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Dilute-Dense Scattering within CGC
High energy scattering within the CGC relies on two pillars:

Semi-classical approximation :

dense target is represented by strong semiclassical gluon field Aµ
a(x) = O (1/g) at

weak coupling g with finite support.

Eikonal approximation:

keeping only the leading power terms in the high energy limit.

High energy limit can be achieved by boosting the target along x−:

Aµ
a(x) 7→


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)
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Eikonal approximation

The Eikonal approximation can be understood as the limit of infinite boost of Aµ(x):

Static limit; background field Aµ(x) is taken to be independent of x− due to Lorentz
time dilation
(no longitudinal momentum exchange between the target and the projectile during the
interaction)

Shockwave limit: background field Aµ(x) is Lorentz contracted.

⇒ interaction between the projectile partons and target occurs instantly in x+ (No
transverse motion within the target)

There is a strong hierarchy between the components of the background field Aµ under
a boost of parameter γt along the ”−” direction:

A− = O(γt) ≫ A⊥ = O(1) ≫ A+ = O(1/γt)

and only A− is taken into account.

In the Eikonal limit the background field takes the form:

Aµ(x+, x−,x) ≃ δµ−A−
a (x

+x) ∝ δ(x+)

•
(
gA−(x+,x)

)n
is resummed to all orders which leads to Wilson lines along x+
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Next-to-Eikonal corrections to the CGC

Next-to-Eikonal (NEik) corrections are of order 1/γt at the level of the boosted
background field.

⋆ NEik corrections arise from relaxing either of the three approximations:

1 Interactions with the suppressed components of background field (transverse comp. A⊥).

2 Finite longitudinal width of the target is included by going beyond the shockwave limit
⇒ transverse motion of the parton in the medium.

3 x− dependence of Aµ(x) is accounted for by going beyond the static limit and it is treated
as gradient expansion around a common x− value:

∂−A−(x)
A−(x)

= O(1/γt)

⋆ An extra source for NEik corrections:

• interaction via t-channel quark exchange (interaction with quark background).

see also Kovchegov et al. (2016-2024), Chirilli (2019)
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Power counting for the quark background field Ψ(z)
Under a boost of the target of parameter γt along the ”−” direction, a current associated
with the target should behave as

J−(z) ∝ γt , J j(z) ∝ (γt)
0 , J+(z) ∝ (γt)

−1 ,

The quark background field of the target can be split as Ψ(z) = Ψ(−)(z) + Ψ(+)(z), with

Ψ(−)(z) ≡ γ+γ−

2
Ψ(z) , Ψ(+)(z) ≡ γ−γ+

2
Ψ(z) .

Then, the components of the background quark current write

Ψ(z) γ−Ψ(z) = Ψ(−)(z) γ−Ψ(−)(z),

Ψ(z) γj Ψ(z) = Ψ(−)(z) γj Ψ(+)(z) + Ψ(+)(z) γj Ψ(−)(z),

Ψ(z) γ+Ψ(z) = Ψ(+)(z) γ−Ψ(+)(z) .

Under a boost of the target, the projections Ψ(−)(z) and Ψ(+)(z) should thus scale as

Ψ(−)(z) ∝ (γt)
1
2 , Ψ(+)(z) ∝ (γt)

− 1
2 ,

⇒ we keep only the leading components Ψ(−)(z) of Ψ(z)
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More about NEik corrections beyond the static approx

Effect of relative z− dependence of A− insertions along one propagator:

A−(z− +∆z−)−A−(z−) ≃ ∆z− ∂−A−(z−)

Slow z− dependence from time dilation:

∂−A− ∝ 1

γt
A−

Small ∆z− displacement of the trajectory
within the target width L+:

∆z− ∼ p−

p+
∆z+ ≤ p−

p+
L+ = O

(
1

γt

) L+

∆z+

x+x−

∆z−

A−(z)

A−(z + ∆z)

p

Double power suppression, beyond static approx and beyond shockwave approx:

⇒ NNEik effect within a single propagator!
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More about NEik corrections beyond the static approx

Effect of relative z− dependence of A− insertions along one propagator is NNEik.

However, dependence on average z− is
suppressed only once.

⇒ Use Wilson lines with overall z− dependence

∂−UF (+∞,−∞; z, z−) ∝ 1

γt
UF (+∞,−∞; z, z−)

→ Accounts for NEik effects beyond static
approx

In particular: NEik corrections induced by the

difference in z− between different Wilson lines.

x+x−

UF (+∞, −∞; z, z−)

p
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NEik quark propagator through a gluon background field

Propagator from y before the target to x after the target:

SF (x, y) =

∫
dq+d2q

(2π)3

∫
dk+d2k

(2π)3
θ(q+) θ(k+) e−ix·q̌ eiy·ǩ

(/̌q +m)

2q+
γ+

×
∫

d2z e−iz·(q−k)
{∫

dz−eiz
−(q+−k+) UF

(
+∞,−∞; z, z−

)
−2πδ(q+−k+)

(qj+kj)

2(q++k+)

∫
dz+

[
UF

(
+∞, z+; z, 0

)←→
Dzj UF

(
z+,−∞; z, 0

)]
−i 2πδ(q

+−k+)

(q++k+)

∫
dz+

[
UF

(
+∞, z+; z, 0

)←−−
Dzj
−−→
Dzj UF

(
z+,−∞; z, 0

)]
+
2πδ(q+−k+)

(q++k+)

[γi, γj ]

4

∫
dz+ UF

(
+∞, z+; z, 0

)
gt·Fij(z

+, z, 0)UF
(
z+,−∞; z, 0

)} (/̌k +m)

2k+

+NNEik

Altinoluk, Beuf, Czajka, Tymowska (2021); Altinoluk, Beuf (2022)

UF (x+, y+; z, z−) ≡ 1+

+∞∑
N=1

1

N !
P+

[
−ig

∫ x+

y+

dz+ t·A−(z)

]N

Generalized Eikonal contribution: also includes the NEik non-static corrections:
overall z− dependence of the Wilson line.
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NEik quark propagator through a gluon background field

Propagator from y before the target to x after the target:
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Altinoluk, Beuf, Czajka, Tymowska (2021); Altinoluk, Beuf (2022)

UF (x+, y+; z, z−) ≡ 1+

+∞∑
N=1

1

N !
P+

[
−ig

∫ x+

y+

dz+ t·A−(z)

]N

NEik contributions beyond the shockwave approx or due to A⊥.
Last term: quark helicity coupling with longitudinal chromomagnetic field of the target Fij .
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Full NEik quark propagator through a gluon background field

Compact notations for the decorated Wilson lines:

U(1)
F ;j

(z) =

∫
dz

+ UF
(
+∞, z

+
; z

)←−→D
zj
UF

(
z
+
,−∞; z

)
U(2)
F

(z) =

∫
dz

+ UF
(
+∞, z

+
; z

)←−−D
zj
−−→D

zj
UF

(
z
+
,−∞; z

)
U(3)
F ;ij

(z) =

∫
dz

+ UF
(
+∞, z

+
; z

)
gt·Fij(z

+
, z)UF

(
z
+
,−∞; z

)

Propagator from y before the target to x after the target:

SF (x, y) =

∫
dq+d2q

(2π)3

∫
dk+d2k

(2π)3
θ(q

+
) θ(k

+
) e

−ix·q̌
e
iy·ǩ (/̌q + m)

2q+
γ
+

∫
d
2
z e

−iz·(q−k)

×
{∫

dz
−
e
iz−(q+−k+) UF

(
z, z

−
)
+2πδ(q

+−k
+
)

[
−

(qj+kj)

2(q++k+)
U(1)
F ;j

(z)

−
i

(q++k+)
U(2)
F

(z) +
[γi, γj ]

4(q++k+)
U(3)
F ;ij

(z)

]}
(/̌k + m)

2k+
+ NNEik
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Full NEik quark propagator through a gluon background field

Compact notations for the decorated Wilson lines:

U(1)
F ;j

(z) =

∫
dz

+ UF
(
+∞, z

+
; z

)←−→D
zj
UF

(
z
+
,−∞; z

)
U(2)
F

(z) =

∫
dz

+ UF
(
+∞, z

+
; z

)←−−D
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zj
UF
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z
+
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∫
dz

+ UF
(
+∞, z

+
; z

)
gt·Fij(z

+
, z)UF

(
z
+
,−∞; z

)

Alternative expressions for the decorated Wilson lines:

U(1)
F ;j

(z) = − 2

∫
dz

+
z
+ UF (+∞, z

+
; z)[−igt · F −

j (z
+
, z)]UF (z

′+
,−∞; z)

U(2)
F

(z) =

∫
dz

+
∫

dz
′+

(z
+−z

′+
) θ(z

+−z
′+

)UF (+∞, z
+
, z)[−igt · F −

j (z
+
, z)]

× UF (z
+
, z

′+
; z)[−igt · F −

j (z
′+

, z)]UF (z
′+

,−∞; z)

Thanks to the relation:

∂µUF (x
+
, y

+
; z, z

−
) + igt·Aµ(x

+
, z, z

−
)UF (x

+
, y

+
; z, z

−
)− igUF (x

+
, y

+
; z, z

−
)t·Aµ(y

+
, z, z

−
)

= −ig

∫ x+

y+
dz

+UF (x
+
, v

+
; z, z

−
)t·F −

µ (z)UF (v
+
, y

+
; z, z

−
) for µ ̸= +
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Applications with NEik quark propoagator

quark-target scattering (unpolarized cross-section & quark-helicity asymmetry)
Altinoluk, Beuf, Czajka, Tymowska (2021)

