RG improved JIMWLK Hamiltonian: running coupling and DGLAP resummation

Michael Lublinsky
Ben-Gurion University of the Negev, Israel

A. Kovner, M. Lublinsky, V. V. Skokov and Z. Zhao, arXiv:2308.15545 [hep-ph].
T. Altinoluk, G. Beuf, M. Lublinsky and V. V. Skokov, arXiv:2310.10738 [hep-ph]

LO JIMWLK Hamiltonian

$$
\mathcal{H}_{\mathrm{LO}}^{\mathrm{JIMWLK}}=\int_{\mathrm{x}, \mathrm{y}, \mathrm{z}} \mathbf{K}_{\mathrm{LO}}\left\{\mathrm{~J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{x}) \mathrm{J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{y})+\mathrm{J}_{\mathrm{R}}^{\mathrm{a}}(\mathrm{x}) \mathrm{J}_{\mathrm{R}}^{\mathrm{a}}(\mathrm{y})-2 \mathrm{~J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{x}) \mathrm{S}_{\mathrm{A}}^{\mathrm{ab}}(\mathrm{z}) \mathrm{J}_{\mathrm{R}}^{\mathrm{b}}(\mathrm{y})\right\}
$$

$\mathbf{K}_{\mathrm{LO}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \frac{(\mathrm{x}-\mathrm{z})_{\mathrm{i}}(\mathrm{y}-\mathrm{z})_{\mathrm{i}}}{(\mathrm{x}-\mathrm{z})^{2}(\mathrm{y}-\mathrm{z})^{2}} \equiv \frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \frac{\mathbf{X}_{\mathrm{i}} \mathbf{Y}_{\mathrm{i}}}{\mathrm{X}^{2} \mathrm{Y}^{2}}$

Here J_{L} and J_{R} are left and right $\mathrm{SU}(\mathrm{N})$ generators:

$$
\begin{array}{cc}
\mathbf{J}_{\mathbf{L}}^{\mathrm{a}}(\mathbf{x}) \mathbf{S}_{\mathbf{A}}^{\mathrm{ij}}(\mathbf{z})=\left(\mathbf{T}^{\mathrm{a}} \mathbf{S}_{\mathbf{A}}(\mathbf{z})\right)^{\mathrm{ij}} \delta^{2}(\mathbf{x}-\mathbf{z}) & \mathbf{J}_{\mathbf{R}}^{\mathrm{a}}(\mathbf{x}) \mathbf{S}_{\mathbf{A}}^{\mathrm{ij}}(\mathbf{z})=\left(\mathbf{S}_{\mathbf{A}}(\mathbf{z}) \mathbf{T}^{\mathrm{a}}\right)^{\mathrm{ij}} \delta^{2}(\mathbf{x}-\mathbf{z}) \\
\mathcal{H}_{\mathrm{LO}}=\frac{\alpha_{\mathrm{s}}}{2} \int_{\mathbf{z}} \mathbf{Q}_{\mathrm{i}}^{\mathrm{a}}(\mathbf{z}) \mathbf{Q}_{\mathrm{i}}^{\mathrm{a}}(\mathbf{z}), & \mathbf{Q}_{\mathrm{i}}^{\mathrm{a}}(\mathbf{z})=\frac{1}{\pi} \int_{\mathbf{x}} \frac{\mathbf{X}_{\mathbf{i}}}{\mathbf{X}^{2}}\left[\mathbf{S}_{\mathbf{A}}(\mathbf{x})-\mathbf{S}_{\mathbf{A}}(\mathbf{z})\right]^{\mathrm{ab}} \mathbf{J}_{\mathbf{R}}^{\mathrm{b}}(\mathbf{x})
\end{array}
$$

JIMWLK is valid for dilute-on-dense collisions only ($Q_{s}^{P} \ll Q_{s}^{T}$)

