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Generative AI for producing lattice configurations
● “Learn” field configuration for some action

→ Invertible field transformation
● Limited lattice size

The functional Renormalisation Group
● fRG is a well established tool for physics of phase transitions
● Approximation of degrees of feedom
● Uncharted possibilities in terms of general field 

transformations
→ Flowing field transformations

Improve physical predictions by optimising the representation of DoFs
Interface: ML and fRG



  

Low energies:
● Macroscopic DoFs dominate: Emergent 

composites
● Mesons, nucleons, gluon condensates

● Strongly correlated system

High energies:
● Microscopic DoFs dominate: 

free quarks and gluons
● Perturbative calculations

155 MeV

155 MeV ~ 2 ⋅ 1012 K
Tsun ~ 1,5 ⋅ 107 K

Example QCD: phase transitions across large scales



  

The functional Renormalisation Group: a method of scales

Q: Momentum transferRG-scale k
100 10110-1

Perturbative 
regime

Non-perturbative
regime

● Quarks
● Gluons

Macroscopic DoFs:
● Gluons decouple: Mass gap

→ Gluon condensate
● Quark condensates (LEFTs)

→ Mesons

Modular approach

Image: Fu, Pawlowski, Rennecke  arXiv:1909.02991



  

Improve physical predictions by optimising the representation of DoFs
Interface: ML and fRG

Efficient description of QCD <> known dominating DoFs

(1) Optimise representation of known emergent physics

What about unknown systems (e.g. Gravity)

(2) Detection of relevant DoFs

Method development:

(3) Optimised representation <> efficient computation



  

The path integral and probability distributions

Classical action:

Generating functional:

We can also view this as
a probability distribution...

… whose moments correspond
to correlation functions 



  

The functional Renormalisation Group

● Infrared regularised theory ↔ classical theory

Artificial mass term

Removal of
the regulator

Successive removal of the artificial mass scale implements the flow 
from a near Gaussian to the full quantum theory

Normalising Flows



  

What is an optimal representation of physical quantities?

Fundamental field: e.g. Quarks

Composite field: e.g. Pions
 - 2PPI approaches
 - Density functional theory

Field transformations for optimisation:

1) Fundamental fields may not be the physical 
observable of interest

Ihssen, Pawlowski: arxiv:2305.00816

2) Reduce the amount of cumulants

3) Decouple degrees of freedom

Ihssen, Pawlowski: in Preparation



  

How do we extract physics?

Correlation functions Cumulants Rate function
Large Deviations Theory



  

General field transformations in the fRG

S [ϕ]S [φ]

Γ[ϕ]Γ[φ]

ϕ
Λ ⇾

ϕ
0

φ ⇿ ϕ

φ ⇿ ϕ

Classical Action

Quantum effective Action

R
G

-scale k

● Infrared regularised theory ↔ classical theory

● Solve RG-flow by integrating over RG-time/RG-
scale

● Full quantum effective action 
Wetterich’92

● Solve PDE for all generated couplings in the 
effective action 

RG-time
Propagator

Regulator

Mean-field
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● Algebraic equation with a linear diffusion term
● High degree of redundance

● Non algebraic convection-diffusion equation
● Convex functional 
● Very condensed information



  

An example: the local potential approximation

● LPA: solve a PDE for the 
effective potential only
– Veff  is a function of constant 

background φ(x)= φ 
● Wide variety of numerical 

developments
– Convexity restoration
– Time-stepping
– Shock development

Grossi arXiv1903.09503, Grossi arXiv2102.01602, 
Koenigstein arXiv2108.02504, Ihssen arXiv2309.07335ρ
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General field transformations in the fRG

S [ϕ]S [φ]

Γ[ϕ]Γ[φ]

ϕ
Λ ⇾

ϕ
0

φ ⇿ ϕ

φ ⇿ ϕ

Classical Action

Quantum effective Action

R
G

-scale k

● Explicit field transformations (also possible with 
the RG)

● Or a normalising flow for the full quantum theory

where a free theory is mapped on an interacting 
one     
Albergo et al. arXiV:2101.08176
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Generative AI for producing lattice configurations
● “Learn” field configuration for some action

→ Invertible field transformation
● Limited lattice size

Normalising flows and the effective action
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● Resolution of the effective action requires
a cheap sampling method 

Attanasio, Bauer, Pawlowski, Temmen in Prep.

● Field transformation between theories with
different UV-cutoffs

Bauer, Kapust, Pawlowski, Temmen in Prep.