DIS dijet production at NEik accuracy
Altinoluk, Beuf, Czajka, Tymowska (2023)

Back-to-back limit and relation with gluon TMDs - See Guillaume’s talk

Weak field limit and numerical analysis - See Pedro’s talk

quark-gluon dijets in DIS at NEik accuracy
Altinoluk, Armesto, Beuf (2023)

Inclusive DIS and SIDIS at NEik accuracy - See Swaleha’s talk
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Gluon propagator - basics

Gluon propagator in background field Aµ(x)

Gµν
F (x, y)αβ = Gµν

0,F (x, y)αβ + δGµν
F (x, y)αβ

free propagator + corrections due to interactions
with the background field

vacuum gluon propagator in momentum space:

G̃µν
0,F (p) =

i

p2 + iϵ

[
−gµν +

pµην + ηµpν

p · η

]

Corrections:

at the (generalized) eikonal order (with z− dependence)

δGµν
F

∣∣∣
(g)Eik

≡ δGµν
F

∣∣∣
(g)Eik

pure A−,z−

at the next-to-eikonal order

δGµν
F

∣∣∣
NEik

≡ δGµν
F

∣∣∣
NEik

pure A−
+ δGµν

F

∣∣∣
NEik

single A⊥
+ δGµν

F

∣∣∣
NEik

double A⊥ loc.
+ δGµν

F

∣∣∣
NEik

double A⊥,non−loc.
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Gluon propagator in the eikonal limit

Gµν
F (x, y)|(g)Eik = Gµν

0,F (x, y) + δGµν
F (x, y)|pureA−,z−

In eikonal limit, the gluon already interacts with arbitrarily many A− fields

k = p0 p1

z1

A−(z1) A−(z2)

z2

p2

zN

A−(zN)

pN−1 q = pN

Eikonal interactions with the medium resummed into the Wilson lines:

UA(x
+, y+; z, z−) ≡ 1+

+∞∑

N=1

1

N !
P+

[
−ig

∫ x+

y+
dz+ T ·A−(z+, z, z−)

]N
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Gluon propagator in the eikonal limit
In eikonal limit, the gluon already interacts with arbitrarily many A− fields
For generic x and y, with notations k ≡ (k+,k), and ǩ on-shell version of k:

Now, only taking into account contribution from -1 multiple part of above equation to
simplify it, we have,

�Gµ⌫
F (x, y)|�1part =

Z
d3q

(2⇡)3
e�ix·q̌ ✓(q+)

Z
d3k

(2⇡)3
eiy·ǩ ✓(k+)

1

q+ + k+

⇥

� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)

�

⇥
Z

d2z?e
�i(q?�k?)z?

Z
dz� ei(q+�k+)z�) (�1)

As z� dependence is only in phase factor, taking integration over z�, we get,

�Gµ⌫
F (x, y)|�1part =

Z
d3k

(2⇡)3
e�i(x�y)·ǩ (�1)

2k+


� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µǩ⌫

k+

�
(14)

Now, the gluon propagator in vacuum in position space is given as,

Gµ⌫
0,F (x, y) =

Z
d4p

(2⇡)4
e�i(x�y)p

"
i

p2 + i✏

✓
�gµ⌫ +

pµ⌘⌫ + ⌘µp⌫

p · ⌘

◆#

But, we can write,

"
i

p2 + i✏

✓
�gµ⌫ +

pµ⌘⌫ + ⌘µp⌫

p · ⌘

◆#
=

"
i

p2 + i✏

✓
�gµ⌫ +

p̌µ⌘⌫ + ⌘µp̌⌫

p+

◆#
+

⌘µ⌘⌫

p+p+

Therefore, using (??) we can take integration over p�, we get,

Gµ⌫
0,F (x, y) =

(Z
d3p

(2⇡)3

e�i(x�y)·p̌

2p+

"✓
✓(p+)✓(x+ � y+)� ✓(�p+)✓(y+ � x+)

◆#

⇥
✓
� gµ⌫ +

p̌µ⌘⌫ + ⌘µp̌⌫

p+

◆)
+ i�2(x? � y?) �(x+ � y+)⌘µ⌘⌫

 Z
dp+

2⇡

e�i(x��y�)p+

p+p+

�

(15)
Now, if we compare this obtained gluon propagator in a vacuum with medium correction

(??), we can see that part of the vacuum propagator gets canceled with -1 multipled part of
(??).
) We can write total gluon propagator at generalized eikonal order as,

Gµ⌫
F (x, y)|Eik,z� = Gµ⌫

0,F (x, y) + �Gµ⌫
F (x, y)|pureA�,z� (16)

Gµ⌫
F (x, y)|Eik,z� = i�2(x? � y?) �(x+ � y+)⌘µ⌘⌫

 Z
dk+

2⇡

e�i(x��y�)k+

k+k+

�

+

(Z
d3q

(2⇡)3

Z
d3k

(2⇡)3

e�ix·q̌ eiy·ǩ

q+ + k+


� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)

�

⇥
Z

d2z? e�i(q?�k?)z?

Z
dz� ei(q+�k+)z�

) "
✓(x+ � y+)✓(q+)✓(k+) UA(x+, y+; z?, z

�)

� ✓(y+ � x+)✓(�q+)✓(�k+) U †
A(x+, y+; z?, z

�)

#

This is an expression of the gluon propagator for any x+ and y+ both inside or outside the
medium in a dynamic A� background field in eikonal approximation, where we have relaxed
static limit of the background field.

9

In the strict Eikonal limit:

2.3 Total Gluon Propagator at Strict Eikonal Limit

In this subsection, we want to compute the gluon propagator in the gluon background field
at a strict eikonal limit. For that, we have to Taylor expand the Wilson line around z� = 0
and consider only first term of expansion(zeroth order). After that numerator will become z�

independent, hence we can perform z� integration trivially, we get,

Gµ⌫
F (x, y)|Eik = i�2(x? � y?) �(x+ � y+)⌘µ⌘⌫

 Z
dk+

2⇡

e�i(x��y�)k+

k+k+

�

+

(Z
d3q

(2⇡)3

Z
d3k

(2⇡)3

e�ix·q̌ eiy·ǩ

2k+


2⇡ �(k+ � q+)

�

⇥

� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)

�  Z
d2z? e�i(q?�k?)z?

�)

⇥
"
✓(x+ � y+) ✓(k+) UA(x+, y+; z?)� ✓(y+ � x+) ✓(�k+) U †

A(x+, y+; z?)

#

(18)

This is an expression of the gluon propagator for any x+ and y+ both inside or outside the
medium in an A�((z)) background field in strict eikonal approximation.

2.4 NEik contributions to Gluon Propagator

To go beyond eikonal approximation, we follow a similar strategy as [?], but in the case of
gluon. But also, we will include the e↵ect of the dynamics of the target. for that purpose, we
consider the gluon background field to be x� dependent. As mentioned before, we add two
kinds of contributions:

1. Due to pure A� background field (considering finite width of the target)

2. Due to interaction with the transverse component of the target

2.4.1 Due to Pure A- Background field: Finite Width E↵ect

MAKE TEXT SUPERSCRIPT IN THE TITLE!!!!!
Maybe put detailed derivation in appendex

To compute the Next-to-eikonal contributions to the gluon propagator, we have to take into
account the finite width z+ of the gluon background field. For the sake of simplicity, we will
only focus on the case x+ > y+, starting from the equation (11) one obtains,

�Gµ⌫
F (x, y)|pureA�,z� =

Z
d3q

(2⇡)3

Z
d3k

(2⇡)3

✓(q+)✓(k+)

q+ + k+


� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)

�

⇥
Z

dz� e�iq+(x��z�) e�ik+(z��y�)

+1X

N=1

 NY

n=1

Z
d3zn

�
Pn

NY

n=1

(�igA�(zn, z
�) · T )

�

⇥
 NY

n=0

✓(z+
n+1 � z+

n )

�
ei(x?�zN?)q? ei(z1?�y?)k? e

�i(x+�z+
N

)q2
?

2q+ e
�i(z+

1 �y+)k2
?

2k+

⇥
N�1Y

n=1

Z
d2pn?
(2⇡)2

ei(zn+1?�zn?)pn? e
�i(z+

n+1�z+
n )p2

n?
2p+

�
+ NNEik

11
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Subeikonal corrections: Brownian motion in a pure A− background
Full next-to-eikonal gluon propagator:

δG
µν
F

∣∣∣∣NEik
= G

µν
F

∣∣∣∣Eik
+ δG

µν
F

∣∣∣∣NEik

pure A−︸ ︷︷ ︸
G

µν
F

∣∣∣∣
pure A−

+ δG
µν
F

∣∣∣∣NEik

single A⊥
+ δG

µν
F

∣∣∣∣NEik

double A⊥, loc
+ δG

µν
F

∣∣∣∣NEik

double A⊥,non−loc.

From now on, always x+ > L+/2 and y+ < −L+/2 : gluon propagating through whole target

Gluon propagator in pure A− background field up to next-to-eikonal order for positive energy:

In above equation integration over z+ has non-trivial contribution only when [y+, x+] interval

overlap with medium


�L+

2
, L+

2

�
of the background field.

Now, we have to get rid of the remaining v+ factor in the above gluon propagator expression.
For x+ > y+ case, when x+ > L+

2
and y+ < �L+

2
, we can write,

v+ =
1

2

 Z v+

z+
min

dz+ �
Z z+

max

v+

dz+

�
+

(z+
max + (z+

min)

2

But here, z+
max = L+

2
and z+

min = �L+

2

) v+ =
1

2

 Z v+

�L+

2

dz+ �
Z L+

2

v+

dz+

�

Z
d2z? e�iz?(q?�k?)

