RG improved JIMWLK Hamiltonian:
running coupling and DGLAP resummation

Michael Lublinsky

Ben-Gurion University of the Negev, Israel

A. Kovner, M. Lublinsky, V. V. Skokov and Z. Zhao, arXiv:2308.15545 [hep-ph].

T. Altinoluk, G. Beuf, M. Lublinsky and V. V. Skokov, arXiv:2310.10738 [hep-ph]



LO JIMWLK Hamiltonian

M = [ Kio {J00T10) + TROTA) — 208N @)IR() }

L oas (x—z)i(y—2z)i _ as XY
KL()(X, Yy, Z) = 27_(_2 (X . z)2(y . Z)z — 27_(_2 X2Y2

Here Jy, and Jg are left and right SU(N) generators:

I3 (x)S4(2) = (T*Sa(2))" 6%(x — 2) J%(x)S4(2) = (Sa(z)T")" 6%(x — 2)

Ho =2 [Q@Q@, Q@) = [ 1556 - Sa@)]" 0.

JIMWLK is valid for dilute-on-dense collisions only (Qf < QST)
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Stochastic formulation/Langevin

The rapidity evolution operator from 7 to 7y is

Ui, m) = Pe™ 10 70— / DE Ue(ng, ) e 10 11123 (2)

1
Ug(mo, M) = Py exp {—i/ dn /\/as Q?(Z)&?(n,Z)}
0 z
for an infinitesimally small rapidity interval A

e = Us(nn + A) = exp { -1 [ VEQI@E®.2) |

Rapidity evolution of any operator that is built out of Wilson lines, such as a color dipole,
is performed in two steps: first one computes evolution of the Wilson lines on a fixed
configuration of the noise and then averages the operator over the noise.

The success of the Langevin reformulation lies in the observation that 1o is quadratic
in the operator Q. The Hamiltonian H ;o has all its eigenvalues non-negative.
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LO JIMWLK kernel beyond LO

H = / K(x,y:2) [T T) + Th(0TR(y) — 23500 SY(2) TR (v)

An effective kernel K = Kiyo + Knro + ... ~ as(# + as(# + Logs) + ---)

Large transverse logarithms emerge at NLO. There are various types of large Logs - all
have to be identified, clearly separated, and independently resummed.
Proper resummation requires understanding of physics beyond NLO!

e Running coupling effects (UV divergent) — rcJIMWLK:

as XY as[running] XY
KLO pum— _> Krc —
272 X2Y? 2772 X2Y?2

e DGLAP logs: Large transverse logs of the log(Q)/Q’) type (dilute-on-dense).
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rcJIMWLK kernel?

Action on a dipole S(u, v) (BK equation):
HS(u,v) = NC/Kdipole(u,v,z) S(u,2) S(z,v) — S(u,v)]

Kaipole(u,v,z) = K(u,u,z) + K(v,v,z) — K(u,v,z) — K(v,u, z)

K,. <+ rcBK (parent dipole or minimal daughter dipole, etc, not consistent with NLO)

o _ (X = Y)X Y ay(X) 1 (1 au(X - Y>>+as<Y> 1 (1 au(X - Y))

272 X2Y?2 4n? X2 as(Y) 472 Y2 as(X)

KKW o OCS(X)OCS(Y) 1 XY
- as(R(X,Y)) 272 X2Y?2’

R = R(X,Y)

These results are problematic: what o is doing in the denominators? why is the charge
renormalization of the emitter at position x sensitive to position of another emitter at y?

Any constraints on K?
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Positive semi-definiteness of the JIMWLK kernel

The Hamiltonian H must have all its eigenvalues non-negative.

This is equivalent to the positive semi-definiteness of the kernel K.

/de d’Y f(X)K(X,Y)f(Y) > 0 for any f
AiK(Xl, Xl) —|— Ag K(Xg, Xg) —|— 2A1A2 K(Xl, Xg) Z 0 for any A1 and Ag.