RG Flows between different lattice sizes

Marc Bauer, Renzo Kapust



  

General field transformations in the fRG

S [ϕ]S [φ]

Γ[ϕ]Γ[φ]

ϕ
Λ ⇾

ϕ
0

φ ⇿ ϕ

φ ⇿ ϕ

Classical Action

Quantum effective Action

R
G

-scale k



  

General field transformations in the fRG

S [ϕ]S [φ]

Γ[ϕ]Γ[φ]

ϕ
Λ ⇾

ϕ
0

φ ⇿ ϕ

φ ⇿ ϕ

Classical Action

Quantum effective Action

R
G

-scale k

1PI gen. funct. PropagatorRG-time Regulator

● Generalised functional Flows  

Pawlowski arXiv0512261
● RG-scale dependent composite

● 1PI formulation of general transformations of the path integral Wegner ‘74

● RG-kernels and optimal transport 
Cotler, Rexchikov arXiv2202.11737 



  

Side Note: Wegner’s generalised flows

● General transformations, 
which leave the path integral 
unchanged Wegner ‘74

● RG-Kernel Ψ [φ]  , applications 
to optimal transport, ML        
Cotler arXiv2202.11737

● Complex functional flows 
Ihssen arXiv220710057
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(1) Physically motivated applications
“Absorption of functions” 
Baldazzi arXiv2105.11482, Braun arXiv0810.1727, arXiv1412.1045, 
Rennecke arXiv1504.03585, Fu arXiv1909.02991

Absorb flows of correlation functions into the field

“Geometric transformations” Lamprecht ‘07
Flow from a Cartesian to a polar basis



  

(1) An expansion about the ground state 
Ihssen, Pawlowski: arxiv:2305.00816

O(N) model:      vs. 

Field dependent wave 
function renormalisation 

and its derivatives

Expand about ground state using the flowing
Fields:

Take away message:
● Expansion about classical dispersion
● Technical simplification with improved truncation



  

(2) Detect relevant DoFs
S[φ

˜
]S[φ]

Γ[φ
˜
]Γ[φ]

ϕ
Λ →

ϕ
0

φ ↔ φ
˜Can we find trivialising maps?



  

(2) Detect relevant DoFs
S[φ

˜
]S[φ]

Γ[φ
˜
]Γ[φ]

ϕ
Λ →

ϕ
0

φ ↔ φ
˜Can we find trivialising maps?

● Absorb Kinetical into Potential  Wetterich arXiV:2402.04679

● Restore a free theory      Defenu, Ihssen Pawlowski in Prep.

Optimal transport

● Reduce RG-flow by adjusting coordinates

S[φ
˜
]S[φ]

Γ[φ
˜
]Γ[φ]

ϕ
Λ →

ϕ
0

φ ↔ φ
˜
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(3) Computational Simplifications

● Let’s shift our perspective: Target Actions

● The RG-flow is stored in the pair
→ Physics-induced flows

…...



  

Target action space: for constant mean field φ(x) = φ  
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Solve  ordinary differential equation

Solve a partial differential equation

Solve an ordinary differential equation for 

→ RG-flow is stored in the map
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k=0.368

k=0.135

k=0.001

Wetterich

PI-flows
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No coincidence with Wetterich RG in general

Some DoF still available
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Tremendous potential for 
computational simplifications

PDE to ODE:
Classical target action

Optimisation of physics 
content of field definitions:

Physics-Induced flows

Implementation of feed-down-
flows

e.g. ground-state-expansion

Reconstruction of physics: 
What is the role of the composite?

Optimise the physics 
content

Can we extract physical 
observables from correlation 
functions of the composite?
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Successive removal of the regulator function

Regulator choice

→ Irrelevant in an ideal representation of the generating functionals
→   Optimisation problem depending on truncation

● IR regularisation

● Physical limit



  

Solving RG-flows with Discontinuous Galerkin:

Convection Diffusive contributions

Convexity restoration + Time-stepping
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● This application:                           (1st order deriv. exp.)

● Task: Solve two equations

1)    : ODE, determines

2)        : PDE, integrate

Parametrisation:

And accordingly:

1-loop
It. step 0

It. step 1

It. step 2

It. step 3

It. step 4
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Here: iterative procedure

Boundary conditions?



  

A field dependent anomalous 
dimension

Parametrisation:

And accordingly:
Broken phase,
Low temperature

Symmetric phase,
High temperature



  

● Application:                           (1st order deriv. exp.)

● Task: Solve two equations

1)    : ODE, determines

2)        : PDE, integrate

Parametrisation:

And accordingly:

Take away message:

● Reminder: standard 1st order derivative 
expansion is a system of 2 coupled PDEs

→ Technical simplification

● At the same time, the approximation is better

→ More momentum dependences
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