Z L+

2

�L+

2

dv+ v+ UA

�L+

2
, v+; z?, z

��

� igT · d

dzj
A�(v+, z?, z

�)

�
UA

�
v+,�L+

2
; z?, z

��

=
1

2

Z
d2z? e�iz?(q?�k?)

Z L+

2

�L+

2

dz+

"
d

dzj
UA

�L+

2
, z+; z?, z

��
�
UA

�
z+,�L+

2
; z?, z

��

�1

2

Z
d2z? e�iz?(q?�k?)

Z L+

2

�L+

2

dz+ UA

�L+

2
, z+; z?, z

��
"

d

dzj
UA

�
z+,�L+

2
; z?, z

��
�

= �1

2

Z
d2z? e�iz?(q?�k?)

Z L+

2

�L+

2

dz+

"
UA

�L+

2
, z+; z?, z

��
��!
d

dzj
�
 ��
d

dzj
UA

�
z+,�L+

2
; z?, z

��
#

Using the above-obtained equations in the case of the gluon propagator through the whole
medium for x+ > L+

2
and y+ < �L+

2
, we get,

�Gµ⌫
F (x, y)|pureA� =

Z
d3q

(2⇡)3

Z
d3k

(2⇡)3

✓(q+)✓(k+)

q+ + k+
e�ix·q̌ eiy·ǩ

✓
� gµ⌫ +

ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)

◆

⇥
Z

dz� e�iz�(q+�k+)

Z
d2z? e�iz?(q?�k?)

(
UA

✓
L+

2
,�L+

2
; z?, z

�
◆
� 1

�

� qj + kj

2(q+ + k+)

Z L+

2

�L+

2

dz+

"
UA

✓
L+

2
, z+; z?, z

�
◆��!

d

dzj
�
 ��
d

dzj
UA

✓
z+,�L+

2
; z?, z

�
◆#

� i

q+ + k+

Z L+

2

�L+

2

dz+ UA

✓
L+

2
, z+; z?, z

�
◆ ��

d

dzj

��!
d

dzj
UA

✓
z+,�L+

2
; z?, z

�
◆)

+ NNEik

(20)
In the above expression take into account that corresponding derivatives are acting only on

Wilson lines and not on any phase factor! Also, remember this property of Wilson line that,

UA

✓
x+, y+; z?, z

�
◆

= UA

✓
x+,

L+

2
; z?, z

�
◆

UA

✓
L+

2
,�L+

2
; z?, z

�
◆

UA

✓
� L+

2
, y+; z?, z

�
◆

and if we consider x+ > L+

2
and y+ < �L+

2
, then UA

✓
x+, L+

2
; z?, z�

◆
�! 1 and

UA

✓
� L+

2
, y+; z?, z�

◆
�! 1

13

Analog to earlier results on the gluon propagator with subeikonal corrections:
Altinoluk, Armesto, Beuf, Martinez, Salgado, JHEP 1407, 068 (2014)

Altinoluk, Armesto, Beuf, Moscoso, JHEP 1601, 114 (2016)
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Subeikonal corrections: single A⊥ insertion
Full next-to-eikonal gluon propagator:

Gµν
F

∣∣∣∣NEik

= Gµν
F

∣∣∣∣Eik

+ δGµν
F

∣∣∣∣NEik

pure A−
+ δGµν

F

∣∣∣∣NEik

single A⊥

+ δGµν
F

∣∣∣∣NEik

double A⊥, loc.

+ δGµν
F

∣∣∣∣NEik

double A⊥,non−loc.

Note that, if we only consider the first two lines of expression, they are similar to the
equation for the gluon propagator at eikonal order. So, indeed remaining part of the expression
is NEik order.

2.4.2 Due to interaction with Transverse component of the target

The corrections to the gluon propagator due to interaction with other components of the back-
ground field can be obtained by perturbation theory in position space. In this case also we will
use a similar method as one described in [?]. In the case of the gluon propagator, as gluons
interact with themselves we will have three types of contributions at NEik accuracy due to
interaction with the transverse component of the target.

1. Due to single three gluon vertex

2. Due to a four-gluon vertex

3. Due to double three gluon vertices at same z+

2.4.2.1 Due to single three gluon vertex:

A insertion.pdf

y+
x+

z

Ai

�L+

2
L+

2

Figure 2: Scattering of gluon on a pure A� background field with insertion of single transverse
component, three gluon vertex in medium

To obtain this contribution we will use the following type of expression, from the diagram
2, we have,

�Gµ⌫
F ab(x, y)|singleA? =

Z
d4z


Gµµ0

F (x, z)|Eik

�

aa0


X3g

µ0⌫0(z)

�a0b0 
G⌫0⌫

F (z, y)|Eik

�

b0b

(21)

Here, a,b,a’,b’ represent color indexes and, where X3g
µ0⌫0(z) is insertion factor given as

X3g
µ0⌫0(z) = �gfabc

"⇣
igµ0⌫0

 ��
d

dzj
Aj

c(z)
⌘
� igµ0⌫0 Aj

c(z)

��!
d

dzj
� 2igj

⌫0 Aj
c(z)

��!
d

dzµ0
� igj

⌫0

 ��
d

dzµ0

⇣
Aj

c(z)
⌘

+ 2igj
µ0

 ��
d

dz⌫0

⇣
Aj

c(z)
⌘

+ igj
µ0A

j
c(z)

��!
d

dz⌫0

# (22)

This insertion factor was obtained from three gluon vertex factor and using Feynman rules.
In equation (20), the integration in z+ amounts to L+ factor for L+ ! 0. Also, the insertion

14

with X3g
µ′ν′(z) is the insertion factor obtained from three gluon vertex:

Note that, if we only consider the first two lines of expression, they are similar to the
equation for the gluon propagator at eikonal order. So, indeed remaining part of the expression
is NEik order.

2.4.2 Due to interaction with Transverse component of the target

The corrections to the gluon propagator due to interaction with other components of the back-
ground field can be obtained by perturbation theory in position space. In this case also we will
use a similar method as one described in [?]. In the case of the gluon propagator, as gluons
interact with themselves we will have three types of contributions at NEik accuracy due to
interaction with the transverse component of the target.

1. Due to single three gluon vertex

2. Due to a four-gluon vertex

3. Due to double three gluon vertices at same z+

2.4.2.1 Due to single three gluon vertex:

A insertion.pdf

y+
x+

z

Ai

�L+

2
L+

2

Figure 2: Scattering of gluon on a pure A� background field with insertion of single transverse
component, three gluon vertex in medium

To obtain this contribution we will use the following type of expression, from the diagram
2, we have,

�Gµ⌫
F ab(x, y)|singleA? =

Z
d4z


Gµµ0

F (x, z)|Eik

�

aa0


X3g

µ0⌫0(z)

�a0b0 
G⌫0⌫

F (z, y)|Eik

�

b0b

(21)

Here, a,b,a’,b’ represent color indexes and, where X3g
µ0⌫0(z) is insertion factor given as

X3g
µ0⌫0(z) = �gfabc

"⇣
igµ0⌫0

 ��
d

dzj
Aj

c(z)
⌘
� igµ0⌫0 Aj

c(z)

��!
d

dzj
� 2igj

⌫0 Aj
c(z)

��!
d

dzµ0
� igj

⌫0

 ��
d

dzµ0

⇣
Aj

c(z)
⌘

+ 2igj
µ0

 ��
d

dz⌫0

⇣
Aj

c(z)
⌘

+ igj
µ0A

j
c(z)

��!
d

dz⌫0

#

This insertion factor was obtained from three gluon vertex factor and using Feynman rules.
In equation (21), the integration in z+ amounts to L+ factor for L+ ! 0. Also, the insertion

14

k
y A− x

q

Aj(z)

z
A−
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Subeikonal corrections: single A⊥ insertion
Full next-to-eikonal gluon propagator:

Gµν
F

∣∣∣∣NEik

= Gµν
F

∣∣∣∣Eik

+ δGµν
F

∣∣∣∣NEik

pure A−
+ δGµν

F

∣∣∣∣NEik

single A⊥

+ δGµν
F

∣∣∣∣NEik

double A⊥,loc.

+ δGµν
F

∣∣∣∣NEik

double A⊥,non−loc.

k
y A− x

q

Aj(z)

z
A−

Subeikonal correction due to an interaction with A⊥ (three gluon vertex):

factor is independent of L+ in that limit. Hence, the expression (21) seems to start at next-
to-eikonal order. But if we take into account the instantaneous contribution to the gluon
propagator at eikonal order, the delta function makes the integration in z+ trivial, and then
the transverse component of the target is taken at z+ = x+ or z+ = y+, and this is possible
only if x+ or y+ belongs to the support [L+/2,�L+/2], To avoid these kinds of complications,
we will focus on the case, where x+ > y+ and both x+ and y+ don’t belong to the support such
that x+ > L+/2 and y+ < �L+/2 (We are computing previously mentioned cases later on in
this article ). Then in this case (21) starts at NEik accuracy, and we can obtain contribution
for the case of interaction with a single transverse component of the background field.

�Gµ⌫
F ab(x, y)|singleA? = g

Z
d3z

Z
d3q

(2⇡)3

e�ix·q̌

2q+
✓(x+ � z+)✓(q+)

Z
d3k

(2⇡)3

eiy·ǩ

2k+
✓(k+)

Z
dz�e�iz�(q+�k+)

⇥
h
UA(x+, z+; z?, z

�)
i

aa0
e�iq?z?