Stochastic formulation/Langevin

The rapidity evolution operator from η_{0} to η_{1} is

$$
\begin{gathered}
\mathcal{U}\left(\eta_{0}, \eta_{1}\right)=\mathcal{P} \mathbf{e}^{-\int_{\eta_{0}}^{\eta_{1}} \mathrm{~d} \eta \mathcal{H}_{\mathrm{LO}}}=\int \mathbf{D} \xi \mathcal{U}_{\xi}\left(\eta_{0}, \eta_{1}\right) \mathbf{e}^{-\int_{\eta_{0}}^{\eta_{1}} \mathrm{~d} \eta \int_{\mathbf{z}} \frac{1}{2} \vec{\xi}^{2}(\eta, \mathbf{z})} \\
\mathcal{U}_{\xi}\left(\eta_{0}, \eta_{1}\right)=\mathcal{P}_{\eta} \exp \left\{-\mathbf{i} \int_{\eta_{0}}^{\eta_{1}} \mathbf{d} \eta \int_{\mathbf{z}} \sqrt{\alpha_{\mathbf{s}}} \mathbf{Q}_{\mathbf{i}}^{\mathrm{a}}(\mathbf{z}) \xi_{\mathbf{i}}^{\mathrm{a}}(\eta, \mathbf{z})\right\}
\end{gathered}
$$

for an infinitesimally small rapidity interval Δ

$$
\mathcal{U}_{\xi} \equiv \mathcal{U}_{\xi}(\eta, \eta+\boldsymbol{\Delta})=\exp \left\{-\mathbf{i} \boldsymbol{\Delta} \int_{\mathbf{z}} \sqrt{\alpha_{\mathbf{s}}} \mathbf{Q}_{\mathbf{i}}^{\mathrm{a}}(\mathbf{z}) \xi_{\mathbf{i}}^{\mathrm{a}}(\eta, \mathbf{z})\right\}
$$

Rapidity evolution of any operator that is built out of Wilson lines, such as a color dipole, is performed in two steps: first one computes evolution of the Wilson lines on a fixed configuration of the noise and then averages the operator over the noise.

The success of the Langevin reformulation lies in the observation that $\mathcal{H}_{\mathrm{LO}}$ is quadratic in the operator \mathbf{Q}. The Hamiltonian $\mathcal{H}_{L O}$ has all its eigenvalues non-negative.

LO JIMWLK kernel beyond LO

$$
\mathcal{H}=\int_{\mathrm{x}, \mathrm{y}, \mathrm{z}} \mathrm{~K}(\mathrm{x}, \mathrm{y} ; \mathbf{z})\left[\mathrm{J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{x}) \mathrm{J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{y})+\mathrm{J}_{\mathrm{R}}^{\mathrm{a}}(\mathrm{x}) \mathrm{J}_{\mathrm{R}}^{\mathrm{a}}(\mathrm{y})-2 \mathrm{~J}_{\mathrm{L}}^{\mathrm{a}}(\mathrm{x}) \mathrm{S}_{\mathrm{A}}^{\mathrm{ab}}(\mathrm{z}) \mathrm{J}_{\mathrm{R}}^{\mathrm{b}}(\mathrm{y})\right]
$$

An effective kernel $\mathbf{K}=\mathbf{K}_{\mathrm{LO}}+\mathbf{K}_{\mathrm{NLO}}+\ldots \sim \alpha_{\mathrm{s}}\left(\#+\alpha_{\mathrm{s}}(\#+\mathbf{L o g s})+\cdots\right)$
Large transverse logarithms emerge at NLO. There are various types of large Logs - all have to be identified, clearly separated, and independently resummed.
Proper resummation requires understanding of physics beyond NLO!

- Running coupling effects (UV divergent) - rcJIMWLK:

$$
\mathbf{K}_{\mathrm{LO}}=\frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \frac{\mathbf{X Y}}{\mathbf{X}^{2} \mathrm{Y}^{2}} \rightarrow \mathrm{~K}_{\mathrm{rc}}=\frac{\alpha_{\mathrm{S}}[\text { running }]}{2 \pi^{2}} \frac{\mathbf{X Y}}{\mathbf{X}^{2} \mathrm{Y}^{2}}
$$

- DGLAP logs: Large transverse logs of the $\log \left(\mathbf{Q}_{\mathrm{s}}^{\mathrm{T}} / \mathbf{Q}_{\mathrm{s}}^{\mathrm{P}}\right)$ type (dilute-on-dense).

rcJIMWLK kernel?

