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Detecting composite orders in layered models 
via machine learning

Nicolò Defenu
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3Critical scaling at all temperatures

Gij = hcos(✓i � ✓j)i.Spin-spin correlation:

Power law behavior at all temperatures:
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4Critical scaling at all temperatures
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5Bilayer effect in the XY model

ℋ = − J∑
⟨ij⟩

cos (ϕi − ϕj) − J∑
⟨ij⟩

cos (ψi − ψj) − K∑
i

cos (ϕi − ψi),

c↑(k) = ∑
|i−j|=k

exp(iϕi − iϕj)

c↓(k) = ∑
|i−j|=k

exp(iψi − iψj)

Intra-plane correlations

z(k) = ∑
|i−j|=k

exp(iϕi + iψi − iϕj − iψj)

Inter-plane correlations



6Field theoretic representation of  the bilayer XY

S[ϕ] =
1
2 ∑

σ,q

φσ(q)φσ(q)
Kσ(q)

+ ∑
l

∫ U ( φl ) d2x

φ±(q) = (φ1(q) ± φ2(q))/ 2

New variables

φσ = ρσeiθσ(x)



7Mean-field solution

Skin[ϕ] =
1
2 ∑

σ,q

φσ
q ( 1

Kσ(q)
−

1
Kσ(0) ) φσ

−q

The inverse mass explicitly depends on K

Kσ(q) = 2Jε0(q) + 2μ + σ2Km−1
± =

J
K±(0)2 with

New phase:    but 1 − K − μ < 2J < 1 + K − μ ⟨φ+⟩ > 0 ⟨φ−⟩ = 0



8Mean-field phase action

S[θ] = ∑
σ

∫ d2x
ρσ

2mσ
∂μθσ∂μθσ

The inverse mass explicitly depends on the mode

Kσ(q) = 2Jε0(q) + 2μ + σ2Km−1
± =

J
K±(0)2 with

• “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY  Models.” G. Bighin, ND, et al., Phys. Rev. Lett. 123, 100601 (2019).



9Mean-field effective stiffness
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10Mean-field + Renormalization Group

Kosterlitz-Thouless flow

∂tKk = − πg2
k K2

k

∂tgk = π ( 2
π

− Kk) gk

Initial conditions

KΛ = Jσ
eff,

gΛ = 2πe−π2KΛ/2

Jσ
eff =

ρσ

2mσ
.



11BKT flow made quantitative

• “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY  Models.” G. Bighin, ND, et al., Phys. Rev. Lett. 123, 100601 (2019).



12Machine learning BKT Phase

• “Machine learning vortices at the Kosterlitz-Thouless transition.” M.J.S. Beach, et al., Phys. Rev. B 97, 045207 (2018).
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13Machine learning bilayer models

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.

Bilayer Hamiltonians are characterised by two parameters K-J

The training of  the CNN learns to distinguish MC snapshots belonging 
to two different points (J1, K1) and (J2, K2), in the phase diagram.

φ =
Ns

N
Classification accuracy:



14Pseudo-distance and confusion

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.

If  the two points belong to the same phase the algorithm will be 
confused φ ≈ 0.5

We introduce the notion of  pseudo-distance in the phase diagram

d ((J1, K1), (J2, K2)) = 2(φ − 0.5)Θ(φ − 0.5)

d ≈ 0 d ≈ 1
Identical phases Different phases



15Similarity measure in phase space

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.

A  peak of   signals a phase transition∇2u( j, J)

We introduce a similarity measure  for adjacent points in 
the phase diagram

u(J, K)

∇u(J, K) ≡ ( d((J + ΔJ, K), (J, K))/ΔJ
d((J, K + ΔK), (J, K))/ΔK) .



16Toy model (1): bilayer Ising model

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.

O

U

Hb  = − J∑
⟨ij⟩

σiσj − J∑
⟨ij⟩

τiτj − K∑
i

σiτi, 



17Toy model (2): bilayer Ising model

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.

Ht  = − J∑
⟨ij⟩

σiσj − J∑
⟨ij⟩

τiτj − J∑
⟨ij⟩

vivj − K∑
i

σiτi − K∑
i

τivi,

O

U



18Ashkin-Teller model

• “Phase Diagram of the Ashkin–Teller Model” Y. Aoun, et al., Commun. Math. Phys. (2024) 405:37.

