TBA

Beyond-Eikonal Methods in High-Energy Scattering - Trento - May 24, 2024

干BA \longrightarrow TBC

Beyond-Eikonal Methods in High-Energy Scattering - Trento - May 24, 2024

Looking for DGLAP in small-x Helicity-evolution

F. Cougoulic, collaboration with Y. Kovchegov, A. Tarasov, Y. Tawabutr

Beyond-Eikonal Methods in High-Energy Scattering - Trento - May 24, 2024

Part 1: Setup of the discussion

The missing spin of the proton?

A picture of the proton spin.

Spin sum rule (Jaffe Manohar decomposition [Nucl. Phys. B337, 509 (1990)])

Possibilities:

- Gluon spin
- Quark/Gluon angular orbital momentum

Large and low \mathbf{x} region. Experiments only access a finite range of $x \ldots$

$$
\begin{equation*}
\Sigma_{q}=\int_{0}^{1} \mathrm{~d} x\left(q^{\uparrow}(x)-q^{\downarrow}(x)\right) \tag{1}
\end{equation*}
$$

Possibilities

- Large-x?
- Small-x?

Wilson lines and eikonal expansion - Notation

At sub-eikonal order:

$$
\begin{align*}
& V_{\underline{x}, \underline{y} ; \sigma^{\prime}, \sigma}=V_{\underline{x}} \delta^{2}(\underline{x}-\underline{y}) \delta_{\sigma, \sigma^{\prime}} \tag{2}\\
& +\frac{i P^{+}}{s} \int_{-\infty}^{\infty} d z^{-} d^{2} z V_{\underline{x}}\left[\infty, z^{-}\right] \delta^{2}(\underline{x}-\underline{z})\left[-\delta_{\sigma, \sigma^{\prime}} \overleftarrow{D}^{i} D^{i}+g \sigma \delta_{\sigma, \sigma^{\prime}} F^{12}\right]\left(z^{-}, \underline{z}\right) V_{\underline{y}}\left[z^{-},-\infty\right] \delta^{2}(\underline{y}-\underline{z}) \\
& -\frac{g^{2} P^{+}}{2 s} \delta^{2}(\underline{x}-\underline{y}) \int_{-\infty}^{\infty} d z_{1}^{-} \int_{z_{1}^{-}}^{\infty} d z_{2}^{-} V_{\underline{x}}\left[\infty, z_{2}^{-}\right] t^{b} \psi_{\beta}\left(z_{2}^{-}, \underline{x}\right) U_{\underline{x}}^{b a}\left[z_{2}^{-}, z_{1}^{-}\right]\left[\delta_{\sigma, \sigma^{\prime}} \gamma^{+}-\sigma \delta_{\sigma, \sigma^{\prime}} \gamma^{+} \gamma^{5}\right]_{\alpha \beta} \\
& \quad \times \bar{\psi}_{\alpha}\left(z_{1}^{-}, \underline{x}\right) t^{a} V_{\underline{x}}\left[z_{1}^{-},-\infty\right],
\end{align*}
$$

Remarks

- Blue \longrightarrow Already used in previous $V^{\text {pol }}$. Label of the first kind; notation $V^{\text {pol [1] }}$. Proportional to $\sigma \delta_{\sigma \sigma^{\prime}}$.
- Red \longrightarrow "NEW" (in our framework). Label of the second kind; notation $V^{\text {pol [2] }}$. Proportional to $\delta_{\sigma \sigma^{\prime}}$.

Picture?
For the quark S-matrix at sub eikonal order, see also:

- Balitsky and Tarasov, e.g. [1505.02151]
- Chirilli, e.g. [1807.11435]
- Altinoluk et al., e.g. [2012.03886]
- Kovchegov et al., e.g. [1808.09010] [2108.03667]

Wilson lines and eikonal expansion - Pictures!