(
2

"✓
gµjg⌫i � ⌘µg⌫iqj

q+
� gµjki⌘⌫

k+
+

⌘µ⌘⌫kiqj

q+k+

◆

���
✓

gµigj⌫ � ⌘µqigj⌫

q+
� gµikj⌘⌫

k+
+

⌘µ⌘⌫qikj

q+k+

◆# �
d

dzi

�
T · Aj(z)

�
+
�
T · Aj(z)

��!d
dzi

�

+++


gµ⌫ � ⌘µq̌⌫

q+
� ǩµ⌘⌫

k+
+

⌘µ⌘⌫

q+k+
(q̌ · ǩ)

� ��
d

dzj
(T · Aj(z))�

�
T · Aj(z)

���!d
dzj

�)

⇥ eik?z?
h
UA(z+, y+; z?, z

�)
i

b0b
✓(z+ � y+) + NNEik

We have contracted the indices using the algebra of light-cone coordinates to obtain this
expression. We have used the relation T b

ac = ifabc, fabc ⌘ structure factor, where in the case
of gluons, T is adjoint of generators.
Also, while calculating above expression,

Z
dz+

Z
dz�@z� UA(z+, y+; z?, z

�)

this kind of expression belongs to NNEik order, as suppression of 1/�t comes from both z+

integration and derivation of Wilson lines with respect to z�. Therefore, we are neglecting
these kinds of terms in our computations.

NOT sure if I should add some main steps also, if yes which ones!!!!!!

2.4.2.2 Due to four gluon vertex

15

Reminder: x+ > L+/2 and y+ < −L+/2 : gluon propagating through the whole medium
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Subeikonal corrections: double A⊥ insertion
Full next-to-eikonal gluon propagator:

Gµν
F

∣∣∣∣NEik

= Gµν
F

∣∣∣∣Eik

+ δGµν
F

∣∣∣∣NEik

pure A−
+ δGµν

F

∣∣∣∣NEik

single A⊥

+ δGµν
F

∣∣∣∣NEik

double A⊥, loc.

+ δGµν
F

∣∣∣∣NEik

double A⊥,non−loc.

A insertion.pdf

y+
x+

z

Ai

�L+

2
L+

2

Aj

Figure 3: Scattering of gluon on a pure A� background field with insertion of double transverse
component, four gluon vertex in medium

For this contribution, we will use a similar logic as previous contribution. From the diagram
3, we can write the expression,

�Gµ⌫
F (x, y)|doubleA?, loc. =

1

2

Z
d4z


Gµµ0

F (x, z)|Eik

�

aa0


X4g

µ0⌫0(z)

�a0b0 
G⌫0⌫

F (z, y)|Eik

�

b0b

(24)

Here, half factors comes due to bose symmetry. Also, remember that x+ > z+ and z+ > y+

and where X4g
µ0⌫0(z) insertion factor obtained from four gluon vertex factor and using Feynman

rules, given as,

X4g
µ0⌫0(z) = �ig2


f ea0b0f edc (g⌫0igµ0j � g⌫0jgµ0i) + f eb0df ea0c (g⌫0µ0gij � g⌫0jgµ0i)

+ f eb0cf ea0d (g⌫0µ0gij � g⌫0igµ0j)

�
Ai

c(z) Aj
d(z)

To simplify calculations, we will try to write gluon four vertex factor using below two prop-
erties of the structure factor �(T c)ab = (T b)ac = ifabc; ([T c, T d])a0b0 = if cde(T e)a0b0

16

with X4g
µ′ν′(z) is the insertion factor obtained from four gluon vertex:

A insertion.pdf

y+
x+

z

Ai

�L+

2
L+

2

Aj

Figure 3: Scattering of gluon on a pure A� background field with insertion of double transverse
component, four gluon vertex in medium

For this contribution, we will use a similar logic as previous contribution. From the diagram
3, we can write the expression,

�Gµ⌫
F (x, y)|doubleA? =

1

2

Z
d4z


Gµµ0

F (x, z)|Eik

�

aa0


X4g

µ0⌫0(z)

�a0b0 
G⌫0⌫

F (z, y)|Eik

�

b0b

(24)

Here, half factors comes due to bose symmetry. Also, remember that x+ > z+ and z+ > y+

and where X4g
µ0⌫0(z) insertion factor obtained from four gluon vertex factor and using Feynman

rules, given as,

X4g
µ0⌫0(z) = �ig2


f ea0b0f edc (g⌫0igµ0j � g⌫0jgµ0i) + f eb0df ea0c (g⌫0µ0gij � g⌫0jgµ0i)

+ f eb0cf ea0d (g⌫0µ0gij � g⌫0igµ0j)

�
Ai

c(z) Aj
d(z)

To simplify calculations, we will try to write gluon four vertex factor using below two prop-
erties of the structure factor �(T c)ab = (T b)ac = ifabc; ([T c, T d])a0b0 = if cde(T e)a0b0

16

k
y A− x

q

Ai(z)

z
A−

Aj(z)
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Subeikonal corrections: double A⊥ insertion
Full next-to-eikonal gluon propagator:

Gµν
F

∣∣∣∣NEik

= Gµν
F

∣∣∣∣Eik

+ δGµν
F

∣∣∣∣NEik

pure A−
+ δGµν

F

∣∣∣∣NEik

single A⊥

+ δGµν
F

∣∣∣∣NEik

double A⊥, loc.

+ δGµν
F

∣∣∣∣NEik

double A⊥,non−loc.

k
y A− x

q

Ai(z)

z
A−

Aj(z)

Subeikonal correction due to an interaction with double A⊥-local (four gluon vertex):

=)

�Gµ⌫
F (x, y)|doubleA? =

1

2

Z
d4z

(Z
d3q

(2⇡)3

Z
d3k1

(2⇡)3

e�ix·q̌ eiz·ǩ1

2k+
1


2⇡ �(k+

1 � q+)

�

⇥

� gµµ0 +

ǩµ
1 ⌘

µ0

k+
1

+
⌘µq̌µ0

q+
� ⌘µ⌘µ0

q+k+
1

(q̌ · ǩ1)

�  Z
d2z1? e�i(q?�k1?)z1?

�

⇥ ✓(x+ � z+)✓(k+
1 ) UA(x+, z+; z1?, z

�)

)

aa0

⇥
(
� ig2

"
(
h
T · Ai(z), T · Aj(z)

i
a0b0

(g⌫0igµ0j � g⌫0jgµ0i)

+


T · Ai(z)

�

a0e


T · Aj(z)

�

eb0
(g⌫0µ0gij � g⌫0jgµ0i)

+


T · Aj(z)

�
T · Ai(z)

�
(g⌫0µ0gij � g⌫0igµ0j)

#)

⇥
(Z

d3q1

(2⇡)3

Z
d3k

(2⇡)3

e�iz·q̌1 eiy·ǩ

2k+


2⇡ �(q+

1 � k+)

� 
� g⌫0⌫ +

ǩ⌫0⌘⌫

k+
+

⌘⌫
0
q̌⌫1

q+
1

� ⌘⌫
0
⌘⌫

q+
1 k+

(q̌1 · ǩ)

� Z
d2z2? e�i(q1?�k?)z2?

�
✓(z+ � y+)✓(k+) UA(z+, y+; z2?, z

�)

)

b0b

Here for the third term in the second curly bracket, i and j indices are summed over locally,
hence exchanging those indices doesn’t impact total expression.
Also, we have relation,


T · Aj(z)

�
T · Ai(z)

�
=


T · Aj(z), T · Ai(z)

�
+


T · Ai(z)

�
T · Aj(z)

�

= �

T · Ai(z), T · Aj(z)

�
+


T · Ai(z)

�
T · Aj(z)

� (25)

Now, contracting indices and simplifying expressions using trivial algebra, we get, NEik cor-
rection to the gluon propagator for double insertion of the transverse component of the semi-
classical background field is,

�Gµ⌫
F ab(x, y)|doubleA?, loc. =

Z
d3q

(2⇡)3

e�ix·q̌

2q+
✓(x+ � z+)✓(q+)

Z
d3k

(2⇡)3

eiy·ǩ

2k+
✓(k+)

Z
dz� eiz�(q+�k+)

⇥
Z

d2z? e�i(q?�k?)z?

Z
dz+

⇣
ig2
⌘ h

UA(x+, z+; z?, z
�)
i

aa0

⇥
(h

T · Ai(z)
ih

T · Aj(z)
i
� gµ⌫gij +

ǩµ⌘⌫gij

k+
+

⌘µq̌⌫gij

q+
� ⌘µ⌘⌫gij

k+q+

�
ǩ · q̌

��

+

✓
� 2
h
T · Ai(z), T · Aj(z)

i
+
h
T · Ai(z)

ih
T · Aj(z)

i◆✓
gµ

i g⌫
j �

kjg
µ
i ⌘

⌫

k+
� ⌘µg⌫

j qi

q+
+

⌘µ⌘⌫kjqi

q+q+

◆)

⇥
h
UA(z+, y+; z?, z

�)
i

b0b
✓(z+ � y+) + NNEik

2.4.2.3 Due to double three gluon vertices at same z+
Make title superscript!! As gluon self-interact with itself, we have to take into account the
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Subeikonal corrections: double A⊥ insertion, instantaneous gluon
Full next-to-eikonal gluon propagator:

Gµν
F

∣∣∣∣NEik

= Gµν
F

∣∣∣∣Eik

+ δGµν
F

∣∣∣∣NEik

pure A−
+ δGµν

F

∣∣∣∣NEik

single A⊥

+ δGµν
F

∣∣∣∣NEik

double A⊥, loc.