Action on a dipole $S(u, v)$ (BK equation):

$$
\begin{aligned}
\mathcal{H} \mathbf{S}(\mathbf{u}, \mathbf{v}) & =\mathbf{N}_{\mathbf{c}} \int_{\mathbf{z}} \mathbf{K}_{\text {dipole }}(\mathbf{u}, \mathbf{v}, \mathbf{z})[\mathbf{S}(\mathbf{u}, \mathbf{z}) \mathbf{S}(\mathbf{z}, \mathbf{v})-\mathbf{S}(\mathbf{u}, \mathbf{v})] \\
\mathbf{K}_{\text {dipole }}(\mathbf{u}, \mathbf{v}, \mathbf{z}) & =\mathbf{K}(\mathbf{u}, \mathbf{u}, \mathbf{z})+\mathbf{K}(\mathbf{v}, \mathbf{v}, \mathbf{z})-\mathbf{K}(\mathbf{u}, \mathbf{v}, \mathbf{z})-\mathbf{K}(\mathbf{v}, \mathbf{u}, \mathbf{z})
\end{aligned}
$$

$\mathrm{K}_{\mathrm{rc}} \leftrightarrow \quad \mathrm{rcBK} \quad$ (parent dipole or minimal daughter dipole, etc, not consistent with NLO)

$$
\begin{aligned}
& \mathbf{K}^{\text {Bal }}=\frac{\alpha_{\mathrm{s}}(\mathbf{X}-\mathbf{Y})}{2 \pi^{2}} \frac{\mathbf{X} \cdot \mathbf{Y}}{\mathbf{X}^{2} \mathbf{Y}^{2}}+\frac{\alpha_{\mathrm{s}}(\mathbf{X})}{4 \pi^{2}} \frac{1}{\mathbf{X}^{2}}\left(1-\frac{\alpha_{\mathrm{s}}(\mathbf{X}-\mathbf{Y})}{\alpha_{\mathrm{s}}(\mathbf{Y})}\right)+\frac{\alpha_{\mathrm{s}}(\mathbf{Y})}{4 \pi^{2}} \frac{1}{\mathbf{Y}^{2}}\left(1-\frac{\alpha_{\mathrm{s}}(\mathbf{X}-\mathbf{Y})}{\alpha_{\mathrm{s}}(\mathbf{X})}\right) \\
& \mathbf{K}^{\mathrm{KW}}=\frac{\alpha_{\mathrm{s}}(\mathbf{X}) \alpha_{\mathrm{s}}(\mathbf{Y})}{\alpha_{\mathrm{s}}(\mathbf{R}(\mathbf{X}, \mathbf{Y}))} \frac{1}{2 \pi^{2}} \frac{\mathbf{X} \cdot \mathbf{Y}}{\mathbf{X}^{2} \mathbf{Y}^{2}}, \quad \mathbf{R}=\mathbf{R}(\mathbf{X}, \mathbf{Y})
\end{aligned}
$$

These results are problematic: what α_{s} is doing in the denominators? why is the charge renormalization of the emitter at position x sensitive to position of another emitter at y ?

Any constraints on K?

Positive semi-definiteness of the JIMWLK kernel

The Hamiltonian \mathcal{H} must have all its eigenvalues non-negative.
This is equivalent to the positive semi-definiteness of the kernel K.

$$
\begin{array}{cc}
\int \mathrm{d}^{2} \mathbf{X} \mathrm{~d}^{2} \mathbf{Y} \mathbf{f}(\mathbf{X}) \mathbf{K}(\mathbf{X}, \mathbf{Y}) \mathbf{f}(\mathbf{Y}) \geq 0 & \text { for any } \mathbf{f} \\
\mathbf{A}_{1}^{2} \mathbf{K}\left(\mathbf{X}_{1}, \mathbf{X}_{1}\right)+\mathbf{A}_{2}^{2} \mathbf{K}\left(\mathbf{X}_{2}, \mathbf{X}_{2}\right)+2 \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{K}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) \geq 0 & \text { for any } \mathbf{A}_{1} \text { and } \mathbf{A}_{2} . \\
\mathbf{K}(\mathbf{X}, \mathbf{X})+\mathbf{K}(\mathbf{Y}, \mathbf{Y})-2 \mathbf{K}(\mathbf{X}, \mathbf{Y}) \geq 0 & \rightarrow \\
\left.\mathbf{K}(\mathbf{X}, \mathbf{X})+\mathbf{K}(\mathbf{Y}, \mathbf{Y})-\mathbf{K}_{\text {dipole }}(\mathbf{X}, \mathbf{Y}) \geq \mathbf{Y}\right) \geq 0
\end{array}
$$

For any positive semidefinite kernel, it is possible to define a "square root" Ψ

$$
\int_{\mathbf{V}} \Psi_{\mathrm{i}}(\mathbf{X}, \mathbf{V}) \Psi_{\mathrm{i}}(\mathbf{Y}, \mathbf{V})=\mathbf{K}(\mathbf{X}, \mathbf{Y})
$$

None of the rcJIMWLK prescriptions satisfy positive semi-definiteness!

