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First tool: Field Theory

Euclidean scalar field theory on       , 

Probability functional 

RG scale

Exact renormalization group (ERG) flow equation:

[Wilson, Kogut ‘74] [Polchinski ‘84]



Exact Renormalization Group

Euclidean scalar field with a source:

Assume the source vanishes 
above the cutoff scale

[Polchinski ‘84]

Physics below the cutoff scale is 
preserved under RG flow: 



Renormalization Group Flow as an SDE

Wilson and Polchinski observed that in the continuum, certain natural 
renormalization group schemes can be viewed as an equation of 
Fokker-Planck type

Polchinski’s equation was originally written as



Renormalization Group Flow as an SDE

This equation is not completely obviously in Fokker-Planck form, and it 
is an equation for                rather than an equation for

But the resulting equation for the latter also turns out to be of 
convection-diffusion type 

As such, it corresponds to stochastic dynamics for the fields 



Fokker-Planck equation

Polchinski equation

Polchinski equation as a Fokker-Planck equation



Second tool: Fokker-Planck versus Langevin

Fokker-Planck:

Stochastic Langevin:

Question: Given some           , how do we sample from           ? 

PDE

Stochastic ODE



Polchinski SDE

[Cotler, Rezchikov ‘23]



Exact Renormalization Group (ERG) Schemes

One can look for all possible flows of 𝑃𝑡 𝜙 which are:

• Of convection-diffusion type

• Erase the information of frequencies of 𝜙 above some 𝑓(𝑡)

• Preserve correlators of functions of the fields which only depend on 
frequencies below 𝑓(𝑡)

Such schemes are studied and essentially classified using the Wegner-
Morris-Wetterich equation. Any one of them is valid, but they can have 
very different numerical properties. They also have an entropic gradient 
flow formulation. [Cotler, Rezchikov ’22]



Fokker-Planck equation

Wegner-Morris equation  [Wegner ‘74] [Morris ‘95]

Wegner-Morris equation as a Fokker-Planck equation



Functional generalization of optimal transport

Initial and final distributions: 

Transport kernel: 

Cost:

Wasserstein-2 distance

Minimize

[Cotler, Rezchikov ‘22]



Functional generalization of optimal transport
[Cotler, Rezchikov ‘22]

ERG kernel
Wasserstein-2 distance



RG flow equation

Distribution of interest:

“Background” distribution:

Relative entropy:

[Cotler, Rezchikov ‘22]

RG flow is a gradient flow with respect to the relative entropy!

Wegner-
Morris
equation



Carosso RG

Possibly the simplest SDE which turns out of this type may be

This SDE was studied by Carosso [‘20] in order to make the connection 
between the gradient flow, used in the lattice field theory community 
for scale-setting and inspired by Lüscher’s ideas on the Wilson flow 
[‘09], and the renormalization group precise

It turns out to be of Wegner-Morris-Wetterich type.



Q: Can you make an 
image of a scientist 
giving a talk about 
latent diffusion models 
and RG flow?

GPT-4 + DALL-E 2:



Score-based diffusion models

Source: NVIDIA

[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]
[Song et al. ‘21]



Score-based diffusion models (for fields!)

Source: NVIDIA

[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]
[Song et al. ‘21]

(using an ERG scheme!)



Score-based diffusion models (for fields!)

Source: NVIDIA

[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]
[Song et al. ‘21]



Score-based diffusion models (for fields!)

Source: NVIDIA

[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]
[Song et al. ‘21]

Score is gradient of action; effective field theory!



Diffusion Models

Score function:

Forwards Equation Backwards equation [Anderson ‘82]

Backwards equation: ODELimiting distribution



Diffusion Models

Parameterize the score and optimize one of these functionals:

1. KL Divergence: 

2. Fischer Divergence:

Can (and may) integrate either over 𝑡

3. Alternate form: 



Variational Approximation

Importantly these different objectives are connected:

An integral of Fischer divergences is the ELBO for the forwards KL.

Note also that these are different from those objectives usually used in 
normalizing flows, which are based on the reverse KL. These require 
samples, which we produce (in the context of field theory) by running 
an (adaptive) MCMC chain during training.



Multiscale Diffusion Models

It is natural to generate images by first generating a coarse-grained approximation 
and then filling in the fine-grained details. This strategy is often used by ML 
practitioners.

1. Same SDE as Carosso investigated as a noising process in [Hoogeboom-Salimans]

2. Terms like  −a t 𝜙 correspond to field renormalizations; carefully tuned!

3. In practice people use conditional diffusion models. Or more complex multiscale 
schemes [2209.14125, 2205.01490, 2208.05003, 2106.15282, 2104.07636]. `Latent 
Diffusion’ [2112.10752] does diffusion in a learned latent space which is implicitly 
multiscale. 

``The same equations have the same solutions.’’  –Richard Feynman.



Two Potential Directions

Thus we see that certain multiscale diffusion processes can be 
interpreted as physical RG schemes when applied to distributions 
coming from statistical field theory.