+ δGµν
F

∣∣∣∣NEik

double A⊥,non−loc.

2.4.2.3 Due to double three gluon vertices at same z+
Make title superscript!! As gluon self-interact with itself, we have to take into account the
interaction of incoming gluon with a transverse component of the gluon background field, where
both the transverse components are localized in the longitudinal direction (have same z+) From
the fig. 4, we can see that we have to consider two three-gluon-vertices to calculate next-to
eikonal medium correction to the gluon propagator such that the gluon propagator between z0

and z00 has contribution only from the instantaneous part of the gluon propagator at eikonal
approximation. Ai and Aj will form three gluon vertices with propagator due to either y+ or
x+ and this instantaneous part of gluon propagator.
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Therefore, from the fig. 4, we can write a next-to-eikonal medium correction to the gluon
propagator such as,
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both the transverse components are localized in the longitudinal direction (have same z+) From
the fig. 4, we can see that we have to consider two three-gluon-vertices to calculate next-to
eikonal medium correction to the gluon propagator such that the gluon propagator between z0

and z00 has contribution only from the instantaneous part of the gluon propagator at eikonal
approximation. Ai and Aj will form three gluon vertices with propagator due to either y+ or
x+ and this instantaneous part of gluon propagator.
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Therefore, from the fig. 4, we can write a next-to-eikonal medium correction to the gluon
propagator such as,
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Where the insertion factor is the same as one used in the case of contribution coming due to
a single three-gluon vertex given by equation (22). Now substituting corresponding expressions
in the above equation and using relation like gj

µ00⌘
µ00 = gj

µ00g
µ00+ = gj+ = 0 to simplify the

expression, we get,
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Next-to-eikonal gluon propagator - full result
Full next-to-eikonal gluon propagator traversing the whole target (before to after):

can write total gluon propagator at NEik order traveling through the entire medium (classical
gluon background field) for the case x+ > y+ as:

Gµ⌫
F (x, y) = �Gµ⌫

F (x, y)|Eik,z� + �Gµ⌫
F (x, y)|NEik (28)

Where next-to-eikonal correction is written as,

�Gµ⌫
F (x, y) = �Gµ⌫

1,F (x, y) + �Gµ⌫
2,F (x, y) (29)

After collecting all the contributions and combining; they are given as,
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�Gµ⌫
1,F (x, y) =

Z
d3q

(2⇡)3

e�ix·q̌

2q+
✓(q+)

Z
d3k

(2⇡)3

eiy·ǩ
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in compact notation, we can write,
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with (generalized) eikonal contribution

can write total gluon propagator at NEik order traveling through the entire medium (classical
gluon background field) for the case x+ > y+ as:

Gµ⌫
F (x, y) = �Gµ⌫

F (x, y)|Eik,z� + �Gµ⌫
F (x, y)|NEik (28)

Where next-to-eikonal correction is written as,

�Gµ⌫
F (x, y) = �Gµ⌫

1,F (x, y) + �Gµ⌫
2,F (x, y) (29)
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Now, the next-to-eikonal corrections are:
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in compact notation, we can write,
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with NEik contributions

can write total gluon propagator at NEik order traveling through the entire medium (classical
gluon background field) for the case x+ > y+ as:

Gµ⌫
F (x, y) = �Gµ⌫

F (x, y)|Eik,z� + �Gµ⌫
F (x, y)|NEik (28)

Where next-to-eikonal correction is written as,

�Gµ⌫
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2,F (x, y) (29)
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eiy·ǩ ✓(k+)

1

q+ + k+

⇥

� gµ⌫ +
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Now, the next-to-eikonal corrections are:
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in compact notation, we can write,
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can write total gluon propagator at NEik order traveling through the entire medium (classical
gluon background field) for the case x+ > y+ as:

Gµ⌫
F (x, y) = �Gµ⌫

F (x, y)|Eik,z� + �Gµ⌫
F (x, y)|NEik (28)
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can write total gluon propagator at NEik order traveling through the entire medium (classical
gluon background field) for the case x+ > y+ as:
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F (x, y)|NEik (28)
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ǩµ⌘⌫

k+
+

⌘µq̌⌫

q+
� ⌘µ⌘⌫

q+k+
(q̌ · ǩ)
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in compact notation, we can write,
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and
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In compact notation, we can write,
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Next-to-eikonal gluon propagator - full result

Full next-to-eikonal gluon propagator traversing the whole target (before to after):
(final after defining the decorated Wilson lines:)

Therefore, we obtain z� independent cross-section if we Taylor expand around r� = 0.
After Taylor expanding (120) and taking into account only the first term (as we are computing
next-to-eikonal order cross-section), we get cross-section at next-to-eikonal order, given as,
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6 Appendex

6.1 Definitions and notations

• Convention for Fourier Transform: Fourier transform from momentum space to
position space is given as:

• Wilson line: Wilson line contains multiple scattering of projectile Parton in the medium
target. In a standard way it is defined as:
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#N

(124)

Where, R ⌘ {F, A}, is the representation of SU3 generator matrices, either fundamental
representation for quarks or adjoint representation for gluons. Also, TA = T for adjoint
and TF = t for fundamental representations respectively.

• Properties of Wilson Line:
1.
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when µ 6= +

• Covariant Derivative: Covariant derivatives are defined as:
 �
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@ j � igTR · Aj and

�!
DR

j =
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@ j +igTR ·Aj, where again R ⌘ {F, A} for fundamental and adjoint representation

respectively.

• Compact notations for decorated Wilson lines:
Using relation (125), we can write,
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• Defination of minus component: )Let,
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• Definition of di↵erential cross-section with z�
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Where, dP.S. = d2q
(2⇡)2

dq+

2q+(2⇡)
.

• Defination of s-matrix in terms of scattering amplitude with z� dependence
in target:

Sg q = (2k+)

Z
dz� eiz�(q+�k+)iM�,h

b,↵(z�, q̌, ǩ) (130)

• Defination of s-matrix in terms of scattering amplitude without z� dependence
in target:

Sg q = (2k+)2⇡�(q+ � k+)iM�,h
b,↵(q̌, ǩ) (131)

• Polarization vector defination: For polarization vector, in case of gluon, we have

✏��(p) = ✏+� (p) = 0

�✏�j (p) = ✏j�(p) = "j
�

✏�+(p) = ✏�� (p) =
"j
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j
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(132)
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Special cases for quark and gluon propagators
inside-to-after quark prop. - Swaleha’s talk
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‘

3 Special cases of propagators in the Gluon Background

Field

3.1 Quark Propagator Through the Medium

3.1.1 from inside to after of the target

We have already computed the quark propagator from inside to after of the target at eikonal
order in previous work [?]. From equation (44) of [?], we have,

SF (x, y)|IA,q
Eik =

Z
d3q

(2⇡)3

✓(q+)

2q+
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At strict eikonal limit, we get,

SF (x, y)|IA,q
Eik =

Z
d3q

(2⇡)3

✓(q+)

2q+
e�ixq̌ (ˇ6 q + m) UF (x+, y+, y?)

⇥
1� �+�i

2q+
i
 �
DF

yi

⇤
eiy�q+

e�iy?q? (39)

Similarly from inside to after the target antiquark propagator is given as,
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Z
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i
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F (y+, x+, x?) (/̌q + m) (40)

3.1.2 From before to inside of the target

SHOULD we add details of computation?? here or in the appendix!!!!!!
Using a similar procedure as a quark propagator from inside to after the medium at eikonal
order, we can compute a quark propagator before inside the medium.
The expression for quark propagator before inside the medium is given as,

SF (x, y)�,↵|BI,q
Eik =

Z
d3k

(2⇡)3

✓(k+)

2k+
e�ix�k+
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�
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�)�↵ (41)
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Field

3.1 Quark Propagator Through the Medium

3.1.1 from inside to after of the target
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order in previous work [?]. From equation (44) of [?], we have,
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At strict eikonal limit, we get,
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Similarly from inside to after the target antiquark propagator is given as,
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3.1.2 From before to inside of the target

SHOULD we add details of computation?? here or in the appendix!!!!!!
Using a similar procedure as a quark propagator from inside to after the medium at eikonal
order, we can compute a quark propagator before inside the medium.
The expression for quark propagator before inside the medium is given as,
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Now, substituting the corresponding expressions of propagators in above equation and sim-
plying it, we get,

SF (x, y)�,↵|II,qEik,A?xy
=

Z
dk+

2⇡

✓(k+)

2k+
e�i(x��y�)k+

(igtaAa
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⇥ (�igtbAb
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
�i�+�j

2k+

�
(52)

3.1.3.3 Total quark propagator from inside to inside in gluon background field at
eikonal order

Combining all the contributions obtained above, we get the total quark propagator from
inside to inside of the target at eikonal order for x+ > y+ case,

SF (x, y)�,↵|II,qEik = SF (x, y)�,↵|II,qEik,A� + SF (x, y)�,↵|II,qEik,A?x
+ SF (x, y)�,↵|II,qEik,A?y

+ SF (x, y)�,↵|II,qEik,A?xy
(53)
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Here, we have used relation,
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3.1.4 Total antiquark propagator from inside to inside in gluon background field
at eikonal order

Similar to quark propagator we can compute the antiquark propagator from inside to inside in
the gluon background field for y+ > x+ such that s �L+

2
< x+ < L+

2
and �L+

2
< y+ < L+

2
at

eikonal order given as:
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inside-to-after gluon prop.