JIMWLK Hamiltonian @ NLO

Kovner, ML \& Mulian (2013) based on Balitsky \& Chirilli (2007), Grabovsky (2013); ML \& Mulian (2016)

(a)

(b)

$$
\mathcal{H}^{N L O J I M W L K}=\int_{x, y, z} K_{J S J}(x, y ; z)\left[J_{L}^{a}(x) J_{L}^{a}(y)+J_{R}^{a}(x) J_{R}^{a}(y)-2 J_{L}^{a}(x) S_{A}^{a b}(z) J_{R}^{b}(y)\right]
$$

$$
+\int_{x y z z^{\prime}} K_{J S S J}\left(x, y ; z, z^{\prime}\right)\left[f^{a b c} f^{d e f} J_{L}^{a}(x) S_{A}^{b e}(z) S_{A}^{c f}\left(z^{\prime}\right) J_{R}^{d}(y)-N_{c} J_{L}^{a}(x) S_{A}^{a b}(z) J_{R}^{b}(y)\right]
$$

$$
+\int_{x, y, z, z^{\prime}} K_{q \bar{q}}\left(x, y ; z, z^{\prime}\right)\left[2 J_{L}^{a}(x) \operatorname{tr}\left[S_{F}^{\dagger}(z) t^{a} S_{F}\left(z^{\prime}\right) t^{b}\right] J_{R}^{b}(y)-J_{L}^{a}(x) S_{A}^{a b}(z) J_{R}^{b}(y)\right]
$$

$$
+\int_{w, x, y, z, z^{\prime}} K_{J J S S J}\left(w ; x, y ; z, z^{\prime}\right) f^{a c b}\left[J_{L}^{d}(x) J_{L}^{e}(y) S_{A}^{d c}(z) S_{A}^{e b}\left(z^{\prime}\right) J_{R}^{a}(w)-J_{L}^{a}(w) S_{A}^{c d}(z) S_{A}^{b e}\left(z^{\prime}\right) J_{R}^{d}(x) J_{R}^{e}(y)\right]
$$

$$
+\int_{w, x, y, z} K_{J J S J}(w ; x, y ; z) f^{b d e}\left[J_{L}^{d}(x) J_{L}^{e}(y) S_{A}^{b a}(z) J_{R}^{a}(w)-J_{L}^{a}(w) S_{A}^{a b}(z) J_{R}^{d}(x) J_{R}^{e}(y)\right]
$$

$$
+\int_{w, x, y} K_{J J J}(w ; x, y) f^{d e b}\left[J_{L}^{d}(x) J_{L}^{e}(y) J_{L}^{b}(w)-J_{R}^{d}(x) J_{R}^{e}(y) J_{R}^{b}(w)\right]
$$

NLO Kernels (Large UV Logs only)

$$
\begin{aligned}
& \mathbf{X}=\mathbf{x}-\mathbf{z} \\
& Y=y-z
\end{aligned}
$$

$\mathbf{K}_{\text {JSJ }}(\mathrm{b}$ terms $)=\frac{\alpha_{\mathrm{s}}^{2}}{16 \pi^{3}}\left\{-\mathbf{b} \frac{(\mathbf{x}-\mathbf{y})^{2}}{\mathbf{X}^{2} \mathbf{Y}^{2}} \ln (\mathbf{x}-\mathbf{y})^{2} \mu^{2}+\frac{\mathbf{b}}{\mathbf{X}^{2}} \ln \mathbf{Y}^{2} \mu^{2}+\frac{\mathbf{b}}{\mathbf{Y}^{2}} \ln \mathbf{X}^{2} \mu^{2}\right\}+\cdots$

Here μ is the normalization point, $\mathbf{b}=\frac{11}{3} \mathbf{N}_{\mathrm{c}}-\frac{2}{3} \mathbf{n}_{\mathrm{f}}, \quad \mathbf{b} \ln \mathbf{Q}^{2} / \mu^{2} \rightarrow \alpha_{\mathrm{s}}\left(\mathbf{Q}^{2}\right)$ Huge ambiguity in identifying $Q . K_{J S J}$ is not positive semi-definite