Polarized WL,

$$
V_{\underline{x}}^{\mathrm{pol}[1]}=\underbrace{V_{\underline{x}}^{\mathrm{G}[1]}+V_{\underline{x}}^{\mathrm{q}[1]}}_{\sigma \delta_{\sigma \sigma^{\prime}}}, \quad V_{\underline{x}, \underline{y}}^{\mathrm{pol}[2]}=\underbrace{V_{\underline{x}, \underline{y}}^{\mathrm{G}[2]}+V_{\underline{x}}^{\mathrm{q}[2]} \delta^{2}(\underline{x}-\underline{y})}_{\delta_{\sigma \sigma^{\prime}}} .
$$

can be represented as

Contraction with $\left(\gamma^{+} \gamma^{5}\right)_{\alpha \beta} \times \sigma \delta_{\sigma \sigma^{\prime}}$ or $\gamma_{\alpha \beta}^{+} \times \delta_{\sigma \sigma^{\prime}}$

The star of this show

From The Jaffe-Manohar (JM) gluon helicity PDF

$$
\begin{align*}
\Delta G\left(x, Q^{2}\right)=\int^{Q^{2}} d^{2} k g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-2 i}{x P^{+}} \frac{1}{4 \pi} \frac{1}{2} \sum_{S_{L}} S_{L} \int_{-\infty}^{\infty} d \xi^{-} e^{i x P^{+} \xi^{-}} \\
\quad \times\left\langle P, S_{L}\right| \epsilon^{i j} F^{a+i}\left(0^{+}, 0^{-}, \underline{0}\right) U_{\underline{0}}^{a b}\left[0, \xi^{-}\right] F^{b+j}\left(0^{+}, \xi^{-}, \underline{0}\right)\left|P, S_{L}\right\rangle \tag{3}
\end{align*}
$$

$$
F^{+j}\left(y^{-}, \underline{y}=\underline{x}\right)
$$

Gluon helicity

Identify after some algebra the dipole gluon helicity TMD

$$
\begin{equation*}
g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-2 i}{x P^{+} V^{-}} \frac{1}{(2 \pi)^{3}} \frac{1}{2} \sum_{S_{L}} S_{L}\left\langle P, S_{L}\right| \epsilon^{i j} \operatorname{tr}\left[L^{i \dagger}(x, \underline{k}) L^{j}(x, \underline{k})\right]\left|P, S_{L}\right\rangle \tag{4}
\end{equation*}
$$

where we define the Lipatov vertex:

$$
\begin{equation*}
L^{j}(x, \underline{k}) \equiv \int_{-\infty}^{\infty} d \xi^{-} d^{2} \xi e^{i x P^{+} \xi^{-}-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}\left[\infty, \xi^{-}\right]\left(\partial^{j} A^{+}+i x P^{+} A^{j}\right) V_{\underline{\xi}}\left[\xi^{-},-\infty\right] \tag{5}
\end{equation*}
$$

Expanding the Lipatov vertex in Bjorken x

$$
\begin{equation*}
L^{j}(x, \underline{k})=\int_{-\infty}^{\infty} d \xi^{-} d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}\left[\infty, \xi^{-}\right]\left[\partial^{j} A^{+}+i x P^{+}\left(\xi^{-} \partial^{j} A^{+}+A^{j}\right)+\mathcal{O}\left(x^{2}\right)\right] V_{\underline{\xi}}\left[\xi^{-},-\infty\right] \tag{6}
\end{equation*}
$$

which we can write
$L^{j}(x, \underline{k})=-\frac{k^{j}}{g} \int d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}-\frac{x P^{+}}{2 g} \int d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} \int_{-\infty}^{\infty} d z^{-} V_{\underline{\xi}}\left[\infty, z^{-}\right]\left[D^{j}-\overleftarrow{D}^{j}\right] V_{\underline{\xi}}\left[z^{-},-\infty\right]$