K(X,X) + K(Y,Y) — 2K(X,Y) > 0 —  Kaipore(X,Y) > 0

K(X,X) + K(Y,Y) — K*(X,Y) > 0

For any positive semidefinite kernel, it is possible to define a “square root” ¥

/ O,(X, V)Y, V) = K(X,Y).

None of the rcJIMWLK prescriptions satisfy positive semi-definiteness!
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JIMWLK Hamiltonian @ NLO

Kovner, ML & Mulian (2013) based on Balitsky & Chirilli (2007), Grabovsky (2013); ML & Mulian (2016)

PO IIVEE = [ K@, ys2) [T @) T () + Ti(@) Ta(y) — 277 (@) S5 (2) Th(v)]
xr,Yy,z
+ | Kussa(mysz, 2) [fF I @S5 (2) S () Ji(y) — NeJE (@) S5 (2) T3()|
TYZZ

+/ / K, i(x,y; 2, z/) [2 Ji(x) t’r[S}(z) +@ SF(z/)tb] J]b%(y) — %) Sjb(z) J]b%(y)]

Sy e Kasssa(wi @, ys 2, 2) f2 [ T(w) 5 (y) S5(2) SE() Th(w) — JE(w) S51(2) S () Ta(@) Ti(y) |

Loy Kossalwsm,ys 2) 11 [ TE (@) Tg (y) S§(2) Ti(w) = T (w) SF(2) Tp(@) Ta) |
+ Ly Koas(wiz, ) f1 [TE (@) 5 (y) TE(w) = Tfh(@) J5(y) Jp(w)] . W m
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NLO Kernels (Large UV Logs only)

X=x—z
Y =y—=
2 2
Oy (x—y) 2 2 b 2 2 b 2 2
Kjss(b terms) = T6.3 {—bwln(x —y) '+ ﬁlnY w+ WIHX poop 4o
Here 1 is the normalization point, b = YN, — 2n; , b InQ*/p® — as(Q?)

Huge ambiguity in identifying (). K ;5; is not positive semi-definite

Resumm large Logs into an effective kernel K = Ko + Kjsy + ....

/ / Kissi(X,y;2,2 ) Ji(x)JE(y) [Dab(z, z') ] ~ b x (UV divergent Log)
Xy z,Z

=

D™ (z,72') = Tr[T*Sa(2z)T S, (2)]

The UV divergence in JSSJ is trivial: when the two gluons are too close to each other

(2 ~ 2), they cannot be resolved by the target and hence should be counted as a single
gluon scattering. We are thus prompted to introduce a "resolution scale” ()
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Dressed Wilson line

Within the finite resolution () bare gluons — dressed gluons,
bare Wilson lines — dressed Wilson lines, S — Sq

¢ is the fraction of longitudinal momentum carried by one of the gluons.

11N,

o(§) = { (£2+ (1—&)2+£2<1—£)2)] ; 2Nc/01d£o<£) = —

_
§1 -9

+

This is a P,, splitting function except that we introduce the "4" prescription both for
¢ =1 and £ = 0 poles The "+” prescription emerges from the 1/£ subtraction absorbed
into (LO)? part of the evolution.

The sign is negative — correcting for the over-subtraction in the LO.
We go beyond the usual DGLAP: we allow simultaneous scattering of all gluons.

For Q > QST, Sq =~ Sa - the target does not resolve gluon splitting
at distances smaller than 1/Q_.
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Resolution scale and the running coupling

Express S in terms of Sq and substitute it into the LO+NLO JIMWLK Hamiltonian.
H[S] — H[Sq]. The Hamiltonian will feature In Q* terms such as In(Q*X?).