Resumm large Logs into an effective kernel $\quad \mathbf{K}=\mathbf{K}_{\mathbf{L O}}+\mathbf{K}_{\mathrm{JSJ}}+\ldots$

$$
\begin{gathered}
\int_{\mathbf{x y z}, \mathbf{z}^{\prime}} \mathbf{K}_{\mathbf{J S S J}}\left(\mathbf{x}, \mathbf{y} ; \mathbf{z}, \mathbf{z}^{\prime}\right) \mathbf{J}_{\mathbf{L}}^{\mathrm{a}}(\mathbf{x}) \mathbf{J}_{\mathbf{R}}^{\mathrm{b}}(\mathbf{y})\left[\mathrm{D}^{\mathrm{ab}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)\right]
\end{gathered} \sim \mathbf{b} \times(\mathrm{UV} \text { divergent Log) }
$$

The UV divergence in $J S S J$ is trivial: when the two gluons are too close to each other ($z \sim z^{\prime}$), they cannot be resolved by the target and hence should be counted as a single gluon scattering. We are thus prompted to introduce a "resolution scale" Q

Dressed Wilson line

Within the finite resolution Q bare gluons \rightarrow dressed gluons, bare Wilson lines \rightarrow dressed Wilson lines, $\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{Q}}$

$$
\mathbf{S}_{\mathbf{Q}}^{\mathrm{ab}}(\mathbf{z})=\mathbf{S}_{\mathbf{A}}^{\mathrm{ab}}(\mathbf{z})+\frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \int_{0}^{1} \mathbf{d} \xi \sigma(\xi) \int^{\mathbf{Q}^{-1}} \frac{\mathbf{d}^{2} \mathbf{Z}}{\mathbf{Z}^{2}}\left(\mathbf{D}^{\mathrm{ab}}(\mathbf{z}+(\mathbf{1}-\xi) \mathbf{Z}, \mathbf{z}-\xi \mathbf{Z})-\mathbf{N}_{\mathbf{c}} \mathbf{S}_{\mathbf{A}}^{\mathrm{ab}}(\mathbf{z})\right)
$$

ξ is the fraction of longitudinal momentum carried by one of the gluons.
$\sigma(\xi)=\left[\frac{1}{\xi(1-\xi)}\left(\xi^{2}+(1-\xi)^{2}+\xi^{2}(1-\xi)^{2}\right)\right]_{+} ; \quad 2 \mathbf{N}_{\mathbf{c}} \int_{0}^{1} \mathbf{d} \xi \sigma(\xi)=-\frac{\mathbf{1 1} \mathbf{N}_{\mathbf{c}}}{\mathbf{3}} \rightarrow-\mathbf{b}$
This is a $P_{g g}$ splitting function except that we introduce the " + " prescription both for $\xi=1$ and $\xi=0$ poles The " + " prescription emerges from the $1 / \xi$ subtraction absorbed into (LO) ${ }^{2}$ part of the evolution.

The sign is negative - correcting for the over-subtraction in the LO.
We go beyond the usual DGLAP: we allow simultaneous scattering of all gluons.
For $\mathrm{Q}>\mathrm{Q}_{\mathrm{s}}^{\mathrm{T}}, \quad \mathrm{S}_{\mathrm{Q}} \simeq \mathrm{S}_{\mathrm{A}}$ - the target does not resolve gluon splitting at distances smaller than $1 / Q_{s}^{T}$.

Resolution scale and the running coupling

Express S in terms of S_{Q} and substitute it into the LO+NLO JIMWLK Hamiltonian. $\mathcal{H}[\mathbf{S}] \rightarrow \mathcal{H}\left[\mathbf{S}_{\mathbf{Q}}\right]$. The Hamiltonian will feature $\ln \mathbf{Q}^{2}$ terms such as $\ln \left(\mathbf{Q}^{2} \mathbf{X}^{2}\right)$.

$$
\mathbf{K}=\mathbf{K}_{\mathbf{L O}}\left(\mathbf{1}+\frac{\alpha_{\mathrm{s}}}{4 \pi} \mathbf{b}\left(\ln \mathbf{X}^{2} \mu^{2}+\ln \mathbf{Y}^{2} \mu^{2}-\ln \mathbf{Q}^{-2} \mu^{2}\right)\right)+\text { other } \mathrm{O}\left(\alpha_{\mathrm{s}}^{2}\right) \text { terms }
$$