Gluon helicity

Performing the helicity dependent "CGC average"

$$
\begin{equation*}
g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-4 i}{g^{2}(2 \pi)^{3}} \epsilon^{i j} k^{i} \int d^{2} \zeta d^{2} \xi e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \underbrace{\left\langle\left\langle\operatorname{tr}\left[V_{\underline{\zeta}}^{\dagger} V_{\underline{\xi}}^{j \mathrm{G}[2]}+\left(V_{\underline{\xi}}^{j \mathrm{G}[2]}\right)^{\dagger} V_{\underline{\zeta}}\right]\right\rangle\right\rangle}_{=2 N_{c} G_{\underline{\xi}, \underline{\zeta}}^{j(z s)}}, \tag{8}
\end{equation*}
$$

with a polarized Wilson line of the second kind

$$
\begin{equation*}
V_{\underline{z}}^{i \mathrm{G}[2]} \equiv \frac{P^{+}}{2 s} \int_{-\infty}^{\infty} d z^{-} V_{\underline{z}}\left[\infty, z^{-}\right]\left[D^{i}\left(z^{-}, \underline{z}\right)-\overleftarrow{D}^{i}\left(z^{-}, \underline{z}\right)\right] V_{\underline{z}}\left[z^{-},-\infty\right] \tag{9}
\end{equation*}
$$

\Longrightarrow We call $G_{\underline{\xi}, \underline{\zeta}}^{j}(z s)$ a Polarized dipole amplitude of the second kind.

DLA Small-x evolution at large N_{c}

$$
\begin{align*}
& G\left(x_{10}^{2}, z s\right)=G^{(0)}\left(x_{10}^{2}, z s\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{s x_{10}^{2}}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\frac{1}{z^{\prime} s}}^{x_{10}^{2}} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)+3 G\left(x_{21}^{2}, z^{\prime} s\right)\right. \\
& \left.+2 G_{2}\left(x_{21}^{2}, z^{\prime} s\right)+2 \Gamma_{2}\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)\right], \tag{132a}\\
& \left.\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)=G^{(0)}\left(x_{10}^{2}, z^{\prime} s\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{s x_{10}^{2}}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\frac{1}{z^{\prime \prime} s}}^{\min \left[x_{10}^{2}, x_{21}^{2}\right.} \frac{z^{\prime}}{z^{\prime \prime}}\right] \quad \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{32}^{2}, z^{\prime \prime} s\right)+3 G\left(x_{32}^{2}, z^{\prime \prime} s\right)\right. \\
& \left.+2 G_{2}\left(x_{32}^{2}, z^{\prime \prime} s\right)+2 \Gamma_{2}\left(x_{10}^{2}, x_{32}^{2}, z^{\prime \prime} s\right)\right], \tag{132b}\\
& G_{2}\left(x_{10}^{2}, z s\right)=G_{2}^{(0)}\left(x_{10}^{2}, z s\right)+\frac{\alpha_{s} N_{c}}{\pi} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\max \left[x_{10}^{2}, \frac{1}{z^{\prime} s}\right]}^{\min \left[\frac{z}{z^{\prime}} x_{10}^{2}, \frac{1}{\Lambda^{2}}\right]} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[G\left(x_{21}^{2}, z^{\prime} s\right)+2 G_{2}\left(x_{21}^{2}, z^{\prime} s\right)\right], \tag{132c}\\
& \Gamma_{2}\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)=G_{2}^{(0)}\left(x_{10}^{2}, z^{\prime} s\right)+\frac{\alpha_{s} N_{c}}{\pi} \int_{\frac{\Lambda^{2}}{s}}^{\substack{z^{\prime} x_{21}^{2} \\
x_{10}^{10}}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\max \left[x_{10}^{2}, \frac{1}{z^{\prime \prime}}\right]}^{\min \left[\frac{z^{\prime}}{z^{\prime \prime}} x_{21}^{2}, \frac{1}{\Lambda^{2}}\right]} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[G\left(x_{32}^{2}, z^{\prime \prime} s\right)+2 G_{2}\left(x_{32}^{2}, z^{\prime \prime} s\right)\right] . \tag{132d}
\end{align*}
$$

Recovering small-x pol DGLAP

Pol DGLAP splitting function at small-x is

$$
\begin{equation*}
\Delta P_{g g}(z) \rightarrow \frac{\alpha_{s}}{2 \pi} 4 N_{c}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} 4 N_{c}^{2} \ln ^{2} z+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \frac{7}{3} N_{c}^{3} \ln ^{4} z \tag{10}
\end{equation*}
$$

