Incoherent diffractive dijet production and gluon Bose enhancement in the nuclear wavefunction

TIYASA KAR

Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.

'BEYOND EIKONAL METHODS IN HIGH ENERGY SCATTERING',

ECT*.

(BASED ON: TK, A. Kovner, M. Li, V. V. Skokov arXiv:2312.04493)

May 23, 2024

Outline

- Introduction
- Deep inelastic scattering (DIS) and Bose enhancement
- Results
- Conclusion

What this is all about

- Prior to scattering, gluons in the hadronic wavefunction are correlated via Bose enhancement.
- At small x DIS, there is a non-zero probability that the dipole's quark and the antiquark scatter on the correlated gluons.
- The final jets' momenta will carry the information about the correlation in the hadronic wavefunction.

$$\underset{k \to}{\underset{k \to}{\underset{k \to}{\longrightarrow}}} (-p \quad p)$$

In CGC, the nuclear wavefunction is split into the valence modes and the soft modes.

$$|\Psi\rangle = |s_v\rangle \otimes |v\rangle$$

• Computing the expectation value of an operator \mathcal{O} ,

$$\langle \Psi | \mathcal{O} | \Psi \rangle = \int [\mathcal{D}\rho^a] [\mathcal{D}A^{\mu,a}] W[\rho] e^{iS[\rho,A]} \mathcal{O}[\rho,A]$$

with the normalisation

$$\langle \Psi | \Psi \rangle = 1$$

• The weight function is a Gaussian.

$$W[\rho] = e^{-\int \frac{\mathrm{d}^2 \underline{k}}{(2\pi)^2} \frac{1}{2\mu^2} \rho_a(\underline{k}) \rho_a^*(\underline{k})}$$

The McLerran-Venugopalan model.

$$\hat{\rho}_{r} = \mathcal{N} \int D\rho e^{-\int_{\underline{k}} \frac{1}{2\mu^{2}} \rho_{a}(\underline{k}) \rho_{a}^{*}(\underline{k})} \mathcal{C}(\rho_{b}, \phi_{b}^{i}) \left|0\right\rangle \left\langle 0\right| \mathcal{C}^{\dagger}(\rho_{c}, \phi_{c}^{j})$$

Normalization of states are given by

$$\left\langle n_c(\underline{k}) \left| n_c(\underline{k}') \right\rangle = \left\langle 0 \right| \frac{[a_c(\underline{k})]^n}{\sqrt{n!}} \frac{[a_c^{\dagger}(\underline{k}')]^n}{\sqrt{n!}} \left| 0 \right\rangle$$

Multigluon states:

$$\prod_{c} \prod_{k} |n_{c}(\underline{k}), m_{c}(-\underline{k})\rangle = \prod_{c} \prod_{k} \frac{[a_{c}(\underline{k})]^{n}}{\sqrt{n!}} \frac{[a_{c}^{\dagger}(-\underline{k}')]^{m}}{\sqrt{n!}} |0\rangle$$

The action of the coherent operator on the soft gluon vacuum:

$$\mathcal{C}\left|0\right\rangle = e^{\int_{\underline{k}} b_{c}^{i}(\underline{k})[a_{c}^{i\dagger}(\underline{k}) + a_{c}^{i}(-\underline{k})]}\left|0\right\rangle$$

Calculation in the CGC

• The matrix elements of $\hat{\rho}_r$ between states in the momentum space Fock basis:

$$\begin{split} \rho_{n,m,\alpha,\beta} &\equiv \langle n_c(\underline{q}), m_c(-\underline{q}) | \hat{\rho}_r(\underline{q}) | \alpha_c(\underline{q}), \beta_c(-\underline{q}) \rangle = (1-R) \frac{(n+\beta)!}{\sqrt{n!m!\alpha!\beta!}} \left(\frac{R}{2}\right)^{n+\beta} \\ &\times \delta_{(n+\beta),(m+\alpha)} , \\ R &= \left(1 + \frac{\underline{q}^2}{2g^2\mu^2}\right)^{-1} \end{split}$$