There will be no contribution from the double insertion of the transverse component of the
gluon background field at eikonal order for from inside to after the medium case.
Now, to write the total gluon propagator from inside to after the medium at eikonal we collect
both the contributions and combine them to write in the compact form, we get,

�Gµ⌫
F (x, y)|IAEik =

Z
d3q

(2⇡)3
✓(q+)

e�ix·q̌ eiy�q+

2q+
UA(x+, y+, y?, y

�)

⇥
⇢
� gµ

j gj⌫ +
⌘µg⌫

j q
j

q+
+
� igµ

j ⌘
⌫

q+
+

i⌘µ⌘⌫

q+q+
qj
�� �

DA
yj � iqj

���
e�iq?y?

(60)

In the above equation, if we neglect y� dependence in Wilson line we get the strict eikonal
order gluon propagator from inside to after the medium, given as,
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3.2.2 from Before to inside of the target

SHOULD we add details of calculations?? here or in appendix!!! Using a similar method as
the gluon propagator from inside to after the medium, we can compute the gluon propagator
from before to inside of the target. We get, the expression for gluon propagator from before to
inside of the medium at eikonal order,
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and in the strict eikonal limit, it is given as,
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3.2.3 from inside to inside of the target

Now, we want to compute gluon propagator for the case when both the points are inside the
medium (that is inside the support of length L+). To compute this gluon propagator from inside
to inside of the target at eikonal order, there will be contributions coming from A� component
of the the gluon background field due to Brownian motion of gluon through the medium and
there will be contribution due to interaction with A? components of the background field. We
will get the following kinds of contributions:
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before-to-inside gluon prop.

There will be no contribution from the double insertion of the transverse component of the
gluon background field at eikonal order for from inside to after the medium case.
Now, to write the total gluon propagator from inside to after the medium at eikonal we collect
both the contributions and combine them to write in the compact form, we get,
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In the above equation, if we neglect y� dependence in Wilson line we get the strict eikonal
order gluon propagator from inside to after the medium, given as,
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3.2.2 from Before to inside of the target

SHOULD we add details of calculations?? here or in appendix!!! Using a similar method as
the gluon propagator from inside to after the medium, we can compute the gluon propagator
from before to inside of the target. We get, the expression for gluon propagator from before to
inside of the medium at eikonal order,
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and in the strict eikonal limit, it is given as,
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3.2.3 from inside to inside of the target

Now, we want to compute gluon propagator for the case when both the points are inside the
medium (that is inside the support of length L+). To compute this gluon propagator from inside
to inside of the target at eikonal order, there will be contributions coming from A� component
of the the gluon background field due to Brownian motion of gluon through the medium and
there will be contribution due to interaction with A? components of the background field. We
will get the following kinds of contributions:
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inside-to-inside gluon prop.

• due to pure A� component

• due to insertion of A? component from x+ side

• due to insertion of A? component from y+ side

• due to insertion of A? components from both the sides

From four gluon vertex(double insertion of A? at same z+ component) there will be no con-
tribution at eikonal order. We will use the similar procedure as quark propagator from inside
to inside of the target at eikonal order case to compute this propagator. We get, total gluon
propagator from inside to inside of the target at eikonal order, given as,

Gµ⌫
F (x, y)|II

Eik = Gµ⌫
F (x, y)|II

Eik,A� + Gµ⌫
F (x, y)|II

Eik,A?x
+ Gµ⌫

F (x, y)|II
Eik,A?y

+ Gµ⌫
F (x, y)|II

Eik,A?xy

Gµ⌫
F (x, y)|II

Eik =

Z
dk+

2⇡

✓(k+)

2k+
e�i(x��y�)k+

Z
d2z? �2(z? � y?)

⇥

� gµ

i gi⌫ � i⌘µg⌫
i

k+

�!
DA

xi +
igµ

j ⌘
⌫

k+

 �
DA

yj +
⌘µ⌘⌫gj

i

k+k+

�!
DA

xi

 �
DA

yj

�
�2(x? � z?) UA(x+, y+, z?, x

�)

Gµ⌫
F (x, y)|II

Eik =

Z
dk+

2⇡

✓(k+)

2k+
e�i(x��y�)k+

✓
gµ

i �
i⌘µ�!DA

xi

k+

◆

⇥
✓Z

d2z?�
2(x? � z?)�2(z? � y?)UA(x+, y+, z?, x

�)

◆✓
g⌫

i +
i⌘⌫
 �
DA

yi

k+

◆ (65)

4 Quark Background Field

In the CGC framework, at NEik accuracy, we have to also take into account quark background
field  (x). We will include the e↵ect of the quark background field through the t-channel quark
exchange. [?], [?], [?] in these works also the e↵ect of the quark background field was taken
into account. We will similar approach as [?].
Due to the large boost of the target along x�, quark background field  (x) is localized
along the longitudinal direction around small support L+. In light cone coordinates, for the
quark background field, similar to the gluon background field there is a hierarchy between
components. To obtain this hierarchy systematically, we take projection on  (x) such as,

 �(x) = �+��

2
 (x) = O(

p
�k) and  +(x) = ���+

2
 (x) = O(1/

p
�k) to divide quark back-

ground field into two components  �(z) and  +(x) respectively. Therefore, we can write the
quark background field in terms of these components given as,

 (x) =
�+��

2
 (x) +

���+

2
 (z) =  �(x) +  +(x)

The currents constructed as bilinears of the  (x) from these components have scaling given as,
 (x)�� (x) =  �(x)�� �(x) = O(�t),
 (x)�j (x) =  �(x)�j +(x) +  +(x)�j �(x) = O(�0

t ),
and  (x)�+ (x) =  +(x)�+ +(x) = O(1/�t)
with respect to Lorentz boost factor �t of the target. So, in our calculations, at NEik accuracy
only the  �(x) component matters and the  +(x) component contributes to the further power
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Gluon-target scattering at NEik accuracy
Total partonic level cross-section for gluon-target scattering at NEik accuracy

suppressed calculations in high energy such as from Next-to-Next-to-eikonal (NNEik) accuracy
and beyond.
In our computation, because of this kind of power counting, we will get s-matrix proportional to

O(�
�1
2

t ) and at cross-section level, after squaring the scattering amplitudes, we will get overall
suppression of 1/�t, so indeed we will obtain cross-section at NEik accuracy.

when considering the e↵ect of the quark background field, we have to check carefully at
the end(after we get the result) if an extra minus is needed(comes due to anticommutation
relation), especially for gluon production cases!!

5 Application

We will use the above-computed propagators to compute cross-sections for di↵erent processes.
Above obtained propagators are of general form, so we can use them to compute various kinds
of observables for di↵erent scattering processes. The simplest process where we can apply this
method is single-inclusive particle production in forward proton-nucleus (pA) collision. We will
calculate partonic level cross-section for single inclusive gluon production and single inclusive
quark production at NEik order in forward pA collision. We have taken into account contribu-
tions coming due to the gluon background field as well as the quark background field.
In general, in the Color Glass Condensate (CGC) framework to compute the hadronic level
cross-section, we have to calculate a partonic cross-section, which in our case corresponds to
projectile quark or gluon scattering on the dense target of quark and gluon background field.
Then this partonic cross-section is convoluted with the Parton Distribution Function (PDF) in
the proton and with the fragmentation function in pA collision. Though e↵ects of including
NEik corrections are seen at the partonic level itself, therefore, in our study currently we are
only computing partonic level cross-section for single inclusive particle production in pA colli-
sion.

5.1 Single Inclusive Gluon-target Scattering

First, we will derive a partonic level cross-section for single-inclusive gluon production in pA
collision. To compute this cross section we will use previously obtained propagators at eikonal
and next-to-eikonal order. To compute the total partonic cross section for gluon production,
initially, we will compute single inclusive gluon production in the gluon background field at
NEik accuracy and then we will compute single inclusive gluon production including the e↵ect
of quark background field through t-channel quark exchange at NEik order. For this, there will
be two kinds of contributions. One due to from inside to inside of the target quark propagator
and another one due to from inside to inside of the target anti-quark propagator.
Ultimately, we will collect all these contributions and compute the total partonic level cross-
section for single-inclusive gluon production in the presence of gluon and quark fields at NEik
accuracy in pA collision. Hence, total partonic level cross-section for gluon-target scattering at
next-to-eikonal order is given as;

d�gA!g+X

dP.S.
=

d�gA!g+X

dP.S.

����
g backg.

+
d�gA!q+X

dP.S.

����
q backg.

(67)

furthermore, while computing the cross-section initially we will take into account contributions
coming due to z� dependence of the gluon background field and then we will expand the
obtained cross-section in z� to obtain a cross-section at next-to-eikonal order explicitly
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Contribution from gluon background

LSZ reduction formula:

5.1.1 Single inclusive gluon scattering in gluon background field

Consider the process of gluon scattering on a gluon background field, with the gluon in the
initial state having momentum p1, polarization �1 and color a1, and the gluon in the final state
having momentum p2, polarization �2 and color a2. Then, the S-matrix for that process can be
obtained thanks to the following LSZ-type reduction formula
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2 )

Z
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Z
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F (x, y)a2 a1

(68)

Substituting equation (29), we get,
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(69)

Now, we want to compute a cross-section for gluon scattering in z� dependent gluon back-
ground field. For that we will use a similar method used in [?] to compute z� dependent
cross-section.
For this first, we have to extract the scattering amplitude from the above-obtained s-matrix.
Therefore from equation (B11) and (B19) of [?], we get,
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(70)

Now, we want to calculate the unpolarized partonic cross section for gluon scattering on
the gluon background field in forward pA collision.
We will follow a similar procedure as appendix B of [?]. Hence, from equation (B29), we have
a cross-section given as;
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factor out 2p+1 (2π)δ(p+1 − p+2 ) to get the scattering amplitude iMa2a1 :

5.1.1 Single inclusive gluon scattering in gluon background field

Consider the process of gluon scattering on a gluon background field, with the gluon in the
initial state having momentum p1, polarization �1 and color a1, and the gluon in the final state
having momentum p2, polarization �2 and color a2. Then, the S-matrix for that process can be
obtained thanks to the following LSZ-type reduction formula
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Substituting equation (29), we get,
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Now, we want to compute a cross-section for gluon scattering in z� dependent gluon back-
ground field. For that we will use a similar method used in [?] to compute z� dependent
cross-section.
For this first, we have to extract the scattering amplitude from the above-obtained s-matrix.
Therefore from equation (B11) and (B19) of [?], we get,

iM�1�2
ab (k, q?, z

�) =

Z
d2z?e

�i(q?�k?)z?