From the large N_{C} equations, start evolution with

$$
\begin{equation*}
G^{(0)}\left(x_{1} 0^{2}, z s\right)=0, \quad G_{2}^{(0)}\left(x_{1} 0^{2}, z s\right)=1 \tag{11}
\end{equation*}
$$

iterate three times, one finds
$\Delta G^{(3)}\left(x, Q^{2}\right)=\left(\frac{\alpha_{s}}{\pi}\right)^{3}[\underbrace{\frac{7}{120} \ln ^{5}\left(\frac{1}{x}\right) \ln \left(\frac{Q^{2}}{\Lambda^{2}}\right)}_{\text {NNLO DGLAP }{ }_{g g}}+\frac{1}{6} \ln ^{4}\left(\frac{1}{x}\right) \ln ^{2}\left(\frac{Q^{2}}{\Lambda^{2}}\right)+\underbrace{\frac{2}{9} \ln ^{3}\left(\frac{1}{x}\right) \ln ^{3}\left(\frac{Q^{2}}{\Lambda^{2}}\right)}_{(L O)^{3} D G L A P_{g g}}]$
using

$$
\begin{equation*}
1 / x_{10}^{2} \rightarrow Q^{2}, \quad z s z_{10}^{2} \rightarrow 1 / x \tag{12}
\end{equation*}
$$

Topic of the discussion

Recap

- Helicity evolution, mixing between helicity-dependent and helicity independent operators.
- Link: JM-operator $\epsilon_{i j} F^{+i} F^{+j} e^{i x P^{+} z^{-}} \longrightarrow \overleftrightarrow{D}$ operator $\longleftarrow \underline{\overleftarrow{D}} \cdot \underline{\vec{D}}$ operator
- Small-x helicity evolution, contains small-x polarized DGLAP evolution: $\Delta P_{g g}(z) @$ small-x

Discussion's topic Can we recover the full polarized DGLAP evolution with minimal modification to small-x evolution framework?

- Full $\Delta P_{g g}(z)$ instead of $\Delta P_{g g}(z \ll 1)$ at one loop?
- How do we iterate? (phase)

Part 2: Exploration

Ordering

Small-x evolution

- Strong ordering in k^{-}
- All \underline{k}^{2} of the same order
- Strong lifetime (loffe-time) ordering

(IR)-DGLAP evolution
- Strong \underline{k}^{2} ordering. Decrease from the projectile to the target!
- k^{+}ordering
- Emission far from the initial probe

Back to the JM-operator

$$
\begin{align*}
\Delta G\left(x, Q^{2}\right)= & \int^{Q^{2}} d^{2} k g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-2 i}{x P^{+}} \frac{1}{4 \pi} \frac{1}{2} \sum_{S_{L}} S_{L} \int d \xi^{-} e^{i x P^{+} \xi^{-}} \\
& \times\left\langle P, S_{L}\right| \epsilon^{i j} F^{a+i}\left(0^{+}, 0^{-}, \underline{0}\right) U_{0}^{a b}\left[0, \xi^{-}\right] F^{b+j}\left(0^{+}, \xi^{-}, \underline{0}\right)\left|P, S_{L}\right\rangle \tag{13}\\
\propto & \int^{Q^{2}} \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \int d \xi^{-} d \zeta^{-} \mathrm{d}^{2} \underline{\xi} \mathrm{~d}^{2} \underline{\zeta} e^{i x P^{+}\left(\xi^{-}-\zeta^{-}\right)} e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \\
& \times\left\langle\left\langle\epsilon^{i j} \operatorname{tr}\left[\infty, \xi^{-}\right] F^{+i}(\xi)\left[\xi^{-},-\infty\right]\left[-\infty, \zeta^{-}\right] F^{+j}(\zeta)\left[\zeta^{-}, \infty\right]\right\rangle\right\rangle \tag{14}
\end{align*}
$$