• Correlator of two gluons:

$$D(\underline{k},\underline{p}) = \operatorname{Tr}\left(\hat{\rho}_r a_b^+(\underline{k}) a_c^+(\underline{p}) a_b(\underline{k}) a_c(\underline{p})\right).$$

$$\begin{aligned} \langle a_a^+(\underline{k}_1)a_b(\underline{k}_2)\rangle &= \operatorname{Tr}\left(\hat{\rho}_r a_a^+(\underline{k}_1)a_b(\underline{k}_2)\right) = (2\pi)^2 \delta^{(2)}(\underline{k}_1 - \underline{k}_2)\delta_{ab} \sum_{n,m} n\rho_{n,m,n,m} \\ &= (2\pi)^2 \delta^{(2)}(\underline{k}_1 - \underline{k}_2)\delta_{ab} \frac{g^2 \bar{\mu}^2}{k_1^2}. \end{aligned}$$

• Probability amplitude for finding a boson at r and the other at r' is

$$\left\langle \phi \right| \hat{\varphi}^{\dagger}(r) \hat{\varphi}^{\dagger}(r') \hat{\varphi}(r') \hat{\varphi}(r) \left| \phi \right\rangle = n^{2} + \left| \int \frac{\mathrm{d}^{3} p}{(2\pi)^{3}} e^{i p \cdot (r-r')} n(p) \right|^{2}$$

• Considering a coherent state,

$$|b(x)\rangle \equiv \exp\left(i\int \mathrm{d}^{3}x b^{i}(x)(a^{i}(x)+a^{i\dagger}(x))\right)|0\rangle$$

Computing the 2-particle correlator in this state gives

$$\begin{aligned} \langle b(x) | \, a^{i\dagger}(x) a^{j\dagger}(y) a^{i}(x) a^{j}(y) \, | b(x) \rangle = & b^{i}(x) b^{i}(x) b^{j}(y) b^{j}(y) \\ = & n(x) n(y) \end{aligned}$$

• In the MV model,

$$\langle a_a^+(\underline{k}_1)a_b^+(\underline{k}_2)\rangle \neq 0$$

Instead

$$\begin{aligned} \langle a_a^+(\underline{k}_1)a_b^+(\underline{k}_2)\rangle = & (2\pi)^2 \delta^{(2)}(\underline{k}_1 + \underline{k}_2) \delta_{ab} \frac{g^2 \bar{\mu}^2}{k_1^2} \\ = & \langle a_a(\underline{k}_1)a_b(\underline{k}_2)\rangle \end{aligned}$$

• Hence, the 2-gluon correlator is

$$D(\underline{k}, \underline{p}) = \operatorname{Tr}\left(\hat{\rho}_{r}a_{b}^{+}(\underline{k})a_{c}^{+}(\underline{p})a_{b}(\underline{k})a_{c}(\underline{p})\right)$$

$$= \underbrace{\left(\underline{S}(N_{c}^{2}-1)\frac{g^{2}\bar{\mu}^{2}}{\underline{k}^{2}}\right)}_{n(\underline{k})}\underbrace{\left(\underline{S}(N_{c}^{2}-1)\frac{g^{2}\bar{\mu}^{2}}{\underline{p}^{2}}\right)}_{n(\underline{p})}$$

$$+ (2\pi)^{2}(N_{c}^{2}-1)\underline{S}\left(\frac{g^{2}\bar{\mu}^{2}}{\underline{k}^{2}}\right)^{2}\left[\underbrace{\delta^{(2)}(\underline{k}+\underline{p})}_{\text{back-to-back}} + \underbrace{\delta^{(2)}(\underline{k}-\underline{p})}_{\text{collinear}}\right]$$

$$+ O(2\pi)^{2}(N_{c}^{2}-1)\underline{S}\left(\frac{g^{2}\bar{\mu}^{2}}{\underline{k}^{2}}\right)^{2}\left[\underbrace{\delta^{(2)}(\underline{k}+\underline{p})}_{\text{back-to-back}} + \underbrace{\delta^{(2)}(\underline{k}-\underline{p})}_{\text{collinear}}\right]$$