• One can use this connection to suggest new methods in ML

• One can also use this connection to try to build interpretable ML 
models for studying field theories.

Two natural applications to field theory are to sampling and effective 
field theory, and to variational ansatzes for ground states of QFTs.



Numerics
[Cotler, Rezchikov ‘23]

In the paper we developed algorithms based on insights from RG to build 
tailored flow-based and diffusion model algorithms for field theories

Here let us show some results from our learned models in the context of 
Euclidean scalar 𝜙4 theory in 2 dimensions (20 x 20 grid)



Numerics: Polchinski/Carosso on 𝜙4

Samples from Polchinski RG

Zoom in to initial segment:

Samples from Carosso RG:



Numerics: Learning the RG flow of 𝜙4.
[Cotler, Rezchikov ‘23]

Exact RG flow

Learned RG flow

Flow based model 
learned using 
[Gerdes et al. ‘22]



Numerics: Learning the RG flow of 𝜙4.

Carosso RG

Λ



Numerics: Learning the RG flow of 𝜙4.

Carosso RG



Connections to other stories

Mathematical physics ([Bauerschmidt-Bodineau], [Bauerschmidt ‘23])

Mixing of Markov chains in high-temperature 𝜙4, sine-Gordon

Optimal transport (above, also [Cotler, Rezchikov ‘22])

Bakry-Emery, log-Sobolev inequalities, connection to correlation decay 

Bayesian inference [Berman et al.]

Stochastic localization ([Montanari ‘23], [Eldan-Koehler-Zeitouni ‘21], many others)

Many powerful results about spin glasses, convex geometry, mixing of Markov chains

Wilson/gradient flow ([Lüscher], [Carosso], many others)

Wilson flow is an interesting smoothing process (Yang-Mills gradient flow)

Motivation for work on normalizing flows



Summary

Many rich connections between field theory and latent diffusion models 

Can leverage these to invent physically motivated sampling algorithms for 
field theories 

Insights from RG flows may also help to improve latent diffusion models 
for image generation

Much more to understand and explore! THANK YOU!

Multiple possible problems, e.g. sampling along RG flows, discovering 
phase transitions, sampling ground states of quantum field theories





Further Directions

• Models that infer the effective action [Cotler, Rezchikov WIP]

• Searching for phase transitions? Goldstone modes? using neural 
networks

• A lot of design



Designing Renormalizing Diffusion Models

• One can incorporate field and space rescalings into the flow or estimators:

• A multiscale adaptive sampling algorithm on a lattice of fixed size! 
(compare with Ryan Abbott’s talk Lattice 2023 on `block RG’)

• This can radically change the numerical behavior as in ML:
• Polchinski flow tends to a delta-function (variance collapsing)
• Carosso flow tends to a free field theory (variance preserving)
• `Renormalized’ Polchinski tends to white noise (variance preserving but in a different 

sense!)

• We found (as in ML) that tuning the flow is crucial for good numerical 
behavior

• The score function is the gradient of the action…



Numerics: Polchinski/Carosso on 𝜙4

Carosso Polchinski

Λ
𝜆𝑏𝑡

2 𝜆𝑏𝑡
2

𝑡 𝑡



Alternate Parameters (close to critical point)



Numerics: Learning the RG flow of 𝜙4.

Carosso RG



Variational methods for ground states?

Instead let us Wick-rotate and consider QFT.

If the ground state wave functional is nondegenerate then (up to a phase) it 
is the square root of a probability density. 

This probability density also flows under RG and thus one can use the same 
methods to design a variational ansatz for a lattice ground-state wave 
functional. 

Turning this into a good numerical ansatz will involve careful design of the 
RG SDE.



Renormalization Group Flow as an SDE

This may seem confusing because we think of RG as a deterministic
procedure which averages and rescales fields

However, the resulting evolution of the probability density can also be 
generated by an equivalent stochastic dynamics 

(This is essentially an instance of the continuity equation)

In our work, we explore the connection between these stochastic RG 
schemes both theoretically and numerically



Connections to Other Stories

• Mathematical physics ([Bauerschmidt-Bodineau], [Bauerschmidt ‘23]): 
• Mixing of Markov chains in high temperature 𝜙4, sine-Gordon 

• Optimal Transport (above, also [Cotler, Rezchikov])
• Bakry-Emery, log-Sobolev inequalities, connection to correlation decay
• Bayesian inference [Berman et al.]

• Stochastic Localization ([Montanari ‘23], [Eldan-Koehler-Zeitouni ‘21], 
many others!)
• Many powerful results about spin glasses, convex geometry, and mixing of Markov 

chains

• Wilson/Gradient Flow ([Lüscher], [Carosso], many others!)
• Wilson flow is an interesting smoothing process (Yang-Mills gradient flow/Heat 

equation in continuum); Carosso connected this to ERG
• Motivation for normalizing flow work


