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The Question

We all know that CGC is the evolution of observables at high energy.

But not of all observables.

Originally: color charge density ja(x) =
∫
dx−ja(x , x−). From here eikonal

scattering factors U(x) and variety of derivative observables. All such
observables are

O({xi},Y ) = ⟨O[U(xi )]⟩Y
with Y - the evolution interval.

All these observables depend on only one longitudinal variable - Y. But

there are others that do not fall into this category.

These depend on the longitudinal momentum fraction in addition to the
overall evolution parameter.
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Why is it interesting?

E.g.: gluon TMD.

T (k, µ; x , ζ) = ⟨a†(x , k)a(x , k)⟩ζ

ζ - longitudinal resolution.

There are two longitudinal variables here x and ζ. How do we
accommodate such observables in high energy evolution?
They are interesting for variety of reasons.
E.g. recently questions about id’ing the interplay of Sudakov logarithms
and energy evolution in dijet production.

The basic observable here is the gluon TMD. But if one wants to discuss
different frames (which is done in this context) with different amounts of
evolution, one needs to understand how TMD at fixed x is evolved in
energy.

So let us ask this question.
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JIMWLK

JIMWLK evolution generated by the ”Hamiltonian”.

HJIMWLK =
αs

2π2

∫
x, y, z

(x− z) · (y − z)

(x− z)2(y − z)2

×
[
JaL(x) J

a
L(y) + JaR(x) J

a
R(y) − 2JaL(x) S

ab(z) JbR(y)
]
.

Every gluon in the projectile - an eikonal factor of S . Charges JL(R) - left
(right) rotation operator when acting on S .
The Hamiltonian can act either on an observable, or on the projectile
(quasi) probability density

d

dY
WP [S ] = HJIMWLK[S , J]WP [S ]

where S- an eikonal scattering matrix of a projectile gluon.
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What about TMD?

What is TMD? Maybe it is

T =

∫
e ik·(x−y)⟨bi (x)bi (y)⟩ =

1

g2
⟨
∫

e ik·(x−y)Tr [S†(x)∂iS(x)S
†(y)∂iS(y)]⟩Y

But RHS depends on a single longitudinal variable Y . What is Y ? Is it x
(Y = ln 1/x)? Or is it resolution ζ?

It is in fact both: B. W. Xiao, F. Yuan and J. Zhou, Nucl. Phys. B 921
(2017), 104. This expression is valid only for TMD in which the
longitudinal resolution is equal to the longitudinal momentum fraction

T (x = e−Y , ζ = Y )

How do we ”decouple” x from ζ?
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JIMWLK - recap

Let us recap (schematically) the derivation of JIMWLK

First, diagonalize the soft gluon Hamiltonian in the background of valence
color charges, so that the soft vacuum is

|0⟩soft = Ω[ĵavalence ]|0⟩

Ω - the diagonalizing operator that depends on the quantum operator
jvalence .

Then to evolve any JIMWLK - type operator O (i.e. operator that
depends on integrated ja) we consider

⟨0|Ω†O(ja + jasoft)Ω|0⟩ = ⟨0|Ω†R†O(ja)RΩ|0⟩

where
R̂† ĵa(x⊥)R̂ = ĵa(x⊥) + ĵasoft(x⊥)

Ω evolves the state, R adds the color density of the soft gluons to the
valence color charge!
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JIMWLK - recap continued

All said and done this leads to the Hamiltonian (a little long, but bear with
me)

HRFT = − 1

4π

[
(b̃αL − bαR)

†(N†
⊥N⊥)αβ(b̃

β
L − bβR) + h.c .

]
with

∂ib
a
i (x⊥) = ja(x⊥) ,

∂ib
a
j (x⊥)− ∂jb

a
i (x⊥)− gf abcbbi (x⊥)b

c
j (x⊥) = 0 .

N⊥ = [1− l − L] =

[
δij − ∂i

1

∂2
∂j − Di

1

D2
Dj

]ab
(x⊥, y⊥) .

The two ”classical fields” depend on the right and left charges :

bβL ≡ bβ[jL]; bβR ≡ bβ[jR ]
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JIMWLK - recap continued still

jaL =jb
[τ
2
coth

τ

2
+

τ

2

]ba
=ja +

1

2
jb
(
gT e δ

δje

)
ba

+
1

12
jb
(
gT e δ

δje

)2

ba

− 1

720
jb
(
gT e δ

δje

)4

ba

+ . . .

jaR =jb
[τ
2
coth

τ

2
− τ

2

]ba
=ja − 1

2
jb
(
gT e δ

δje

)
ba

+
1

12
jb
(
gT e δ

δje

)2

ba

− 1

720
jb
(
gT e δ

δje

)4

ba

+ . . .

with

τ = gT e δ

δje

Why two charges? This is necessary to represent quantum operators in
terms of classical phase space variables- ”Wigner-Weyl” representation of
quantum mechanics: A. Kovner and M. Li, JHEP 05 (2020) 036 (mostly
Ming Li)
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JIMWLK - recap continued a little bit longer

Important note: HRFT contains

b̃αL = bβLR
βα
p , R = eτ ; τ = gT e δ

δje

JIMWLK is the ”dilute target” limit of HRFT , i.e. HRFT expanded to
leading order in τ . AT order τ2 this expansion yields the usual JIMWLK
Hamiltonian.