Introduce the following L :

$$
\begin{equation*}
L^{m}(x, \underline{x}) \equiv \int d x^{-} e^{i x P^{+} x^{-}}\left[-\infty, x^{-}\right]_{\underline{x}} F^{+m}\left(x^{-}, \underline{x}\right)\left[x^{-},-\infty\right]_{\underline{x}} \tag{15}
\end{equation*}
$$

such that

$$
\begin{equation*}
\Delta G\left(x, Q^{2}\right)=\int^{Q^{2}} d^{2} \underline{k} \int \mathrm{~d}^{2} \underline{\xi} \mathrm{~d}^{2} \underline{\zeta} e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \epsilon_{i j}\left\langle\left\langle L^{i}(x, \underline{\xi}) L^{\dagger j}(x, \underline{\zeta})\right\rangle\right\rangle \tag{16}
\end{equation*}
$$

Splitting the fields

Consider the background field A_{0}^{μ} and split it in the following way

$$
\begin{equation*}
A_{0}^{\mu} \rightarrow A^{\mu}+a^{\mu} \tag{17}
\end{equation*}
$$

Plug into the expression for $L^{i}\left(x^{-}, \underline{x}\right)$:

$$
\begin{align*}
-L^{i}\left(x^{-}, \underline{x}\right) \supset e^{i x P^{+} x^{-}} & \left\{\int d w^{-}\left[\infty, w^{-}\right]_{\underline{x}} a_{\underline{x}}^{+}\left[w^{-}, x^{-}\right]_{\underline{x}}\left(\check{\partial}_{x}^{+} A^{i}+\partial_{x}^{i} A^{+}\right)_{\underline{x}}\left[x^{-},-\infty\right]_{\underline{x}} \theta\left(w^{-}-x^{-}\right)\right\} \\
+ & e^{i x P^{+} x^{-}}\left\{\int d w^{-}\left[\infty, x^{-}\right]_{\underline{x}}\left(\check{\partial}_{x}^{+} A^{i}+\partial_{x}^{i} A^{+}\right)_{\underline{x}}\left[x^{-}, w^{-}\right]_{\underline{x}} a_{\underline{x}}^{+}\left[w^{-},-\infty\right]_{\underline{x}} \theta\left(x^{-}-w^{-}\right)\right\} \\
+ & e^{i x P^{+} x^{-}}\left\{\left[\infty, x^{-}\right]_{\underline{x}}\left(\check{\partial}_{x}^{+} a^{i}+\partial_{x}^{i} a^{+}\right)_{\underline{x}}\left[x^{-},-\infty\right]_{\underline{x}}\right\} \tag{18}
\end{align*}
$$

Emission from the WL + Emission from $F^{+\perp}$

One step of evolution

Topologies of interest

- Interaction of the new gluon at the blue rectangle is undefined at this point. (eikonal, sub-eikonal, next-to-eikonal, sub-to-next-to-eikonal, [...]-eikonal)
- Assuming a width $L^{-} \rightarrow 0^{-}$

Looking for polarized DGLAP $\Delta P_{g g}$.

On the lookout for $\Delta P_{g g}$

Consider only the topology $\delta_{F F}$

$$
\begin{align*}
\delta_{F F}= & \epsilon_{i j} \int^{\underline{q}^{2}} d^{2} \underline{k} \int \mathrm{~d}^{2} \underline{\xi} \mathrm{~d}^{2} \underline{\zeta} \underline{e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \int d \xi^{-} d \zeta^{-} e^{i x P^{+}\left(\xi^{-}-\zeta^{-}\right)}} \\
& \times \operatorname{tr}\left\{\left[\infty, \xi^{-}\right]_{\underline{\xi}}\left(\check{\partial}_{\xi}^{+} a^{i}+\partial_{\xi}^{i} a^{+}\right)\left[\xi^{-},-\infty\right]_{\underline{\xi}}\right\}\left\{\left[\infty, \zeta^{-}\right]_{\underline{\xi}}\left(\partial_{\zeta}^{+} a^{j}+\partial_{\zeta}^{j} a^{+}\right)\left[\zeta^{-},-\infty\right]_{\underline{\xi}}\right\}^{\dagger} \tag{19}
\end{align*}
$$

- Assume the interaction with the new gluon at the s.w. to be eikonal. \longrightarrow Regular WL.
- Do not expand the phase $e^{i x P^{+}(\xi-\zeta)}$!
- Pick the $k_{1 / 2}^{+}$propagator poles.
- Integrate longitudinal emission points to the 0^{-}of the s.w. (Energy denominators).