HAT = − J∑
⟨ij⟩

σiσj − J∑
⟨ij⟩

τiτj − K∑
⟨ij⟩

σiσjτiτj

⟨τ0τx⟩βJ,βK ≈ {e−cβ⋅|x| if β < βτ
c

cβ if β > βτ
c

⟨τ0σ0τxσx⟩βJ,βK
≈ {e−cβ⋅|x|  if β < βττ′￼

c

cβ  if β > βτσ
c



19Toy model: bilayer Ising model

• “Detecting composite orders in layered models via machine learning.” W. Rzadkowski, et al., New J. Phys. 22 (2020) 093026.
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Understanding of  BKT  
with ML?
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Thank you
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Back up slides



23Fast entanglement spreading

P. Richerme, et al., Nature 511, 198 (2014).

t

Linear light-cone propagation
x

1/rα

Supersonic propagation



24Preliminar Results: Classical SAW

Slade Gordon, 2019, Self-avoiding walk, spin 
systems and renormalization Proc. R. Soc. 
A.4752018054920180549

The critical exponent is extracted by the finite size 
scaling of the gyration ratio of the walk length.

MC Simulations on LR diluted graph

MC Simulations on Regular Lattice

1 2 3 4 5 6
ds

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1/
∫

MC (Square Lattice)

Mean-Field

MC (new)



25Competitors: Quantum Circuits at Berkley

M. Block, Y. Bao, S. Choi, E. Altman, N. Yao, Phys. Rev. Lett. 128, 010604 (2022).
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Equivalent to the Ising model studied in 

p ∼
1
rα

ij

N. Defenu, et al. Phys. Rev. B 96, 104432 (2017).

It is a purely geometric property!

A. P. Millán, G. Gori, F. Battiston, T. Enss, N. Defenu, Phys. Rev. Res. 3, 023015 (2021).



26Project Team

Many-body theory team

Thesis: Functional RG 
study of  dynamical 
universality in the regime 
α > d

1/N expansion of  
quantum spin 
Hamiltonians at α < d

Team leader

Numerical simulations team

Variational QMC analysis 
of  driven-dissipative 
QLR-Nets using neural 
network ansatz

Out-of-equilibrium QMC 
study of  universality at 
α > d

Direct supervision Scientific guidance



27Heidelberg University
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28Funded projects and research supervision

M. Sc. & PhD Students Supervision

1. Critical behavior of  epidemic models on distinct network topologies and applications to the study of  brain disease 
2. Universality on Network Structures from Quantum Dynamics to Big Data

PI of  2 Exploratory Projects (150’000€)

1. Marvin Syed (M. Sc.) 
2. Guido Giachetti (PhD)  
3. Andrea Solfanelli (PhD) 
4. Benjamin Liegeois (PhD) 
5. Ka Rin Sim (PhD) 
6. Cristiano Muzzi (PhD)

1. M. Syed, T. Enss, ND, Phys. Rev. B 103, 064306 (2021). 
2. M. Syed, T. Enss, ND, Phys. Rev. B 105, 224302 (2022). 
3. G. Giachetti, ND, arXiv:2112.11488. 
4. G. Giachetti, A. Solfanelli, ND, arXiv:2203.16562 (2022). 
5. A. Solfanelli et al., arXiv:2208.09492 (2022). 
6. B. Liegeois, R. Chitra, ND, In preparation (2022). 
7. K. R. Sim, ND, P. Molignini, R. Chitra, In preparation (2022).

PI of  SNSF Project Funding Scheme (500’000€)
1. Out-of-equilibrium criticality of  long-range interacting quantum systems



29Broad Impact 

Brain seizure modelling 
(SIR universality)

Rydberg  atoms in optical 
tweezers

Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays

Y. Wang,1 S. Shevate,1 T. M. Wintermantel,1, 2 M. Morgado,1 G. Lochead,1 and S. Whitlock1

1
ISIS (UMR 7006) and IPCMS (UMR 7504), University of Strasbourg and CNRS, 67000 Strasbourg, France

2
Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

(Dated: December 10, 2019)

We present programmable two-dimensional arrays of microscopic atomic ensembles consisting of
more than 400 sites with nearly uniform filling and small atom number fluctuations. Our approach
involves direct projection of light patterns from a digital micromirror device with high spatial
resolution onto an optical pancake trap acting as a reservoir. This makes it possible to load large
arrays of tweezers in a single step with high occupation numbers and low power requirements per
tweezer. Each atomic ensemble is confined to ⇠ 1µm3 with a controllable occupation from 20 to
200 atoms and with (sub)-Poissonian atom number fluctuations. Thus they are ideally suited for
quantum simulation and for realizing large arrays of collectively encoded Rydberg-atom qubits for
quantum information processing.

