

Spin-orbit correlation at small-x

Yoshitaka Hatta BNL/RIKEN BNL

2404.04208; 2404.04209 with Shohini Bhattacharya, Renaud Boussarie,

2404.18872 with Jakob Schoenleber

Spin-orbit coupling in atoms

$$V = -\frac{\mu_B e}{mc^2 r^3} \vec{S} \cdot \vec{L}$$

 $\vec{\mu} \cdot \vec{B}$ in the electron rest frame + relativistic effects contributes to the hydrogen fine structure

Spin-orbit coupling in nuclei

In the nuclear shell model, nucleons orbiting inside a nucleus feel a spin-orbit potential

Strong spin-orbit coupling \rightarrow magic numbers

Mayer, Jensen Nobel prize (1963)

 $1s_{1/2} \ 2 \ 2$

1s –

_ ----- ____

Spin-orbit coupling in nucleons?

Quarks and gluons carry spin (helicity) and OAM Naturally there should be spin-orbit coupling

Numbers of quarks and gluons indefinite

Gluon spin and OAM need to be carefully defined → Jaffe Manohar (canonical) scheme

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$
spin spin orbit orbit

However, the whole discussion does not require polarization. I will assume an unpolarized proton in the following.

Quark spin-orbit correlation

Polarized quark GTMD

$$\begin{split} \tilde{f}_{q}(x,\xi,k_{\perp},\Delta_{\perp}) &= \int \frac{d^{3}z}{2(2\pi)^{3}} e^{ixP^{+}z^{-}-ik_{\perp}\cdot z_{\perp}} \langle p's' | \bar{q}(-z/2) W_{\pm}\gamma^{+}\gamma_{5}q(z/2) | ps \rangle \\ &= \frac{-i}{2M} \bar{u}(p's') \left[\frac{\epsilon_{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}} G_{1,1}^{q} + \frac{\sigma^{i+}\gamma_{5}}{P^{+}} (k_{\perp}^{i}G_{1,2}^{q} + \Delta_{\perp}^{i}G_{1,3}^{q}) + \sigma^{+-}\gamma_{5}G_{1,4}^{q} \right] u(ps) \end{split}$$

Meissner, Metz, Schlegel (2008)

Quark spin-orbit correlation Lorce, Pasquini (2011)

$$C_q = \int_{-1}^{1} dx \int d^2 k_{\perp} \frac{k_{\perp}^2}{M^2} G_{1,1}^q(x,k_{\perp},0) \sim \langle S^z L^z \rangle$$

x-distribution

$$C_q(x) = \int d^2k_{\perp} \frac{k_{\perp}^2}{M^2} G_{1,1}^q(x,k_{\perp},0)$$

 $C_q > 0$ if helicity and OAM are aligned

 $C_q < 0$ if they are anti-aligned

Gluon spin-orbit correlation

Polarized gluon GTMD

$$\begin{aligned} x \tilde{f}_g(x,\xi,k_{\perp},\Delta_{\perp}) &= i \int \frac{d^3 z}{(2\pi)^3 P^+} e^{ixP^+ z^- - ik_{\perp} \cdot z_{\perp}} \langle p' | \tilde{F}^{+\mu}(-z/2) \widetilde{W}_{\pm} F^+_{\mu}(z/2) | p \rangle \\ &= \frac{-i}{2M} \bar{u}(p') \left[\frac{\epsilon_{ij} k^i \Delta^j}{M^2} G^g_{1,1} + \frac{\sigma^{i+\gamma_5}}{P^+} (k^i G^g_{1,2} + \Delta^i G^g_{1,3}) + \sigma^{+-\gamma_5} G^g_{1,4} \right] u(p) \end{aligned}$$

$$xC_g(x) = \int d^2k_{\perp} \frac{k_{\perp}^2}{M^2} G_{1,1}^g(x,k_{\perp},0)$$

 $C_g(x)\,$ is odd. The first moment vanishes

$$\int dx C_g(x) = 0$$

OAM and spin-orbit correlation

Staple-shaped Wilson line

→ Gauge invariant canonical OAM YH (2011)

