// Quantum Science Generation - ECT*

Early Fault-Tolerant Quantum Algorithms in Practice: Application to Ground-State Energy Estimation

Oriel **Kiss**, May 8th, 2024

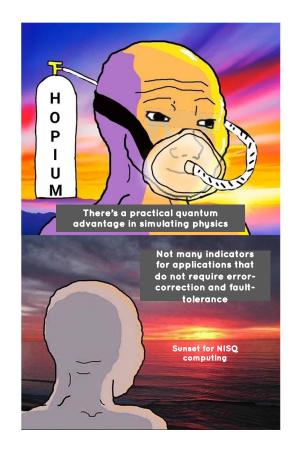
ANADU Copyright © 2024 Xanadu Quantum Technologies Inc.

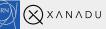
// Motivation

We want to solve a **useful** problem on a quantum computer with an advantage.

Our bet is on quantum spin models, but scaling looks a bit scary in terms of precision. Childs, et al. PNAS 115.38 (2018): 9456-9461.

NISQ	Early-FTQC	Fully-FTQC
Variational	ISQ Algorithms	Phase Estimation
Algorithms (VQE, QAOA)	(Lin-Tong, Somma,)	(QPE, QETU, filters,)
	Optimized Runtime,	T-gate counts,
No theoretical	samples-depth tradeoff,	High-depth
arguments for quantum advantage	number of qubits	Coherent computation
	Scaling - ~ < ϵ^{-2}	
Scaling - ϵ^{-2}	Prefactor matters!	Scaling - ϵ^{-1}





QETU: Dong, Lin and Tong, PRX Quantum 3, 040305 (2022)

// Overview

- Early fault-tolerant algorithms for GSEE: review of the Lin&Tong algorithm.
- 2. Applying the Lin&Tong algorithm in practice.
- 3. Numerical simulations.
- 4. Bonus: application on NISQ devices.

// Early-FTQC Algorithms for GSEE

Find the lowest eigenvalue of a Hamiltonian H describing a system with some error ϵ ,

$$au H = \sum_{k} \tau_k |E_k\rangle \langle E_k| \text{ with } \|\tau H\| < \pi/2$$

An Early-FTQC algorithm solving this problems should have following **nice** features:

- 1. It uses limited (ideally one) or constant ancilla qubits.
- 2. The circuit depth is $O(e^{-1})$, i.e., it enjoys Heisenberg scaling.
- 3. Some degree of robustness against algorithmic errors.

// The Lin-Tong Algorithm

Problem 1. Given a precision $\delta > 0$ and lower bound on the overlap parameter $\eta > 0$, we seek to decide if

$$Tr[\rho\Pi_{\leq x-\delta}] < \eta \quad or \quad Tr[\rho\Pi_{\leq x+\delta}] > 0.$$
(3)

 λ_k),

The LT algorithm does this by approximating the CDF of the spectral measure -

$$p(x) = \sum_{k} p_k \tilde{\delta}(x - \lambda_k) = \sum_{k} \operatorname{Tr}[\rho \Pi_k] \tilde{\delta}(x - \lambda_k) = \sum_{k} \operatorname{Tr}[\rho \Pi_$$

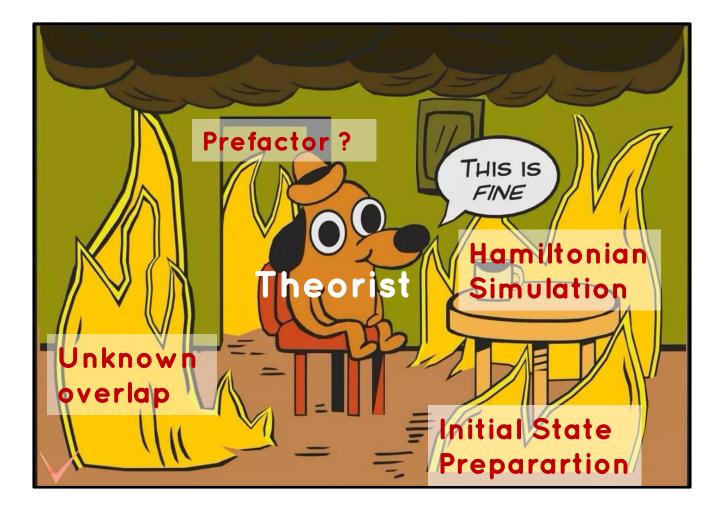
Construction:

$$egin{aligned} C(x) &= p(x) st \Theta(x) & ext{convolution} \ & ilde{C}(x) &= \int_{-\pi/2}^{\pi/2} p(y) F(x-y) dy \ &= \sum_{|k| \leq D} F_k e^{ikx} \langle \Psi | e^{-i au k \mathcal{H}} | \Psi
angle. \end{aligned}$$

Fourier moments computed on the QC with a Hadamard test

$$egin{aligned} G(x) &= rac{1}{2} + rac{2\mathcal{F}}{M} \sum_{i=1}^M \Big[\operatorname{Re}[g_{k_i}(au)] \sin{(k_i x)} \ &+ \operatorname{Im}[g_{k_i}(au)] \cos{(k_i x)} \Big]. \end{aligned}$$

Lin and Tong PRX Quantum 3, 010318 (2022), Wan et al. Phys. Rev. Lett. 129, 030503 (2022)



// Overview

- Early fault-tolerant algorithms for GSEE: review of the Lin&Tong algorithm.
- 2. Applying the Lin&Tong algorithm in practice.
- 3. Numerical simulations.

4. Bonus: application on NISQ devices.

// Extinguishing the fire

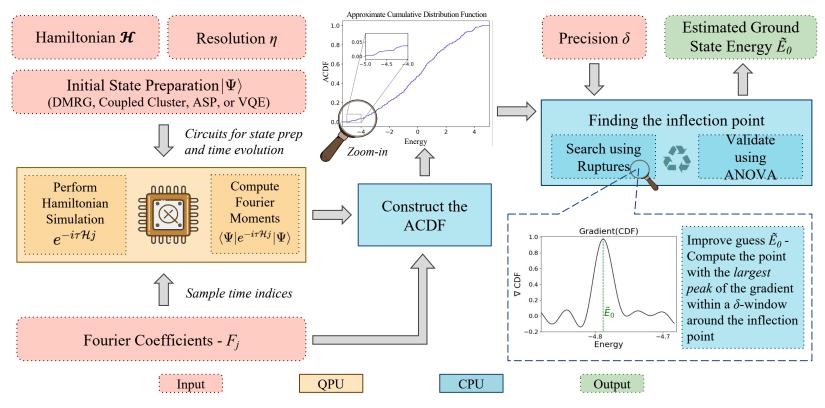
- i Initial State Preparation: improve from the best you can do classicaly: DMRG, Coupled Cluster, ...
- **i** Unknown Overlap: finding the inflection point and looking at the accumulation over the low energy sector.

Accumulation:

 $\eta = \sum |\langle E_i | \Psi \rangle|^2,$ i < m

- i Hamiltonian Simulation: system-specific; we use (asymptotical sub-optimal) product formula because:
 - 1. no ancilla overhead
 - 2. take advantage of locality
 - 3. often much better than what is guaranteed
 - 4. can scale better than qubitization in some regime