- In high energy we use the dipole picture of DIS.
- The photon splits into a $q\bar{q}$ pair and interacts with the target.
- The total cross section is given by

$$\sigma^{\gamma^*A}(x,Q^2) = \int \mathrm{d}^2\underline{x} \int_0^1 \frac{\mathrm{d}z}{z(1-z)} |\Psi^{\gamma^* \to q\bar{q}}(\underline{x},z)|^2 \sigma^{q\bar{q}A}(\underline{x},Y)$$

Incoherent Diffractive Dijet Production in DIS (B. Rodriguez-Aguilar, D. N. Triantafyllopoulos, S. Y. Wei arXiv:

hep-ph/2302.01106]

- A rapidity gap between the scattered $q\bar{q}$ pair and the target remnants.
- The $q\bar{q}$ is in a color singlet state.

The part of the cross section that describes the interaction of the dipole with the target

$$\begin{split} \mathcal{N}_{\text{incoherent diffractive}} &= \frac{1}{N_c^2} \left\langle \text{Tr} \left[V^{\dagger}(\underline{x}_2) V(\underline{x}_1) \right] \text{Tr} \left[V^{\dagger}(\underline{x}_1') V(\underline{x}_2') \right] \right\rangle \\ &- \frac{1}{N_c^2} \text{Tr} \langle V^{\dagger}(\underline{x}_2) V(\underline{x}_1) \rangle \text{Tr} \langle V^{\dagger}(\underline{x}_2') V(\underline{x}_1') \rangle \end{split}$$

$$\sigma^{\gamma^*A}(x,Q^2) = \int \mathrm{d}^2\underline{x} \int_0^1 \frac{\mathrm{d}z}{z(1-z)} |\Psi^{\gamma^* \to q\bar{q}}(\underline{x},z)|^2 \sigma^{q\bar{q}A}(\underline{x},Y)$$

Averaging in MV model

• MV model defines the correlation between the static color charges

$$\langle \rho^a(x^-,\underline{x})\rho^b(y^-,\underline{y})\rangle = \delta^{ab}\mu^2(x^-)\delta(x^--y^-)\delta^{(2)}(\underline{x}-\underline{y})$$

• In the covariant gauge,

$$\partial^2 A_a^+(x^-, \underline{x}) = g\rho_a(x^-, \underline{x})$$

$$\implies A_a^+(x^-,\underline{x}) = -\frac{g}{2\pi} \int d^2\underline{y} \, \ln\bigl(|\underline{x}-\underline{y}|\Lambda\bigr) \, \rho(x^-,\underline{y})$$

• Hence, the correlation between the soft gluon fields is

$$\langle A^a(x^-,\underline{x})A^b(y^-,\underline{y})\rangle = \delta^{ab}g^2\mu^2(x^-)\delta(x^--y^-)L(\underline{x}-\underline{y})$$

where

$$L(\underline{x} - \underline{y}) = \frac{g^2}{(2\pi)^2} \int d^2 z \ln(|\underline{x} - \underline{z}|\Lambda) \ln(|\underline{z} - \underline{y}|\Lambda).$$

10/20

Dilute approximation

• Expanding the Wilson line,

$$\begin{split} V(\underline{x}) \approx & 1 + \frac{(ig)^4}{2} \left(\frac{C_f g^2 \bar{\mu}^2 L(\underline{0})}{2} \right)^2 + igt^a \alpha_a(\underline{x}) \left(1 + (ig)^2 \frac{C_f \bar{g}^2 \mu^2 L(\underline{0})}{2} \right) \\ & + (ig)^2 \int_{-\infty}^{+\infty} dx_0^- \int_{-\infty}^{x_0^-} dx_1^- t^a t^b A_a^+(x_0^-, \underline{x}) A_b^+(x_1^-, \underline{x}) \,. \end{split}$$