Twist structure of OAM PDF

YH, Yoshida (2012)

$$\begin{split} L^{q}_{can}(x) &= x \int_{x}^{\epsilon(x)} \frac{dx'}{x'} (H_{q}(x') + E_{q}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \tilde{H}_{q}(x') & \text{Wandzura-Wilczek part} \\ &- x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \Phi_{F}(x_{1}, x_{2}) \mathcal{P} \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})^{2}} \\ &- x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Phi}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{2}(x_{1} - x_{2})}. & \Phi_{F} \sim \langle P' | \bar{\psi} \gamma^{+} F^{+i} \psi | P \rangle \\ & \Delta F \sim \langle P' | \bar{\psi} \gamma^{+} F^{+i} \psi | P \rangle \\ L^{g}_{can}(x) &= \frac{x}{2} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} (H_{g}(x') + E_{g}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \Delta G(x') \\ &+ 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \Phi_{F}(X, x') + 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{M}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{3}(x_{1} - x_{2})} \\ &+ 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} M_{F}(x_{1}, x_{2}) \mathcal{P} \frac{2x_{1} - x_{2}}{x_{1}^{3}(x_{1} - x_{2})^{2}} \end{split}$$

 $|P\rangle$

Twist structure of spin-orbit correlation

$$C_{q}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta q(x') - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} q(x')$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \frac{\Psi_{qF}(x_{1}, x_{2})}{x_{1} - x_{2}} P \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})}$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Psi}_{qF}(x_{1}, x_{2}) P \frac{1}{x_{1}^{2}(x_{1} - x_{2})}$$

YH, Schoenleber (2024)

See also, Rajan, Engelhardt, Liuti (2017) for the quark part

$$C_{g}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta G(x') - 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} G(x') - 4x \sum_{q} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \tilde{\Psi}_{qF}(X, x') + 4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} P \frac{\tilde{N}_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} + 4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} \frac{N_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} P \frac{2x_{1} - x_{2}}{x_{1} - x_{2}}$$

 $\Psi_F, N_F\,$ partly related to ETQS and three-gluon distributions relevant to transverse SSA

2 spin sum rules, 1 momentum sum rule?

Spin
$$\frac{1}{2} = \frac{1}{2} \sum_{q} (A_{q+\bar{q}} + B_{q+\bar{q}}) + \frac{1}{2} (A_g + B_g)$$
 Ji (1996)
 $= \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$ Jaffe, Manohar (1990)

Momentum

$$1 = \sum_{q} A_{q+\bar{q}} + A_g \qquad \text{Feynman (1969)}$$

2 spin sum rules, 2 momentum sum rules!

Spin
$$\frac{1}{2} = \frac{1}{2} \sum_{q} (A_{q+\bar{q}} + B_{q+\bar{q}}) + \frac{1}{2} (A_g + B_g)$$
 Ji (1996)
 $= \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$ Jaffe, Manohar (1990)

Momentum

 $1 = \sum_{q} A_{q+\bar{q}} + A_{g}$ Feynman (1969) $= \Delta \Sigma^{(3)} + \frac{1}{2} \Delta G^{(3)} - 3C_{q}^{(2)} - \frac{3}{2}C_{g}^{(2)}$ YH, Schoenleber (2024) $-\frac{3}{2} \int dx dx' \left[\sum_{q} \left(\frac{2x}{x-x'} \tilde{\Psi}_{Fq}(x,x') + \Psi_{Fq}(x,x') \right) - \frac{\tilde{N}_{F}(x,x')}{x-x'} \right] + \sum_{q} \frac{m_{q}}{M} H_{1q}^{(2)}$

Spin-orbit correlation at small-x

Gluon saturation at small-x: one of the core topics of EIC

Naively, anything related to helicity, OAM are sub-eikonal at small-x

Finding 1: An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Intuitive argument

Imagine a very energetic quark emits a soft gluon

Quark spin and momentum unchanged.

From angular momentum conservation, the total angular momentum of the emitted gluon must be zero

$$(s^z, l^z) = (\pm 1, \mp 1)$$

Imagine the emitted soft gluon further splits into a $\, q ar q \,$ pair

Helicity and OAM are always in opposite directions Only $L^z = \pm 1$ states appear at small-x!