We assume existence of a typical scale $Q_{s}^{P} \ll Q_{s}^{T}$ associated with the projectile, such that $\ln \left(\mathbf{Q}_{\mathrm{s}}^{\mathrm{P}} \mathbf{X}^{2}\right)$ are small. The UV finite parts of the Hamiltonian proportional to \mathbf{b} do not have any large Logs

$$
\mathbf{K}_{\text {in }}=\mathbf{K}\left(\mathbf{Q}=\mathbf{Q}_{\mathrm{s}}^{\mathbf{P}}\right)=\frac{\sqrt{\alpha_{\mathrm{s}}(\mathbf{X}) \alpha_{\mathrm{s}}(\mathbf{Y})}}{2 \pi^{2}} \frac{\mathbf{X Y}}{\mathbf{X}^{2} \mathbf{Y}^{2}}\left[\mathbf{1}+\frac{\alpha_{\mathrm{s}}}{8 \pi} \mathbf{b} \text { (small logs) }\right]
$$

$\sqrt{\alpha_{\mathbf{s}}(\mathbf{X}) \alpha_{\mathrm{s}}(\mathbf{Y})}$ is a positive semi-definite prescription for rcJIMWLK. Has been already used in Langevin

However, at $Q=Q_{s}^{P}, \quad \mathbf{S}_{\mathbf{Q}}$ is very different from $\mathbf{S}_{\mathbf{A}}, \mathbf{S}_{\mathbf{Q}} \sim \mathbf{S}_{\mathbf{A}}\left[1+\alpha_{\mathrm{s}} \# \log \left(\mathbf{Q}^{2} / \mathbf{Q}_{\mathbf{s}}^{\mathbf{T}}\right)\right]$. This large Log has to be resummed via inclusion of multiple consecutive DGLAP splittings:

$$
\begin{gathered}
\frac{\partial \mathbf{S}_{\mathbf{Q}}(\mathbf{z})}{\partial \ln \mathbf{Q}}=-\frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \int_{\xi} \sigma(\xi) \int_{\phi_{\mathbf{Q}}}\left[\mathbf{D}_{\mathbf{Q}}(\mathbf{z})-\mathbf{N}_{\mathbf{c}} \mathbf{S}_{\mathbf{Q}}(\mathbf{z})\right] \\
\mathbf{D}_{\mathbf{Q}}\left(\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}}\right) \equiv \operatorname{Tr}\left[\mathbf{T}^{\mathrm{a}} \mathbf{S}_{\mathbf{Q}}\left(\mathbf{z}_{1}\right) \mathbf{T}^{\mathrm{b}} \mathbf{S}_{\mathbf{Q}}^{+}\left(\mathbf{z}_{2}\right)\right]
\end{gathered}
$$

If we were to take $\mathrm{Q}=\mathrm{Q}_{\mathrm{s}}^{\mathrm{T}}$ then $\mathrm{S}_{\mathrm{Q}} \simeq \mathrm{S}_{\mathrm{A}}$ but the $\ln \mathrm{Q}^{2}$ terms in the Hamiltonian would be large and have to be resummed.

Either way, we have to resum large logs of the order $\log Q_{s}^{T} / Q_{s}^{P}$.

Functional RG

The resummed Hamiltonian should be Q-independent:

$$
\frac{\mathbf{d} \mathcal{H}}{\mathbf{d} \ln \mathbf{Q}}=\frac{\partial \mathcal{H}}{\partial \ln \mathbf{Q}}+\int_{\mathbf{u}}\left[\frac{\delta \mathcal{H}}{\delta \mathbf{S}_{\mathbf{Q}}(\mathbf{u})} \frac{\partial \mathbf{S}_{\mathbf{Q}}(\mathbf{u})}{\partial \ln \mathbf{Q}}\right]=\mathbf{0}
$$