• The dipole factor:

$$\frac{1}{N_c} \operatorname{Tr} V^{\dagger}(\underline{y}) V(\underline{x}) = 1 + \frac{(ig)^2}{2} \frac{1}{N_c} \operatorname{Tr}(t_a t_b) (\alpha_a(\underline{y}) - \alpha_a(\underline{x})) (\alpha_b(\underline{y}) - \alpha_b(\underline{x})) + \frac{(ig)^4 (C_f g^2 \bar{\mu}^2)^2}{2} [L(\underline{0}) - L(\underline{x} - \underline{y})]^2$$

• We can drop the first and the last term as the diffractive cross-section contains $\frac{1}{N_c} \operatorname{Tr} V^{\dagger}(\underline{y}) V(\underline{x}) - \left\langle \frac{1}{N_c} \operatorname{Tr} V^{\dagger}(\underline{y}) V(\underline{x}) \right\rangle.$

$$\therefore \mathcal{N}_{\text{diffractive}} \approx \frac{C_f g^8 \bar{\mu}^4}{4N_c} (L(\underline{x}_1 - \underline{x}_1') - L(\underline{x}_1 - \underline{x}_2') - L(\underline{x}_1' - \underline{x}_2) + L(\underline{x}_2 - \underline{x}_2'))^2 \frac{1}{\text{NC STATE}}$$

11/20

Analysis of the cross-section

۲

• The cross-section is

$$\begin{split} E_{1}E_{2} \frac{d\sigma_{L}^{\gamma_{L}^{A} \to q\bar{q}X}}{d^{3}k_{1}d^{3}k_{2}} \bigg|_{D} \\ = &\alpha_{em}e_{q}^{2}Q^{2}z^{2}\bar{z}^{2}\frac{C_{f}g^{8}\bar{\mu}^{4}S}{(2\pi)^{4}} \int \frac{\mathrm{d}^{2}\underline{q}}{(2\pi)^{2}}L(\underline{q})L(\underline{k}_{1} + \underline{k}_{2} - \underline{q}) \\ &\times \left(\frac{1}{\epsilon_{f}^{2} + (\underline{k}_{1} - \underline{q})^{2}} - \frac{1}{\epsilon_{f}^{2} + \underline{k}_{1}^{2}} + \frac{1}{\epsilon_{f}^{2} + (\underline{k}_{2} - \underline{q})^{2}} - \frac{1}{\epsilon_{f}^{2} + \underline{k}_{2}^{2}}\right)^{2}. \end{split}$$

$$\begin{split} &\alpha_{em}e_{q}^{2}\frac{C_{f}g^{8}\bar{\mu}^{4}\underline{S}}{4(2\pi)^{6}}\int\frac{\mathrm{d}^{2}\underline{q}}{(2\pi)^{2}}L(\underline{q})L(\underline{k}_{1}+\underline{k}_{2}-\underline{q})\\ &\left[\left(\frac{1}{\epsilon_{f}^{2}+\underline{k}_{2}^{2}}+\frac{1}{\epsilon_{f}^{2}+\underline{k}_{1}^{2}}\right)^{2}+\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{1}-\underline{q})^{2}}\left(\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{1}-\underline{q})^{2}}\right.\\ &\left.-2\left(\frac{1}{\epsilon_{f}^{2}+\underline{k}_{1}^{2}}+\frac{1}{\epsilon_{f}^{2}+\underline{k}_{2}^{2}}\right)\right)+\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{2}-\underline{q})^{2}}\left(\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{2}-\underline{q})^{2}}\right.\\ &\left.-2\left(\frac{1}{\epsilon_{f}^{2}+\underline{k}_{1}^{2}}+\frac{1}{\epsilon_{f}^{2}+\underline{k}_{2}^{2}}\right)\right)+\underbrace{2\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{1}-\underline{q})^{2}}\frac{1}{\epsilon_{f}^{2}+(\underline{k}_{2}-\underline{q})^{2}}}_{\text{Bose-enhanced}}\right] \\ \end{split}$$

• The sum of all source is color neutral.

$$\tilde{\rho}(k) = \int \mathrm{d} y e^{-ik.y} \rho(y) \xrightarrow{k=0} \int \mathrm{d} y \rho(y) = 0$$

• We introduce a color neutralisation scale.

$$\langle \rho^a(x^-,\underline{k})\rho^b(y^-,\underline{k}')\rangle = \frac{\mu^2 k^2}{k^2 + m^2} \delta^{ab} \delta(x^- - y^-) \delta(\underline{k} + \underline{k}')$$

Result for dilute approximation

Figure: MV model with no color neutralization, $m \rightarrow 0$.