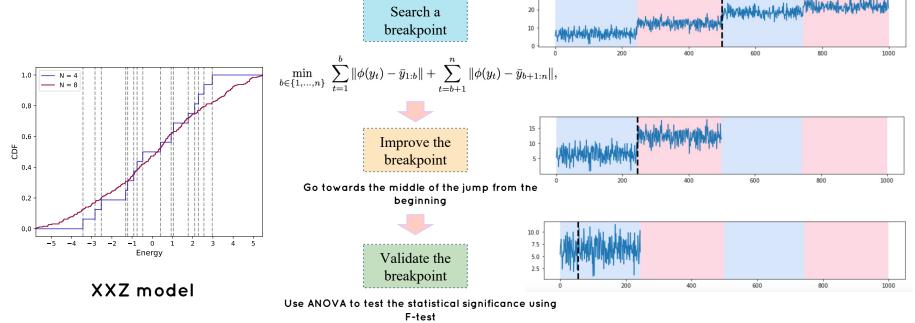
// Our Workflow

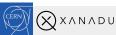


XANADU 🛞 🛛

// Key Insights I: Find Inflection

CDF smoothes out with system size (random initial state)

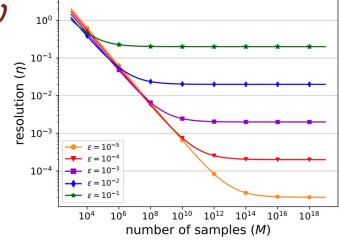




// Key Insights II: Quantitative Resources

For a given maximal runtime D $O(\delta^{-1} \log \delta^{-1} \eta^{-1})$ and accuracy ϵ , the number of samples M required to guarantee the correct result with probability $1 - \vartheta$ is

$$M = \left\lceil 2 \cdot \left[\frac{2.07\pi^{-1}(\log 4D + 1) + 1}{\eta - 2\epsilon} \right]^2 \\ \left[\log \log \left(\frac{1}{\tau \epsilon} \right) + \log \left(\vartheta^{-1} \right) \right] \right\rceil,$$

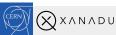


To obtain high accuracy, we require more depth (and not only samples).

// Overview

- Early fault-tolerant algorithms for GSEE: review of the Lin&Tong algorithm.
- 2. Applying the Lin&Tong algorithm in practice.
- 3. Numerical simulations.

4. Bonus: application on NISQ devices.



// Numerical Simulations

We consider a fully-connected **Heisenberg model** with random couplings over N spins

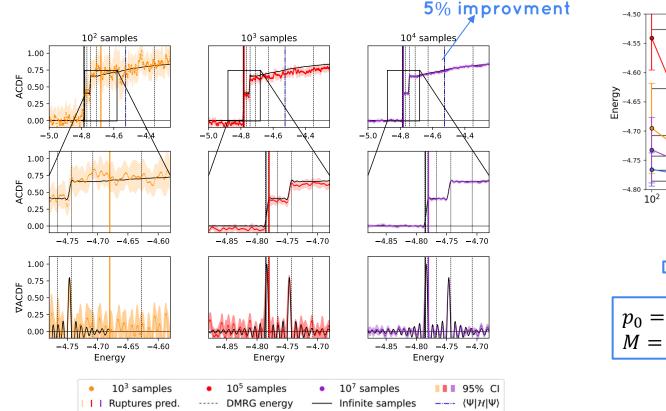
$$\mathcal{H} = \frac{1}{N} \sum_{i < j} \sum_{a \in \{x, y, z\}} J_a^{ij} \cdot \sigma_a^i \sigma_a^j, \text{ where } J_a^{ij} \sim \mathcal{N}(0, 1).$$

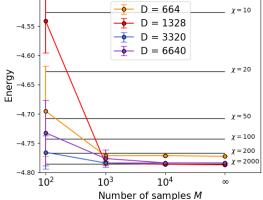
Why? : universal, gapless, challenging for DMRG.

For dynamics we use a **second-order Trotter-Suzuki** with time step $\Delta t = \tau/8$. The circuit construction is based on SWAP-networks.

We look at N= 26 spins, and use initial states prepared via DMRG (with low bond dimension).