DGLAP-like evolution for the Hamiltonian (evolution in the space of Hamiltonians):

$$
\mathcal{H}\left[\mathbf{Q}_{\mathrm{s}}^{\mathbf{P}}\right]=\operatorname{Exp}\left[\int_{\mathrm{Q}_{\mathrm{s}}^{\mathrm{P}}}^{\mathbf{Q}_{\mathrm{S}}^{\mathrm{T}}} \frac{\mathbf{d Q}}{\mathbf{Q}} \mathbf{H}_{\mathrm{DGLAP}}\right] \mathcal{H}_{\mathrm{in}}
$$

$$
\mathbf{H}_{\text {DGLAP }}=\frac{\alpha_{\mathbf{s}}}{2 \pi^{2}} \int_{\mathbf{u}} \int_{\xi} \sigma(\xi) \int_{\phi_{\mathbf{Q}}} \operatorname{Tr}\left(\left[\mathbf{D}_{\mathbf{Q}}(\mathbf{u})-\mathbf{N}_{\mathbf{c}} \mathbf{S}_{\mathbf{Q}}(\mathbf{u})\right] \frac{\delta}{\delta \mathbf{S}_{\mathbf{Q}}(\mathbf{u})}\right)
$$

$\mathbf{Q}_{\mathrm{s}}^{\mathbf{P}}=\mathbf{Q}_{\mathrm{s}}^{\mathbf{P}}(\eta)-Q_{s}^{P}$ is dynamical (rapidity dependent);
hence the resummed Hamiltonian is too.

Weak target field approximation - linearization

$$
\mathbf{S}_{\mathbf{Q}}^{\mathrm{ab}}=\delta^{\mathrm{ab}}+\mathbf{f}^{\mathrm{abc}} \alpha_{\mathbf{Q}}^{\mathrm{c}} ; \quad \mathbf{D}_{\mathbf{Q}}^{\mathrm{ab}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\mathbf{N}_{\mathbf{c}}\left(\delta^{\mathrm{ab}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{f}^{\mathrm{abc}}\left[\alpha_{\mathbf{Q}}^{\mathrm{c}}\left(\mathbf{z}_{1}\right)+\left(\alpha_{\mathbf{Q}}^{\mathrm{c}}\left(\mathbf{z}_{2}\right)\right)^{*}\right]\right)
$$

Expand the Hamiltonian (BFKL-like)

$$
\begin{gathered}
\mathcal{H}=\int_{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{z}^{\prime}} \mathbf{K}_{\mathbf{Q}}\left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{z}^{\prime}\right)\left(\alpha_{\mathbf{Q}}(\mathbf{x})-\alpha_{\mathbf{Q}}(\mathbf{z})\right)^{\mathbf{a}}\left(\alpha_{\mathbf{Q}}(\mathbf{y})-\alpha_{\mathbf{Q}}\left(\mathbf{z}^{\prime}\right)\right)^{\mathbf{b}} \frac{\delta}{\delta \alpha_{\mathbf{Q}}^{\mathbf{a}}(\mathbf{x})} \frac{\delta}{\delta \alpha_{\mathbf{Q}}^{\mathbf{b}}(\mathbf{y})} \\
\mathcal{H}=\int_{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{p}_{1}, \mathbf{p}_{\mathbf{2}}} \mathbf{K}_{\mathbf{Q}}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}_{1}, \mathbf{q}_{2}\right) \alpha_{\mathbf{Q}}^{\mathrm{a}}\left(\mathbf{q}_{1}\right) \alpha_{\mathbf{Q}}^{\mathbf{b}}\left(\mathbf{q}_{2}\right) \frac{\delta}{\delta \alpha_{\mathbf{Q}}^{\mathbf{a}}\left(\mathbf{p}_{1}\right)} \frac{\delta}{\delta \alpha_{\mathbf{Q}}^{\mathbf{b}}\left(\mathbf{p}_{2}\right)} \\
\mathbf{H}_{\mathbf{D G L A P}}
\end{gathered} \sim_{\mathbf{Q}} \frac{\delta}{\delta \alpha_{\mathbf{Q}}} .
$$

$H_{\text {DGLAP }}$ is homogeneous

The DGLAP-like RG evolution becomes a closed equation for the kernel K_{Q}.

$$
\mathbf{K}_{\mathbf{Q}}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}_{1}, \mathbf{q}_{2}\right)=\operatorname{Exp}\left(\int_{\mathbf{Q}_{S}^{P}}^{\mathbf{Q}_{\mathrm{S}}^{\mathrm{T}}} \frac{\mathbf{d Q}}{\mathbf{Q}}\left(\mathbf{R}\left(\mathbf{q}_{1}, \mathbf{Q}\right)+\mathbf{R}\left(\mathbf{q}_{2}, \mathbf{Q}\right)\right)\right) \mathbf{K}_{\text {in }}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}_{1}, \mathbf{q}_{2}\right)
$$