(
✏i�2

⇤
✏i�1

"
UA

✓
L+

2
,
�L+

2
, z?, z

�
◆

+++
1

2k+

 
� qj + kj

2

Z L+

2

�L+

2

dz+


UA

✓
L+

2
, z+; z?, z

�
◆✓�!

DA
zj � �DA

zj

◆
UA

✓
z+,�L+

2
; z?, z

�
◆�

� i

Z L+

2

�L+

2

dz+


UA

✓
L+

2
, z+; z?, z

�
◆✓ �

DA
zj

�!
DA

zj

◆
UA

✓
z+,�L+

2
; z?, z

�
◆�!#

+++
✏j�2

⇤
✏i�1

2k+

Z L+

2

�L+

2

dz+ UA

✓
L+

2
, z+; z?, z

�
◆

gT · Fij UA

✓
z+,�L+

2
; z?, z

�
◆)

Now, we want to calculate the unpolarized partonic cross section for gluon scattering on
the gluon background field in forward pA collision.
We will follow a similar procedure as appendix B of [?]. Hence, from equation (B29), we have
a cross-section given as;
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Gluon background contribution to the gluon-target scattering
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Where, dP.S. = d2q
(2⇡)2

dq+

2q+(2⇡)
. The above expression is only valid at the level of the target-average

cross-section, and not for each configuration of the background field. Also, here r� = z� � z0�

is a coordinate we get after transformation.

In the above expression, factor two in the denominator originates from averaging over the
initial state gluon polarization vector �1 and �2 and N2

c �1 comes from averaging over the color
while summing over the final state polarization vector and color.
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Also, note that there will be the following kind of terms contributing to the NEik accuracy
cross-section: 1. Square of extended Eik with z� dependence( right now, here, we are only
considering square of Eik).
2. Mix of Eik (strict Eik term) and NEik term.
3. Square of NEik will be NNEik term, so we will be neglecting them.
By, using the explicit expression for the forward gluon scattering amplitude given in the equa-
tion (70), the partonic level production cross section at NEik accuracy can be written as,

In below equation for first term we are assuming that q++k+ = 2k+ = 2q+, should e do
that pr just keep sum of q+ and k+ as it is??!!!
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with dP.S. = d2q
(2π)2

dq+

2q+(2π)

field at next-to-eikonal is given as,
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In compact notations, we can write, from (127)and (128),
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5.1.2 Single inclusive gluon-target scattering due to quark background field

At next-to-eikonal order to compute single inclusive gluon-target scattering, we also have to
take into account the e↵ect of the quark background field. We include the e↵ect of the quark
background field through the t-channel quark exchange. Due to this, we get two kinds of
contribution at next-to-eikonal order. One is due to interaction with from inside to inside
quark propagator and the other one is due to from inside to inside antiquark propagator. To
compute these two contributions for partonic level cross-section; first, we have to compute the
corresponding mixed propagator for each of the cases using fig. 5a, and 5b.

with q bf.pdf

y+ x+

z z0

  ̄

(a)

Contribution due to including quark
background field: Case 1

with q bf bq.pdf

y+ x+

z z0

 ̄  

(b)

Contribution due to including quark
background field: Case 2
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After summation over the gluon polarizations, Fkl terms come with δliδki factor. Therefore, U
(3)
A terms

vanish at the cross section level.
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Gluon-target scattering at NEik accuracy
Contribution from the quark background

field at next-to-eikonal is given as,
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In compact notations, we can write, from (125)and (126),
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5.1.2 Single inclusive gluon-target scattering due to quark background field

At next-to-eikonal order to compute single inclusive gluon-target scattering, we also have to
take into account the e↵ect of the quark background field. We include the e↵ect of the quark
background field through the t-channel quark exchange. Due to this, we get two kinds of
contribution at next-to-eikonal order. One is due to interaction with from inside to inside
quark propagator and the other one is due to from inside to inside antiquark propagator. To
compute these two contributions for partonic level cross-section; first, we have to compute the
corresponding mixed propagator for each of the cases using fig. 5a, and 5b.

with q bf.pdf

y+ x+

z z0

  ̄

(a)

Contribution due to including quark
background field: Case 1

with q bf bq.pdf

y+ x+

z z0

 ̄  

(b)

Contribution due to including quark
background field: Case 2
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The propagator reads

CASE 1: Contribution due to fig. 5a
We can compute mixed propagator similar as quark case. We can write mixed propagator from
fig. 5a,
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After putting the corresponding expressions of propagator and taking trivial integration over
p+, z0?, z

0� and simplifying gamma matrices structure, we get,
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Now, using this obtained mixed propagator, we can compute the s-matrix for gluon scat-
tering in the quark-gluon background field. LSZ-type reduction formula for this is given as:

Sg1!g2 = lim
x+!+1

(�1)(2p+
2 )

Z
d2x

Z
dx� eixp̌2✏�2

µ (p2)
⇤

⇥ lim
y+!�1

(�1)(2p+
1 )

Z
d2y

Z
dy� e�iyp̌1✏�1

⌫ (p1) Mµ⌫
F (x, y)|gqg

(76)

Simplifying it, we get,
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Now, using the definition of polarization vector from (135), we can contract the indices and
simplify the Dirac matrix structure, we get,
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Amplitude can be computed following the steps:
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Now, using the definition of scattering amplitude, we can extract scattering amplitude from
the s-matrix expression, we get,
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Now, we can compute a partonic level cross-section for gluon-target scattering at NEik for this
contribution. To compute the cross-section for NEik accuracy we will multiply the eikonal order
scattering amplitude of gluon-target scattering where the target is only gluon background field
with above-obtained scattering amplitude from (77) where the target is gluon-quark background
field.
) Using (77) and (70) in the definition of cross-section (133), we get,
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Gluon-target scattering at NEik accuracy
Contribution from the quark background

Only the interference terms contribute at NEik order
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Now, using the definition of scattering amplitude, we can extract scattering amplitude from
the s-matrix expression, we get,
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Now, we can compute a partonic level cross-section for gluon-target scattering at NEik for this
contribution. To compute the cross-section for NEik accuracy we will multiply the eikonal order
scattering amplitude of gluon-target scattering where the target is only gluon background field
with above-obtained scattering amplitude from (77) where the target is gluon-quark background
field.
) Using (77) and (70) in the definition of cross-section (133), we get,
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Contribution to the cross section:

now,

N1 =
X

�1�2

✏k�1

⇤
✏k�2

✏i�2

⇤
✏j�1

 �(z
+
1 , z?,

r�

2
)(�i���j) ↵(z,

r�

2
)

= ��ki�kj  �(z
+
1 , z?,

r�

2
)�i�j�� ↵(z,

r�

2
)

= ��ij  �(z
+
1 , z?,

r�

2
)�i�j�� ↵(z,

r�

2
)

= ��ij �(z
+
1 , z?,

r�

2
)
1

2
{�i, �j}�� ↵(z,

r�

2
)

= ��ijgij �(z
+
1 , z?,

r�

2
)�� ↵(z,

r�

2
) = �ij�ij �(z

+
1 , z?,

r�

2
)�� ↵(z,

r�

2
)

= 2 �(z
+
1 , z?,

r�

2
)�� ↵(z,

r�

2
)

*
d�gA!g+X

1

dP.S.

+
|gqg =

Z
dr� eir�(q+�k+) 1

(2⇡)2

1

2(N2
c � 1)

Z
d2z0?

Z
d2z? e�i(q?�k?)(z?�z0?)

Z
dz+

Z
dz+

1

⇥ ✓(z+
1 � z+) < {U †

A(
L+

2
,
�L+

2
, z0?,

�r�

2
)abUA(

L+

2
, z+

1 , z?,
r�

2
)aa0 �(z

+
1 , z?,

r�

2
)

⇥ ��{(�igta
0
)UF (z+

1 , z+, z?,
r�

2
)(�igtb

0
)}�↵ ↵(z,

r�

2
)UA(z+,

�L+

2
, z?,

r�

2
)b0b} >

(81)

Similarly,
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Therefore, we get,
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Antiquark contribution can be computed in a similar way.
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Quark-target scattering at NEik accuracy
Total partonic level cross-section for quark-target scattering at NEik accuracy

suppressed calculations in high energy such as from Next-to-Next-to-eikonal (NNEik) accuracy
and beyond.
In our computation, because of this kind of power counting, we will get s-matrix proportional to

O(�
�1
2

t ) and at cross-section level, after squaring the scattering amplitudes, we will get overall
suppression of 1/�t, so indeed we will obtain cross-section at NEik accuracy.

when considering the e↵ect of the quark background field, we have to check carefully at
the end(after we get the result) if an extra minus is needed(comes due to anticommutation
relation), especially for gluon production cases!!