Perfect spin-orbit anti-correlation

Helicity-OAM cancellation at small-x

If
$$\Delta q(x) \sim \Delta G(x) \sim \frac{1}{x^c}$$
, then
 $\Delta q(x) \approx -\frac{1}{1+c}L_q(x), \qquad \Delta G(x) \approx -\frac{2}{1+c}L_g(x),$

More complete treatment Kovchegov, Manley (2023) Manley (2024)

The correlation exists even in unpolarized/spinless hadrons

Gluon spin-orbit coupling at small-x

$$\frac{i}{x} \int \frac{d^3 z}{(2\pi)^3 P^+} e^{ixP^+ z^- - ik_\perp \cdot z_\perp} \langle p' | 2\text{Tr}[W_+ \tilde{F}^{+\mu}(-z/2) W_\pm F^+_\mu(z/2)] | p \rangle = -i \frac{\epsilon_{ij} k_\perp^i \Delta_\perp^j}{M^2} C_g^{[+\pm]}(x,\xi,k_\perp,\Delta_\perp),$$

There are two inequivalent configurations of Wilson lines

Weiszacker-Williams type Dipole type

> Bomhof, Mulders, Pijlman (2006) Dominguez, Marquet, Xiao, Yuan (2011)

Approximate $e^{ixP^+z^-} \approx 1$ (eikonal approximation)

Gluon spin-orbit correlation (Dipole type)

$$\epsilon_{ij} e^{-i\left(k_{\perp} - \frac{\Delta_{\perp}}{2}\right) \cdot z_{\perp} + i\left(k_{\perp} + \frac{\Delta_{\perp}}{2}\right) \cdot w_{\perp}} \operatorname{Tr} \partial^{i} U(w_{\perp}) \partial^{j} U^{\dagger}(z_{\perp})$$

$$\longrightarrow \epsilon_{ij} k^i_{\perp} \Delta^j_{\perp} \operatorname{Tr} U(w_{\perp}) U^{\dagger}(z_{\perp})$$

$$\frac{xC_g^{\rm dip}(x,k_{\perp})}{M^2} = -\frac{2N_c}{\alpha_s} \int \frac{d^2w_{\perp}d^2z_{\perp}}{(2\pi)^4} e^{-ik_{\perp}\cdot(z_{\perp}-w_{\perp})} \frac{\langle p|\frac{1}{N_c}{\rm Tr}U(w_{\perp})U^{\dagger}(z_{\perp})-1|p\rangle}{\langle p|p\rangle}$$

cf. Boer, van Daal, Mulders, Petreska (2018)

$$C_g^{
m dip}(x) = -G(x) \qquad -1 imes 1 = -1$$
 times the number of gluons

Spin-orbit correlation survives the eikonal approximation

Gluon spin-orbit correlation (WW type)

$$\epsilon_{ij} \operatorname{Tr}[U^{\dagger}(w_{\perp})\partial_{i}U(w_{\perp})U^{\dagger}(z_{\perp})\partial_{j}U(z_{\perp})]$$

Work in the MV model cf. Jamal-Jalilian, Kovner, McLerran, Weigert (1997)

$$k_{\perp}^{2} \frac{C_{g}^{WW}(x,k_{\perp})}{M^{2}} = -f_{g}^{WW}(x,k_{\perp}) - \frac{C_{F}}{\pi\alpha_{s}x} \int \frac{d^{2}b_{\perp}d^{2}r_{\perp}}{(2\pi)^{3}} e^{-ik_{\perp}\cdot r_{\perp}} \partial_{i}^{r} D(r_{\perp}) \partial_{i}^{r} \left(\frac{1 - e^{\frac{N_{c}}{C_{F}}D(r_{\perp})}}{D(r_{\perp})}\right)$$
$$C_{g}^{WW}(x) = -G(x)$$