// Key Insights III: DMRG(bd = 10) Initial State



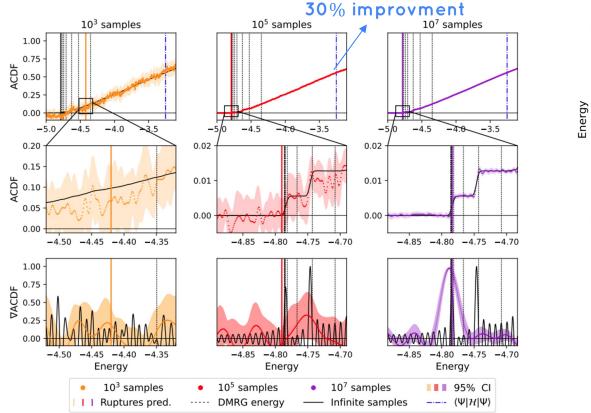


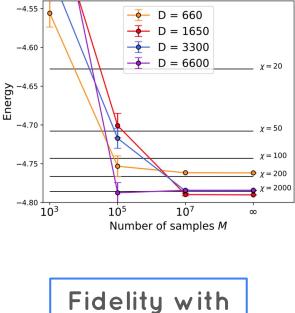
Depth matters most!

 $p_0 = 7x \ 10^{-6}$ (overlap) $M = 10^{13}$ samples

🕅 🗙 XANADU

// Key Insights III: Sparsified DMRG





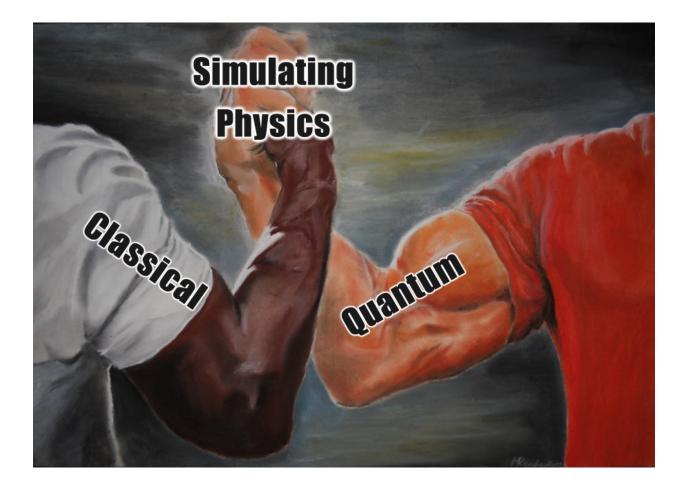
initial state

p₀= 7x10⁻³

X X N N D U

// To Conclude

- 1. LT algorithm (and friends) bridges the gap between the NISQ and FTQC eras.
- 2. Instead of aiming at the true ground-state energy, one can concentrate on a finding the inflection point of the spectral CDF.
- 3. Product formulas are solid candidates for this task.
- 4. LT algorithms are able to improve on classical solutions, using only limited quantum resources (~10⁵ samples).
- 5. If arbitrary precision is required, use quantum phase estimation. However, If a good approximation is enough, LT is a robust algorithm, which can be run in practice.



// Overview

- Early fault-tolerant algorithms for GSEE: review of the Lin&Tong algorithm.
- 2. Applying the Lin&Tong algorithm in practice.
- 3. Numerical simulations.

4. Bonus: application on NISQ devices.

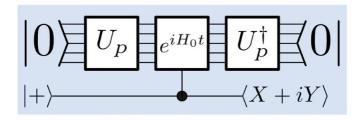
// Bonus: what can we do on NISQ?

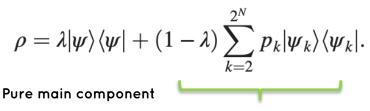
- Blunt et al: variational dynamics + ZNE on a H₃ molecule (6 qubits).
- We focus on extracting Fourier moments of a nuclear EFT (4 qubits). $\langle \Psi_0 | \, \hat{O}(ec{q})^\dagger e^{-iHj au} \hat{O}(ec{q}) \, | \Psi_0
 angle$
- We use **purified echo verification** + various error suppresion techniques (twirling, dynamical decoupling, pulse efficient calibration, readout calibration).