Neutral atoms in optical tweezer arrays have emerged
as one of the most versatile platforms for quantum many-
body physics, quantum simulation and quantum com-
putation [1–10]. This is largely due to their long co-
herence times combined with flexible configurations and
controllable long-range interactions, in particular using
highly excited Rydberg states [11–17]. To date, substan-
tial experimental e↵orts have been devoted to create fully
occupied atomic arrays with '1 atom in each tweezer
by exploiting light-assisted inelastic collisions [18–20] and
rearrangement to fill empty sites [4, 5, 21–24]. In combina-
tion with high-fidelity Rydberg blockade gates [16, 25–31],
these systems have been recently used to demonstrate
coherent quantum dynamics of up to 51 qubits [32] and
entangled states of up to 20 qubits in one-dimensional
(1D) chains [33]. So far however, achievable array sizes are
limited to <⇠ 100 fully occupied sites (including for 2D and
3D systems), in part due to high power requirements and
increasing complexity associated with the rearrangement
process for larger arrays [21, 23, 24].
In this paper we demonstrate an alternative approach

to prepare large and uniformly filled arrays of hundreds
of tweezers with large occupation numbers in a single
step. This is exemplified by the 400 site triangular ar-
ray shown in Fig. 1a, as well as more exotic geometries
such as connected rings (Fig. 1b) and quasi-ordered ge-
ometries (Fig. 1c) which exhibit structures on di↵erent
length scales making them di�cult to produce using other
methods. Our approach involves transferring ultracold
atoms from a quasi-2D optical reservoir trap into an ar-
ray of optical tweezers produced by a digital micromirror
device (DMD). To realize large arrays we optimize the
loading process and the homogeneity across the lattice
by adapting the DMD light patterns to control the trap
depth of each tweezer. Each atomic ensemble is localized
well within the typical Rydberg blockade radius and the
typical interatomic separations of several micrometers
are compatible with Rydberg-blockade gates. Further-
more, we show that the fluctuations of the number of
atoms in each tweezer is comparable to or below the
shot-noise limit for uncorrelated atoms. This makes the
system well suited for quantum simulation of quantum

a
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(pancake trap)

objective
(NA 0.6)

dichroic
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x
y z

Figure 1. Realization of a large tweezer arrays with

large occupation number in each tweezer. (a) Experi-
mental absorption image of a 400 site triangular lattice, where
each dark spot corresponds to a microscopic ensemble of ⇡ 30
ultracold 39K atoms. The lattice spacing is 4µm and the
apparent size of each spot is ⇠ 0.75µm (e�1/2 radius), mostly
limited by recoil blurring during imaging. (b) 40 site ring
structure and (c) 226 site Penrose quasicrystal lattice. To
improve the signal-to-noise ratio each image is an average of
20 absorption images. (d) Setup used to produce and load the
tweezer arrays by projecting light from a digital micromirror
device directly onto the atoms confined in an optical reservoir
trap.

spin models [13, 14, 34–40] and dynamics [41–48] in novel
geometries, as well as for realizing quantum registers with
collectively enhanced atom-light interactions for quantum
information processing [11, 36, 49–52].

Our experimental cycle starts with a three-dimensional
magneto-optical trap (MOT) loaded from a beam of 39K
atoms produced by a two-dimensional MOT. This is over-
lapped with a far o↵-resonant pancake-shaped reservoir
trap created by a 1064 nm single mode laser with a power
of 16W tightly focused by a cylindrical lens. The beam
waists are !z = 7.6µm, !x = 540µm and !y = 190µm
and the estimated trap depth is 330µK. To maximize the
number of atoms in the reservoir we apply an 8ms gray-
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V(r) ∼ r−α

α
d d + 20

α = 0 α = 3/2 α = 3