 $C_g^{\rm WW}(x)=C_g^{\rm dip}(x)\,\,{\rm exactly}\,{\rm for}\,{\rm any}\,\,{\mathcal X}$

cf. YH, Nakagawa, Xiao, Yuan, Zhao (2016) $L_g^{\rm dip}(x) = L_g^{\rm WW}(x)$

Quark spin-orbit coupling at small-x

$$\int \frac{d^3z}{2(2\pi)^3} e^{ixP^+z^- - ik_\perp \cdot z_\perp} \langle p' | \bar{\psi}(-z/2) \gamma^+ \gamma_5 \Psi_{\pm} \psi(z/2) | p \rangle = -i \frac{\epsilon_{ij} k_\perp^i \Delta_\perp^j}{M^2} C_q(x,\xi,k_\perp,\Delta_\perp) \langle p' | \bar{\psi}(-z/2) \gamma^+ \gamma_5 \Psi_{\pm} \psi(z/2) | p \rangle$$

$$\frac{C_q(x,k_{\perp})}{M^2} = \frac{N_c S_{\perp}}{8\pi^4 x k_{\perp}^2} \int d^2 k_{g\perp} (k_{\perp} - k_{g\perp}) \cdot k_{\perp} \frac{\ln \frac{k_{\perp}^2}{(k_{\perp} - k_{g\perp})^2}}{k_{\perp}^2 - (k_{\perp} - k_{g\perp})^2} \frac{\langle p | \left(\frac{1}{N_c} \operatorname{Tr} U U^{\dagger} - 1\right) (k_{g\perp}) | p \rangle}{\langle p | p \rangle}$$

$$C_q(x) = -\frac{1}{2}q(x)$$

 $-\frac{1}{2} \times 1 = -\frac{1}{2}$ times the number of quarks

Q

Linearly polarized gluons

Small-x gluons are Weiszacker-Williams fields (equivalent photon approximation, boosted Coulomb field) of large-x quarks

McLerran, Venugopalan (1993)

Electric & magnetic field confined in the transverse plane.

Soft gluons are linearly polarized

 $\frac{1}{\sqrt{2}} \left(|+\rangle_s + |-\rangle_s \right), \qquad \frac{1}{\sqrt{2}i} \left(|+\rangle_s - |-\rangle_s \right)$

Quantum entanglement of spin and OAM

Implement perfect spin-orbit anti-correlation

`Bell states'

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle_{s}|-\rangle_{l} + |-\rangle_{s}|+\rangle_{l} \right), \qquad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}i} \left(|+\rangle_{s}|-\rangle_{l} - |-\rangle_{s}|+\rangle_{l} \right)$$

Maximally entangled state realized on each soft gluon!

$$\langle S^z \rangle = \langle L^z \rangle = 0$$
 but $\langle S^z L^z \rangle = -1$

True nature of the system encoded in correlations

Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials

eral relativity, and superresolution imaging. More recently, metamaterials have been suggested as a new platform for quantum optics. <u>We present the use of a dielectric metasurface to generate entan-</u>glement between the spin and orbital angular momentum of photons. We demonstrate the genera-

In QCD, spin-orbit entanglement is a default property of soft gluons!

QED example

Photon OAM

$$|\pm\rangle_l \sim e^{\pm i\phi}$$

e.g., Laguerre-Gaussian beam

$$|\Psi^+\rangle \sim (1,i)e^{-i\phi} + (1,-i)e^{i\phi} \sim (\cos\phi,\sin\phi)$$

$$|\Psi^{-}\rangle \sim -i\left((1,i)e^{-i\phi} - (1,-i)e^{i\phi}\right) \sim (-\sin\phi,\cos\phi)$$

Experimental observable

Quark and gluon GTMDs $G_{1,1}$ appeared in certain exclusive reactions, but no quantitative estimate made.

e.g., double quarkonia production in pp

Boussarie, YH, Xiao, Yuan (2017)

$$\int_{0}^{2\pi} \frac{d\phi}{2\pi} \frac{d\sigma(\chi_{1},\chi_{0})}{dY_{1}dY_{2}d^{2}\mathbf{K}d\boldsymbol{\Delta}^{2}} = \frac{3\alpha_{s}^{4}x^{2}\mathbf{K}^{2}}{32m_{1}^{9}m_{2}^{7}N_{c}^{4}(N_{c}^{2}-1)^{2}}x_{1}x_{2}\mathcal{F}_{g,g}(x_{1},x_{2})\langle\mathcal{O}_{\chi_{1}}(^{3}P_{1}^{1})\rangle\langle\mathcal{O}_{\chi_{0}}(^{3}P_{0}^{1})\rangle \\ \times \left[\left(\mathcal{G}_{1}+\frac{\mathbf{K}^{2}}{2M^{2}}\mathcal{G}_{2}\right)^{2}+\frac{\mathbf{\Delta}^{2}}{4\mathbf{K}^{2}}\left(\mathcal{G}_{1}^{2}+\frac{\mathbf{K}^{4}}{4M^{4}}(\mathcal{G}_{2}^{2}-8\mathcal{G}_{2}\mathcal{G}_{4}+8\mathcal{G}_{4}^{2})\right)\right]$$