// Purified echo verification

Verification

Unprepare the state and verify that it is the zero state





Purification of the ancilla

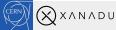
Noisy components

Without noise: the ancilla is pure after post-selection.

With noise: It is not. Extract the closest pure state from measurements.

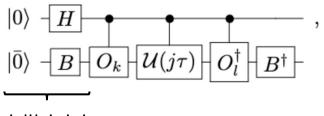
Otherwise 📥 ga

garbage



// Purified echo verification (details)

Hadamard test



Initial state

1. We measure the 3 single-qubit Pauli expectation (X,Y and Z) values of the ancilla.

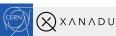
2. Construct the closest compatible pure state (purification + tomography).

$$\begin{split} |\Phi\rangle &= \frac{1}{\sqrt{2}} \left(|\bar{0}\rangle \otimes |0\rangle + B^{\dagger} O_{k}^{\dagger} \mathcal{U}(j\tau) O_{l} B |\bar{0}\rangle \otimes |1\rangle \right) \\ &\equiv \frac{1}{\sqrt{2}} \left(|\bar{0}\rangle \otimes |0\rangle + |\phi\rangle \otimes |1\rangle \right), \end{split}$$

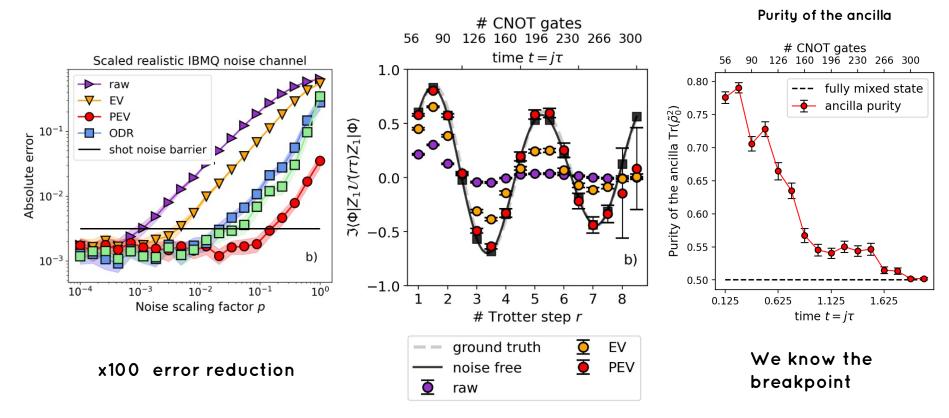
 $|\phi\rangle = \alpha |\bar{0}\rangle + \beta |\bar{0}^{\perp}\rangle.$

We only care about α , so we can disregard any orthogonal states!

$$\operatorname{Re}\{\alpha\} = \frac{\langle X_a\rangle_0}{1+\langle Z_a\rangle_0}, \quad \operatorname{Im}\{\alpha\} = \frac{\langle Y_a\rangle_0}{1+\langle Z_a\rangle_0}.$$



// Results (IBMQ)



Thank You! More Questions?

arXiv: 2405.03754

// Team

Utkarsh Azad

Michele Grossi

Alessandro Roggero

David Wakeham

Juan Miguel Arrazola

arXiv: 2401.13048

contact: oriel.kiss@cern.ch twitter: @ oriel_kiss

// Key Contributions

Relaxation: finding inflection point and looking at the accumulation over the low-energy sector.

Accumulation:
$$\eta = \sum_{i < m} |\langle E_i | \Psi
angle|^2,$$

- Gather quantitative resource estimates for the LTalgorithm.
- Looking at the **resilience** of the LT-algorithm against the quality of initial state preparation and time evolution.