Here K_{in} is the non-forward BFKL kernel, which is multiplicatively "renormalized"

$$
\mathbf{R}(\mathbf{q}, \mathbf{Q})=\frac{\alpha_{\mathbf{s}} \mathbf{N}_{\mathbf{c}}}{2 \pi^{2}} \int \mathbf{d} \xi \sigma(\xi) \int \mathbf{d} \phi\left(\mathbf{e}^{\mathbf{i}(1-\xi) \mathbf{Q}^{-1}}{ }_{\mathbf{q} \cdot \overrightarrow{\mathbf{e}}_{\phi}}-\mathbf{1}\right)
$$

Alternatively,

$$
\alpha_{\mathrm{Q}}(\mathrm{z}) \approx\left(\frac{\mathbf{Q}_{\mathrm{T}}}{\mathbf{Q}}\right)^{\frac{\alpha_{\mathrm{s}} \mathrm{~b}}{2 \pi}} \alpha(\mathrm{z})+\int_{1 / \mathrm{Q}_{\mathbf{T}}<|\mathrm{x}-\mathrm{z}|<1 / \mathrm{Q}} \mathrm{~d}^{2} \mathbf{x} \frac{\alpha_{\mathrm{s}} \mathbf{b}}{4 \pi} \frac{\mathbf{Q}^{2}}{\pi}\left[1-\left(\frac{1}{\mathbf{Q}^{2}(\mathrm{x}-\mathrm{z})^{2}}\right)^{1+\frac{\alpha_{\mathrm{s}} \mathrm{~b}}{4 \pi}}\right] \alpha(\mathrm{x})
$$

For small distances, the WW fields get smeared

Saturation region

$$
\mathbf{H}_{\mathbf{D G L A P}}=\frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \int_{\mathbf{u}} \int_{\xi} \sigma(\xi) \int_{\phi_{\mathbf{Q}}} \operatorname{Tr}\left(\left[\mathbf{D}_{\mathbf{Q}}(\mathbf{u})-\mathbf{N}_{\mathbf{c}} \mathbf{S}_{\mathbf{Q}}(\mathbf{u})\right] \frac{\delta}{\delta \mathbf{S}_{\mathbf{Q}}(\mathbf{u})}\right)
$$

Since $\left|z_{1}-z_{2}\right|=1 / Q>1 / Q_{s}^{T}$, the two gluons are well separated and outside the correlation region in the target (in the sense of averaging over the target).

$$
\begin{gathered}
\mathbf{D}_{\mathbf{Q}} \ll \mathbf{N}_{\mathbf{c}} \mathbf{S}_{\mathbf{Q}} \rightarrow \mathbf{H}_{\mathbf{D G L A P}} \text { is again homogeneous } \\
\frac{\partial S_{Q}(z)}{\partial \ln Q^{2}}=\frac{\alpha_{s} N_{c}}{\pi} \int_{\xi} \sigma(\xi) S_{Q}(z) \\
\mathbf{S}_{\mathbf{Q}}=\left[\frac{\mathbf{Q}_{\mathbf{s}}^{\mathbf{T}}}{\mathbf{Q}}\right]^{\frac{\alpha_{\mathbf{S}}}{2 \pi} \mathbf{b}} \mathbf{S}
\end{gathered}
$$

Summary/Outlook

- DGLAP-like resummation inside the JIMWLK Hamiltonian has been performed. These DGLAP corrections are large whenever there is a large disparity between the correlation lengths (or saturation momenta) in the projectile and the target. This is precisely JIMWLK's regime of validity.
The result is a smearing of the WW fields within the $1 / Q_{s}^{T}$ distance

- rcJIMWLK emerges with the scale choice for the running coupling: $\mathbf{K} \sim \sqrt{\alpha_{\mathbf{s}}(\mathbf{X}) \alpha_{\mathbf{s}}(\mathbf{Y})}$

"High energy QCD: from the LHC to the EIC"

When: 2025, Aug 4 - Aug 15
Where: Centro de Ciencias de Benasque Pedro Pascual

Organizers:

T. Altinoluk (National Centre for Nuclear Research, Poland),
N. Armesto (Universidade de Santiago de Compostela, Spain),
J. Jalilian-Marian (City University of New York, USA),
A. Kovner (University of Connecticut, USA),
M. Lublinsky (Ben Gurion University of the Negev, Israel),
C. Marquet (CNRS and Ecole Polytechnique, France)