Longitudinal double spin asymmetry in diffractive dijets

Bhattacharya, Boussarie, YH, (2022)

previously proposed as a signal of gluon OAM

 $L^z \sim b_\perp \times k_\perp$

conjugate to Δ_{\perp} proton recoil momentum

correlated with jet transverse momentum

 $d\sigma^{h_p h_l} \sim h_p h_l \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \operatorname{Re}(iA_L^{2*}A_T^{3i} - iA_T^{2i*}A_L^3)$

Spin, orbit, and spin-orbit

Cross section

$$\frac{d\sigma_{\rm DSA}}{dy dQ^2 d\phi_{l_{\perp}} dz dq_{\perp}^2 d^2 \Delta_{\perp}} = \frac{e_q^2 \alpha_{em}^2 \alpha_s^2 y}{2\pi^3 Q^2 N_c} \frac{\xi (1+\xi) |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})}{z\overline{z} (W^2 + Q^2) (W^2 - M_J^2) (q_{\perp}^2 + \mu^2)^2} \operatorname{Re}(\Sigma_L + \Sigma_O + \Sigma_h + \Sigma_C)$$

GPD moments with third pole at $x=\pm\xi$

$$\mathcal{H}_{g}^{(3)}(\xi) = \int_{-1}^{1} dx \frac{\xi^{4} H_{g}(x,\xi)}{(x^{2} - \xi^{2})^{3}},$$

 \rightarrow Potential factorization breaking

Proportional to $(z - \bar{z})^2$

Focus on the region $z \approx \bar{z}$

$$\Sigma_{L} = -\left(\mathcal{F}_{g}^{(1)*} + 4(1-\beta)\mathcal{F}_{g}^{(2)*}\right)\mathcal{L}_{g}^{(2)} + (z-\bar{z})^{2}\mathcal{F}_{g}^{(1)*}\left(\mathcal{L}_{g}^{(2)} + 8(1-\beta)\mathcal{L}_{g}^{(3)}\right)$$

$$\Sigma_{h} = (1-\xi)\mathcal{F}_{g}^{(1)*}\tilde{\mathcal{F}}_{g}^{(2)} - (1-\xi)(z-\bar{z})^{2}\left[8(1-\beta)\left(\mathcal{F}_{g}^{(1)*} + 4(1-\beta)\mathcal{F}_{g}^{(2)*}\right)\tilde{\mathcal{F}}_{g}^{(3)}\right)$$

$$+\left((4\beta-3)\mathcal{F}_{g}^{(1)*} + 16(1-\beta)\mathcal{F}_{g}^{(2)*} + 32(1-\beta)^{2}\mathcal{F}_{g}^{(3)*}\right)\tilde{\mathcal{F}}_{g}^{(2)}\right],$$

$$\Sigma_{C} = 2(1-\beta)\left(2\mathcal{C}_{g}^{(2)*}\tilde{\mathcal{F}}_{g}^{(2)} + \xi\mathcal{C}_{g}^{\prime(2)*}\tilde{\mathcal{E}}_{g}^{(2)}\right)$$

Prediction at the EIC (revised)

Bhattacharya, Boussarie, YH (2024)

$$Q^2 = 2.7 \,\mathrm{GeV}^2$$
 $Q^2 = 4.8 \,\mathrm{GeV}^2$ $Q^2 = 10 \,\mathrm{GeV}$

Semi-inclusive diffractive DIS (SIDDIS)

Conclusions

Quark and gluon spin-orbit correlations analyzed in QCD

New momentum sum rule, analog of Jaffe-Manohar spin sum rule

Novel emergent property of dense systems of gluons uncovered Quantum entanglement between spin and OAM \rightarrow Connection to QIS? EIC?

> **Finding 1:** An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?