$$
\begin{align*}
\delta_{F F}= & -\epsilon_{i j} \int \frac{d k^{-}}{2 k^{-}} \int^{\underline{q}^{2}} d^{2} \underline{k} \int \mathrm{~d}^{2} \underline{\xi} \mathrm{~d}^{2} \underline{\zeta} e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \int \mathrm{d}^{2} \underline{w} U_{\underline{\underline{w}}}^{b a} \operatorname{tr}\left\{[\infty,-\infty] \underline{\underline{\xi}} t^{a}\right\}\left\{t^{b}[\infty,-\infty]_{\underline{\xi}}\right\}^{\dagger} \\
& \times \int d^{2} \underline{k}_{1} d^{2} \underline{k}_{2} e^{+i \underline{k}_{1}(\underline{w}-\underline{\xi})+i \underline{k}_{2}(\underline{\zeta}-\underline{w})}\left\{\frac{\left(x P^{+} \delta^{i \ell}+\frac{\underline{k}_{1}^{i} \underline{k}_{1}^{\ell}}{k^{-}}\right)}{\left(x P^{+}+\frac{k_{1}^{2}}{2 k^{-}}\right)} \frac{\left(x P^{+} \delta^{j k}+\frac{\underline{k}_{2}^{j} \underline{k}_{2}^{k}}{k^{-}}\right)}{\left(x P^{+}+\frac{k_{2}^{2}}{2 k^{-}}\right)}\right\} \delta^{\ell k} \tag{20}
\end{align*}
$$

To identify the contribution to $\Delta P_{g g}$, act with $\epsilon_{a b} \nabla_{\underline{k}_{1}}^{a} \nabla_{\underline{k}_{2}}^{b}$ on the curly bracket, then set $\underline{k}_{1 / 2} \rightarrow k$

$$
\begin{equation*}
\epsilon_{a b} \nabla_{\underline{k}_{1}}^{a} \nabla_{\underline{k}_{2}}^{b}\{\cdots\} \longrightarrow \frac{-2 \underline{k}^{2}}{\left(2 x P^{+}+\underline{k}^{2}\right)^{2}}+\frac{4 \underline{k}^{4}}{\left(2 x P^{+}+\underline{k}^{2}\right)^{3}} \tag{21}
\end{equation*}
$$

which is part of the kernel generating polarized DGLAP.
\rightarrow Adding $\delta_{F A}$ and $\delta_{A A}$ produces the real piece of polarized DGLAP kernel.

Remarks

- To get $\epsilon_{a b} \nabla_{\underline{k}_{1}}^{a} \nabla_{\underline{k}_{2}}^{b}$ acting on the kernel, expand separations between WLs.
- The operators at this step will read $\epsilon_{n m} \underline{\partial}^{n} \underline{\partial}^{m} U \operatorname{tr}\left\{[\infty,-\infty] t^{a}\right\}\left\{t^{b}[\infty,-\infty]\right\}^{\dagger}$ which can be interpreted as the leading part of $\epsilon_{n m} F^{+n} F^{+m}$
- There is no associated phase depending on x_{B} anymore! (recall that we start with the JM-operator $\epsilon_{i j} F^{+i} F^{+j} e^{i x P^{+} z^{-}}$)
- Cannot further iterate this process...

Can we fix the lack of phase after one step of evolution?

On the lookout for the phase $e^{i \frac{x_{B}}{z_{A}} P^{+} z^{-}}$

Finding solace in the subeikonal correction...