5 Application

We will use the above-computed propagators to compute cross-sections for di↵erent processes.
Above obtained propagators are of general form, so we can use them to compute various kinds
of observables for di↵erent scattering processes. The simplest process where we can apply this
method is single-inclusive particle production in forward proton-nucleus (pA) collision. We will
calculate partonic level cross-section for single inclusive gluon production and single inclusive
quark production at NEik order in forward pA collision. We have taken into account contribu-
tions coming due to the gluon background field as well as the quark background field.
In general, in the Color Glass Condensate (CGC) framework to compute the hadronic level
cross-section, we have to calculate a partonic cross-section, which in our case corresponds to
projectile quark or gluon scattering on the dense target of quark and gluon background field.
Then this partonic cross-section is convoluted with the Parton Distribution Function (PDF) in
the proton and with the fragmentation function in pA collision. Though e↵ects of including
NEik corrections are seen at the partonic level itself, therefore, in our study currently we are
only computing partonic level cross-section for single inclusive particle production in pA colli-
sion.

5.1 Single Inclusive Gluon-target Scattering

First, we will derive a partonic level cross-section for single-inclusive gluon production in pA
collision. To compute this cross section we will use previously obtained propagators at eikonal
and next-to-eikonal order. To compute the total partonic cross section for gluon production,
initially, we will compute single inclusive gluon production in the gluon background field at
NEik accuracy and then we will compute single inclusive gluon production including the e↵ect
of quark background field through t-channel quark exchange at NEik order. For this, there will
be two kinds of contributions. One due to from inside to inside of the target quark propagator
and another one due to from inside to inside of the target anti-quark propagator.
Ultimately, we will collect all these contributions and compute the total partonic level cross-
section for single-inclusive gluon production in the presence of gluon and quark fields at NEik
accuracy in pA collision. Hence, total partonic level cross-section for gluon-target scattering at
next-to-eikonal order is given as;

d�qA!q+X

dP.S.
=

d�qA!q+X

dP.S.

����
g backg.

+
d�qA!q+X

dP.S.

����
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(67)

furthermore, while computing the cross-section initially we will take into account contributions
coming due to z� dependence of the gluon background field and then we will expand the
obtained cross-section in z� to obtain a cross-section at next-to-eikonal order explicitly
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Contribution from quark background field

background field at next-to-eikonal order given as:
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Using relation (128) and (129), we can write in compact form as:
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(94)

5.2.1 Due to including quark background field

To compute this contribution we will use propagators obtained in the previous sections. First,
we have to include the e↵ect of the quark background field. For that purpose, initially, we will
compute a mixed propagator similar to the case of gluons, by taking into account the e↵ect of
the quark background field, and then using it we will compute scattering amplitude to finally
obtain a di↵erential cross-section at NEik order.

with q bf.pdf

y+ x+

z z0

 ̄�  �

Figure 6: Including e↵ect of quark background field through t-channel quark exchange in quark
target scattering
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Propagator is given as:
from the fig.6, we can write an expression for mixed propagator given as:

MF (x, y)|qgq
NEik =

Z
d4z
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h
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Now, substituting the corresponding equations from (38), (41) and (65) in the above ex-
pression, we get,
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CHECK at what point we should take Taylor expansion to match this propagator equation
with GEik equation of quark-target scattering g BF, we should expand around z� point and
do not take integration over z�!!!!!
In the above expression, we have used properties of gamma matrices such as �i�+ = ��+�i,
�+�+ = 0 to simplify the gamma matrices structure and also the equation.
Now, we can take integration over z1?, z0�, z0?, we get,
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Now using delta function to take integration over p+, we get,
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Mixed propagator is given as:
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Quark-target scattering at NEik accuracy
Contribution from quark background field

background field at next-to-eikonal order given as:
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Using relation (128) and (129), we can write in compact form as:
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5.2.1 Due to including quark background field

To compute this contribution we will use propagators obtained in the previous sections. First,
we have to include the e↵ect of the quark background field. For that purpose, initially, we will
compute a mixed propagator similar to the case of gluons, by taking into account the e↵ect of
the quark background field, and then using it we will compute scattering amplitude to finally
obtain a di↵erential cross-section at NEik order.
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z z0

 ̄�  �

Figure 6: Including e↵ect of quark background field through t-channel quark exchange in quark
target scattering
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Propagator → S matrix → Amplitude → X section:

Now,
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To simplify this we have used relation, (/̌k + m) =
P

h u(ǩ, h)u(ǩ, h).

Using this in cross-section and simplifying further, we get,
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(101)

5.2.2 Total Single Inclusive Quark-target Scattering at NEik accuracy in forward
pA Collision

Now, total single-inclusive quark-target scattering in the quark-gluon background fields at next-
to-eikonal accuracy is given as
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At NEik accuracy contribution come from interference with eikonal quark propagator.
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Gluon production from quark scattering at NEik accuracy
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Apart from all the contributions for cross-section at NEik order, which we obtained previ-
ously; there will be also two more contributions in the case of single inclusive particle production
in pA collision at NEik order due to taking into account the e↵ect of the quark background
field.
For these contributions, similar to previous sections, we will first compute mixed propagators
for each case and from these, we will compute s-matrices. From these S-matrices, we will ex-
tract scattering amplitudes. We will square them to separately write di↵erential cross-sections
for each of these two contributions.

5.3 case1: From Quark to Gluon Conversion

CHange and improve the diagram name it properly!!!!!

to g casei.pdf

y+

z

 ̄

x+

Figure 7: Inserting quark background field through t-channel quark exchange case(i)
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Propagator:

To compute the cross-section at NEik accuracy for this case, first, we have to compute
the mixed propagator at NEik order by including the quark background field through the t-
channel quark exchange. To compute this mixed propagator, we will use the following type of
expression,
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Now, substituting corresponding propagators from equations (60), (41) in (106), and using
relation for Dirac matrices �0���+�µ0�
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Here, after simplification factor multiple of
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and using relation �+�+ = 0, we get,
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This is the expression for mixed propagator for quark propagator before and inside the
target and gluon propagator is from inside to after the target with the target being quark and
gluon background field.

Now we have to calculate the s-matrix for gluon production in a single inclusive pA process.
We will use the LSZ-reduction formula to obtain the s matrix and then from that scattering
amplitude M.
Now, consider quark scattering for the gluon production process in the presence of a quark and
gluon background field, with incoming quark in the initial state with helicity h, momenta ǩ
and gluon in the final state having momenta q̌, color b, polarization �. Then, S-matrix for that
process is given by using the LSZ-type reduction formula:
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(107)

Substituting the expression for mixed propagator into the expression and after trivial steps of
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X-section (amplitude square):

Putting expression of amplitude, we get,
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5.3.1 z- independent cross section:
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Now, performing integration over q+, also, averaging over initial quark helicity and color
and summing over final state gluon polarization and color, we get,
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Quark production from gluon scattering at NEik accuracy
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Figure 8: case 1: from before to after of the target gluon propagator and from inside to after
of the target quark propagator in quark and gluon background field
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In the above equation, k+ cancels with q+ due to the delta function.

5.4 case2: From Gluon to Quark Conversion

CHANGE THE FIGURE MAKE IT PROPER WITH LABEL!!!!!

We will compute the cross-section for this contribution by following a similar method as
case 1. From the figure 8 , the equation of mixed propagator is given as:
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Now, substituting equations of propagators from (41), (60) and definition of quark back-
ground field in the above expression of the mixed propagator and contracting the indices to
simplify Dirac matrices structure, we get,
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In the above equation, k+ cancels with q+ due to the delta function.

5.4 case2: From Gluon to Quark Conversion

CHANGE THE FIGURE MAKE IT PROPER WITH LABEL!!!!!

We will compute the cross-section for this contribution by following a similar method as
case 1. From the figure 8 , the equation of mixed propagator is given as:
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Now, substituting equations of propagators from (41), (60) and definition of quark back-
ground field in the above expression of the mixed propagator and contracting the indices to
simplify Dirac matrices structure, we get,
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X-section (amplitude square):
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Using this in cross-section, we get,
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5.4.1 z- independent cross-section:

Now, we have to calculate an unpolarized di↵erential cross section when the quark background
field is considered without z� independence:
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Now, performing integration over q+, also, averaging over initial gluon polarization vector
and color, and summing over final state quark helicity and color, we get,
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Here, in the denominator factor 2 is due to averaging over the initial polarization vector
and (N2

c � 1) due to averaging over the initial gluon color; while summing over the final state
quark.

Therefore, we obtain z� independent cross-section if we Taylor expand around r� = 0.
After Taylor expanding (120) and taking into account only the first term (as we are computing
next-to-eikonal order cross-section), we get cross-section at next-to-eikonal order, given as,
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Summary and final remarks

Full next-to-eikonal (NEik) expression for the gluon propagator through the
background field derived

Corrections due to transverse motion of the gluon while crossing the Lorentz contracted target

Corrections due to interaction with the A⊥ components of the background field

Corrections beyond the static limit including the effects of x− dependence of the Aµ.

Gauge covariant expression: covariant derivatives and field strength insertions
in Wilson lines

Computed gA → g +X, qA → q +X, gA → q +X and qA → g +X
X-sections.

The NEik quark and gluon propagator are building blocks for scattering
processes at NEik

inclusive DIS and SIDIS (in preparation) - T. Altinoluk, G. Beuf, S. Mulani

dijets in pA (in preparation) - T. Altinoluk, G. Beuf, E. Blanco, S. Mulani
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