Very important: this expansion involves expanding jL and jR around j , and
also the explicit factor R in the expression for b̃.
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From JIMWLK to ”CSS”

So what is the evolution of an observable that depends on x and not just
on Y ?

It’s straightforward: when evolving past Yc = ln 1/x the color charge of
soft gluons should not be added to the existing j . Apart from that, the
evolution of the wave function, and therefore the operator Ω is the same
as in JIMWLK.

In HRFT addition of jsoft is enforced by the factor R in the definition of b̃.
That’s all.

All we have to do is to drop the tilde:

b̃ → b

H ′
RFT = − 1

4π

[
(bαL − bαR)

†(N†
⊥N⊥)αβ(b

β
L − bβR) + h.c .

]
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The ”CSS” Hamiltonian

Expand H ′
RFT in τ and we get

HCSS =
g2

2π

∫
x ,y

[
j(x)T a δ

δj(x)

] [
1

∂2

]
(x, y)

[
j(y)T a δ

δj(y)

]
It’s simple: emission of an gluon during the evolution rotates the color
charge density: j(x)T a δ

δj(x) is the operator of such rotation. For ”CSS” all
that matters is how j changes due to this rotation, and not what the
emitted gluon itself does.

Funny that: dilute limit of H ′
RFT is identical to the dense limit, i.e.

expanding to leading order in j gives the same result as expanding to
leading order in τ .
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Why is this CSS?

Why do we call it CSS?

Consider a dilute projectile.

Suppose we are interested in the TMD at ζ > ln 1/x . To calculate it we
start with initial condition at Y0 = ln 1/x

T (k; x , ζ = ln 1/x) =

∫
e ik·(x−y)⟨bi (x)bi (y)⟩

bai (x) = g

∫
u

∂i
∂2

(x− u)ja(u)

and evolve with HCSS from Y0 = ln 1/x to Y = ζ. Acting on the

observable with HCSS yields a homogeneous equation:

∂T (k, x , ζ)

∂ζ
= −αsNc

π
ln

Λ2

k2
T (k, x , ζ)

Λ2 - UV cutoff
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UV cutoff?

TMD as defined above has not transverse resolution scale, or rather - the
transverse resolution scale is UV cutoff.

This is easily rectified. Define

T (k, µ2; x , ζ) =

∫
e ik·(x−y)⟨bµi (x)b

µ
i (y)⟩

bµi (x) ≡
∫
z
bi (x− z)γ(z); γ(0) = 1; and γ(z) → 0; z2 > 1/µ2

A goof choice is e.g.: γ(z) = e−z2µ2

Repeat the exercise:

∂T (k, µ2; x , ζ)

∂ζ
= −αsNc

π
ln

µ2

k2
T (k, µ2; x , ζ)

Now this is (one of the) CSS.
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Dense projectile

In the dense case our favorite variables are usually the eikonal factors
S(x). What does HCSS do to those?

The action is not trivial: simple rotation of ja is a rather complicated
nonlinear transformation of S is given by j

∂ibi =
i

g
∂i

(
S†∂iS

)
= gj

One can use this to express δ/δj in terms of JR(L) - the right and left
rotation operators of the Wilson line.

The final result

HCSS = g2JR
1

∂D
(D∂ − ∂D)

1

∂2
(∂D − D∂)

1

D∂
JR

In JIMWLK expressions like 1/∂D appeared in the intermediate stages,
but cancelled in the final result. In CSS they don’t.
So we still have a challenge to understand how to deal with those.
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Conclusions

So one can evolve observables at fixed x to high energy. But not with
HJIMWLK - rather with HCSS .

d

dζ
< O(x , ζ) >=

∫
DjO[j ]HCSS [j ,

∂

∂j
]WCSS [j ]

HCSS can act either on O or on WCSS . The initial condition for the
evolution is taken at ζ0 = ln 1/x :

O(x , ζ0) = Oζ0 [S ]; WCSS [j , ζ0] = WJIMWLK [j , ζ0]

HCSS is universal in the same sense as JIMWLK- it is applicable not only
to TMD, but to any observable that depends on gluonic degrees of
freedom at fixed x .

j is simple, S is complicated. Hopefully for some interesting observables
the awkward denominators cancel. Have to understand it better.

Alex Kovner (University of Connecticut ) Longitudinal momentum fraction and longitudinal resolution: CSS in CGCMay 23, 2024 15 / 15