A/ Promote the WL at the new position by adding the $\underline{\overleftarrow{D}} \cdot \underline{\vec{D}}$

$$
\begin{align*}
V_{\underline{x}, \underline{y} ; \sigma^{\prime}, \sigma}= & V_{\underline{x}} \delta^{2}(\underline{x}-\underline{y}) \delta_{\sigma, \sigma^{\prime}} \tag{22}\\
& +\frac{i P^{+}}{s} \int_{-\infty}^{\infty} d z^{-} d^{2} z V_{\underline{x}}\left[\infty, z^{-}\right] \delta^{2}(\underline{x}-\underline{z})\left[-\delta_{\sigma, \sigma^{\prime}} \underline{\overleftarrow{D}} \cdot \underline{\vec{D}}\right]\left(z^{-}, \underline{z}\right) V_{\underline{y}}\left[z^{-},-\infty\right] \delta^{2}(\underline{y}-\underline{z})+\cdots
\end{align*}
$$

- By parts and act with the derivatives outside of the WL to recover a factor $\underline{k}^{2} / 2 k^{-} \times L^{-}$ factoring the previous kernel in $\delta_{F F}$

B / Introduce a width of the s.w. L^{-}:

- After integration over $d \xi^{-} d \zeta^{-}$recover an extra factor $e^{i x P^{+} L^{-}}$which can be expanded into $1+i x P^{+} L^{-}$

On the lookout for the phase $e^{i \frac{x_{B}}{z_{A}} P^{+} z^{-}}$

Schematic form obtained for $\delta_{F F}$:

$$
\delta_{F F} \propto\left[1+i\left(x P^{+}+\frac{\underline{k}^{2}}{2 k^{-}}\right) L^{-}\right] \times \epsilon_{a b} \nabla_{\underline{k}_{1}}^{a} \nabla_{\underline{k}_{2}}^{b}\{\cdots\} \otimes \underline{\partial}^{n} \underline{\partial}^{m} U \operatorname{tr}\left\{[\infty,-\infty] t^{a}\right\}\left\{t^{b}[\infty,-\infty]\right\}^{\dagger}
$$

- Green part builds DGLAP kernel beyond the small-x limit.
- Blue part builds a phase $e^{i \frac{x_{B}}{z_{A}} P^{+} L^{-}}$where $z_{A} \equiv \frac{x P^{+}}{x P^{+}+\underline{k}^{2} / 2 k^{-}}$
- Red part is the eikonal part of the JM operator (without the phase)

Postulate Parts of the Sub ${ }^{n}$-eikonal corrections resums into the JM operator.

Remains to understand how L^{-}becomes the separation between the two $F^{+\perp}$ insertions. (@ sub-sub-eikonal?)

Summary and Outlooks

Summary

- Corrected small-x helicity-evolution involved mixing between unpolarized and polarized -operators
- Also contains small-x polarized DGLAP evolution.

It involves the unpolarized operator $\underline{x} \times \underline{\overleftrightarrow{D}}$.

- Subeikonal effect allows the extraction of the action of the pol-DGLAP kernel exactly (i.e. the full dependence on x of $\Delta P_{g g}$) acting on the eikonal part of the JM-operators
- Use subeikonal corrections to recover the phase of the JM operator.

Outlook

- Issue remains with the explicit dependence in x^{-}of the phase. At which order is it fixed?
- Check that the JM operators can be reconstructed beyond the eikonal part: $\left(\partial^{i} A^{+}\right)\left(\partial^{j} A^{+}\right) \rightarrow F^{+i} F^{+j}$
- Interface with the rest of the small-x evolution at $S L_{T}$ and $S L_{L}$.

Summary and Outlooks

Summary

- Corrected small-x helicity-evolution involved mixing between unpolarized and polarized -operators
- Also contains small-x polarized DGLAP evolution.

It involves the unpolarized operator $\underline{x} \times \underline{\overleftrightarrow{D}}$.

- Subeikonal effect allows the extraction of the action of the pol-DGLAP kernel exactly (i.e. the full dependence on x of $\Delta P_{g g}$) acting on the eikonal part of the JM-operators
- Use subeikonal corrections to recover the phase of the JM operator.

Outlook

- Issue remains with the explicit dependence in x^{-}of the phase. At which order is it fixed?
- Check that the JM operators can be reconstructed beyond the eikonal part: $\left(\partial^{i} A^{+}\right)\left(\partial^{j} A^{+}\right) \rightarrow F^{+i} F^{+j}$
- Interface with the rest of the small-x evolution at $S L_{T}$ and $S L_{L}$.

Many thanks for the discussions during the week!

