
▶ but any microscopic theory in IR universality class is fine

▶ intrinsic UV cutoff: machine precision Λ := a−1

27 / 33
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Momentum space 2-point function
▶ momentum space propagator

K (p) = (σ2
W )1− din

2

(din
2π

) din
2

exp
[
− din

2σ2
W

p2
]

▶ momentum expansion (derivatives subleading in IR, |p| → 0)

K (p) ≈ Z−1
0

m2
0 + p2 + O(p2)

, m2
0 := 2σ2

W
din

→ can be used in deep IR
▶ typical mass scale → correlation length ξ := m−1

0

▶ two possible RG scales: a−1
0 (machine precision) and m0

▶ effective action: kinetic term + local potential

Γk = Γk,0 + u4(k)
4!

∫
ddinx φ(x)4 + u6(k)

6!

∫
ddinx φ(x)6
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▶ effective action: kinetic term + local potential

Γk = Γk,0 + u4(k)
4!

∫
ddinx φ(x)4 + u6(k)

6!

∫
ddinx φ(x)6

28 / 33



Passive / active RG

▶ passive RG: keep m0 = ξ−1 fixed, vary k = a−1 ≤ a−1
0

(keep neural network fixed, vary data)

−→

▶ active RG: keep a0 fixed, vary k = m ≥ m0
(keep data fixed, vary neural network)

−→
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Active RG
▶ propagator looks like zero-momentum propagator with UV

regulator with scale k

Kk(p) := e−p2/k2

k2 , k2 := 2σ2
W

din

▶ changing σW ≈ changing UV cutoff k
→ define running scale

▶ classical action with Kk satisfies Polchinski equation
but should be the effective propagator ⇒ define

Γ′′
k(p) + Rk(p) := k2 ep2/k2

▶ flow equations

σW
du4
dσW

= (4 − din) u4, σW
du6
dσW

= (6 − 2din) u6
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Results: active RG

0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 W

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

lo
g 1

0u
4

N = 2, log10|u4, 0| = 1.660
log10|u4| = 2.99 log10 W + 1.71

theory: log10|u4| = 3.00 log10 W + 1.66
exp
fit

0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 W

4

3

2

1

0

lo
g 1

0u
4

N = 100, log10|u4, 0| = 0.349
log10|u4| = 3.09 log10 W + 0.19

theory: log10|u4| = 3.00 log10 W + 0.35
exp
fit

0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 W

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g 1

0u
4

N = 1000, log10|u4, 0| = 0.828
log10|u4| = 3.08 log10 W 0.83

theory: log10|u4| = 3.00 log10 W 0.83
exp
fit

σW ∈ {1.0, 1.5, . . . , 10, 20}
nbags = 30, nnets = 30000
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Outline: 4. Conclusion

Motivations

NN-QFT correspondence

Renormalization group in NN-QFT

Conclusion
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Conclusion and outlook
Achievements:
▶ additional checks of the NN-QFT correspondence
▶ discussion of the possible theory space
▶ RG flow equations for neural networks
▶ change in standard deviation = RG flow
▶ numerical tests of the equations

Future directions:
▶ increase din, dout, and order in N expansion; large din limit
▶ increase number of hidden layers
▶ extend to non-translation invariant kernels (ReLU. . . )

▶ 2PI formalism [2102.13628, Blaizot-Pawlowski-Reinosa]
▶ field redefinitions for non-local theories [2111.03672,

HE-Fırat-Zwiebach; 2307.03223, Demirtas-HMS-Schwartz]
▶ study evolution of QFT under training
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