K = Kio (1 + %b (In Xz,u2 + In Y2,LL2 — In Qz,u2)> + other O(az) terms
s

We assume existence of a typical scale QE < QST associated with the projectile, such
that In(QF'X?) are small. The UV finite parts of the Hamiltonian proportional to b do
not have any large Logs

_ _ 0Py _ Vas(X) as(Y) XY Qs
Kim = KQ=Q,) = o3 X2v3 1+ gb (small logs)

v as(X) as(Y) is a positive semi-definite prescription for rcJIMWLK.
Has been already used in Langevin
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However, at Q = Q'', Sq is very different from S, Sq ~ Sa [1 + as # Log(Q?/Ql)].
This large Log has to be resummed via inclusion of multiple consecutive DGLAP splittings:

O0Sq(z) s
g = 3 [o© ] Da) ~ Nesaw

Dq(z1,22) = Tr[T*Sq(z1) T S§(22)]

If we were to take Q = ng then Sq ~ Sa but the In Q? terms in the Hamiltonian would
be large and have to be resummed.

Either way, we have to resum large logs of the order log QZ/QS.
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Functional RG

The resummed Hamiltonian should be )-independent:

dH  OH +/[ SH asQ(u)}
dinQ 9InQ J, [8Sq(u) 9InQ

DGLAP-like evolution for the Hamiltonian (evolution in the space of Hamiltonians):

Qs g
H[Q.] = Exp [/P EQHDGLAP] Hin

Hpciap = —° / o (£) Tr ([DQ(u) — N Sq(u)] 555(11))

QE = QsP(n) - Qf is dynamical (rapidity dependent);
hence the resummed Hamiltonian is too.
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Weak target field approximation — linearization

a a apcC C a a 1 apcC C C >k
5§ = M+ 0Gs DGmm) = N (6 + 20 [ () + (afa)] )

Expand the Hamiltonian (BFKL-like)

) )
5oy (x) 3aj(y)

H = / / KQ(X, Y, Z, z/) (OéQ(X) — OéQ(Z))a (aQ(Y) - O‘Q(Z/) )b

J J
dag(p1) 6ag(p2)

b
H = / KQ(p17 P2, d1, q2) az(ql) OéQ(qz)
q1,492:P1,P2

o)
Hpgrap ~ aq So
Q

Hpgrap is homogeneous
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The DGLAP-like RG evolution becomes a closed equation for the kernel K.

Q% 4Q
KQ(P17P27Q17Q2) = Exp (/P E(R(ql’Q) +R(Q2,Q))> Kin(Pl,Pz,Q1,Q2)

Here K, is the non-forward BFKL kernel, which is multiplicatively " renormalized”

R(q. Q) — O;l:“/dga(g) /d¢ (ei(l—E)Q_lq’.é¢ B 1)

Alternatively,

Qr\ ¥ asb Q? 1 G
aq(z) ~ (—T> a(z) + / d’x—= |1 — ( ) a(x)

Q AT T Q%(x — z)?
1/Qp<|x—2z|<1/Q

For small distances, the WW fields get smeared
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Saturation region

Olg 0
Hpgrap = - //U(f) Tr { [Dg(u) — Nc¢Sq(u)]
27 uJé ¢Q 5SQ(11)
Since |z, — 72| = 1/Q > 1/QJ, the two gluons are well separated and outside the

correlation region in the target (in the sense of averaging over the target).

Dq < N¢Sq — Hpcgrap isagain homogeneous

9Sq(z)  asN.
= /5 o (€) Sa()

55b

T | 27
0n 2]
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Summary/QOutlook

e DGLAP-like resummation inside the JIMWLK Hamiltonian has been performed. These
DGLAP corrections are large whenever there is a large disparity between the correlation
lengths (or saturation momenta) in the projectile and the target. This is precisely

JIMWLK’s regime of validity.
The result is a smearing of the WW fields within the 1/Q! distance

BEKL S DGLAP Ladder
Ladder T P
r@ as In QT/Q]
T per rung
Per rung cguwwwr e

e rcJIMWLK emerges with the scale choice for the running coupling:
K ~ y/os(X)as(Y)
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