Figure: MV model with the color neutralization scale $m = \tilde{Q}_s$.

Why not Inclusive DIS?

• The term in the cross section describing the interaction of the dipole with nucleus is

$$\begin{split} \mathcal{N}_{\mathrm{I}} = & 1 + \frac{1}{N_c} \mathrm{Tr} \langle V^{\dagger}(\underline{x}_2) V(\underline{x}_1) \left[V^{\dagger}(\underline{x}_2') V(\underline{x}_1') \right]^{\dagger} \rangle \\ & - \frac{1}{N_c} \mathrm{Tr} \langle V^{\dagger}(\underline{x}_2) V(\underline{x}_1) \rangle - \frac{1}{N_c} \mathrm{Tr} \langle V^{\dagger}(\underline{x}_2') V(\underline{x}_1') \rangle \end{split}$$

• The term that gave rise to Bose enhancement in diffractive process was proportional to

$$\begin{split} & L(\underline{x}_1 - \underline{x}_2')L(\underline{x}_2 - \underline{x}_1') \times \delta_{ab'}\delta_{ba'} \left[\frac{1}{N_c}\operatorname{tr}(t^at^b)\right] \left[\frac{1}{N_c}\operatorname{tr}(t^{a'}t^{b'})\right]. \\ & \text{And,} \end{split}$$

$$\delta_{ab'}\delta_{ba'}\left[\frac{1}{N_c}\operatorname{tr}(t^a t^b)\right]\left[\frac{1}{N_c}\operatorname{tr}(t^{a'} t^{b'})\right] = \frac{C_f}{2N_c}$$

• The same combination of L contributes to the inclusive case as well, but with a different color factor

$$\delta_{ab'}\delta_{ba'}\left[\frac{1}{N_c}\operatorname{tr}(t^at^{a'}t^{b'}t^b)\right] = -\frac{C_f}{2N_c}$$

- As x decreases, no. of partons as well as the parton density increases.
- Taking the MV model as the initial point of the theory and then evolving it in *x* using the JIMWLK evolution equation.

$$\begin{split} \partial_Y W_Y = & \frac{\alpha_s}{2} \int d^2 \underline{x} d^2 \underline{y} \frac{\delta^2}{\delta \alpha^a(x^-, \underline{x}) \delta \alpha^b(y^-, \underline{y})} (\eta^{ab} W_Y) \\ & - \alpha_s \int d^2 \underline{x} \frac{\delta}{\delta \alpha^a(x^-, \underline{x})} (v_{\underline{x}}^a W_Y) \end{split}$$

Result for Beyond Dilute Approximaion and including small-x evolution

Figure: $\alpha_s Y = 0.0, \alpha_s Y = 0.4$

Figure: $\alpha_s Y = 0.8, \alpha_s Y = 1.0$

Result contd...

Figure: Incoherent Diffractive production for collinear configuration $\Delta \phi = 0$ as a function of k_2 : $k_1 = 7Q_s^0$, $\epsilon_f = 2Q_s^0$.

Conclusion

- In dilute approximation, for m = 0 as well as $m = Q_s$, the correlator has a maximum at zero angle as long as the momenta of the two gluons are close to each other.
- The color neutralization scale makes the maximum more robust.
- For inclusive dijet production there is a 'dip' from the Bose enhancement terms.
- At higher energies we see a similar outcome due to the fact that upon evolving in energy the theory naturally generates a color neutralisation scale.
- Evolving from $\alpha_s Y = 0$ to $\alpha_s Y = .4$ significantly increases the Bose enhancement signal.
- Further evolution to $\alpha_s Y = .8$ doesn't change the correlation.

THANK YOU!

20/20