Hunting for near threshold (virtual) resonances in Belle and J-PARC

(Advanced Science Research Center, STRONG Japan Atomic Energy Agency) SPICE workshop @ECT*, trento 17 May 2024

Exotic hadrons near thresholds

- It is known that many exotic hadrons somehow appear near thresholds
 - -E.g., X(3872) D⁰D^{*0}, Λ (1405) KN, ...
- These state can be understood as molecular states

 Especially, when they are bound (Feschbach resonance)
- What happens if the interaction is NOT strong enough to make a bound state?
 - \rightarrow Virtual state
 - What is the signal for virtual state?

Near-threshold (re)scattering

- A simple calculation for a 2-body (re)scattering process (virtual intermediate state \rightarrow final state): $f_0 \sim \frac{1}{\frac{1}{kA} - i}, \sigma_0 = \frac{4\pi}{k^2} |f_0|^2, A \rightarrow \text{complex (a+ib)}$
- Above the threshold:

$$\sigma_0 \propto \frac{1}{(1+kb)^2 + (ka)^2} \sim 1 - 2kb$$

• Below the threshold:

$$\begin{aligned} & \sigma_0 \propto \frac{1}{(1+|k|a)^2} \sim 1-2|k|a\\ & \text{with } k=i\sqrt{2\mu|E|} \text{ is pure imaginary.} \end{aligned}$$

Threshold cusp

- Let's think a case: a > 0
 - Interaction is attractive, but not strong enough to make a bound state
- Pole: $k \sim -i/A$ is virtual
 - E < 0, but in different Riemann sheet</p>
- Spectrum shape: maximum at the threshold (E=0)
 - Derivative diverges
 - Threshold cusp
 (in the narrow sense)

Threshold cusp

- In principle, can be distinguished from usual peak by the derivative at the peak, but practically there is experimental resolution.
 - Very few identified cases
- The statistics is highest at the threshold
- Low energy seen from the threshold

 → Behavior is roughly determined by the complex scattering length of the threshold channel
 → New method to measure scattering length

Theory vs actual

Borrowed slides of Prof. Mantovani Sarti on Thusday

6

Topics of the day

- I. Threshold cusps observed in Belle experiment
 - $\Lambda_c \rightarrow pK^-\pi^+$ (@ $\Lambda\eta$ threshold)
 - $\Lambda_c \rightarrow \Lambda \pi^+ \pi^+ \pi^-$ (@ $\overline{K}N$ threshold)
- II. J-PARC E72: Search for new exotic narrow $\Lambda^{\boldsymbol{*}}$ near the $\Lambda\eta$ threshold
- III. J-PARC E90(+ α): ΣN scattering length via cusp spectroscopy (& beyond)
- IV. Summary

I. Threshold cusps observed in Belle experiment

Belle experiment

- Almost 4π, good momentum resolution (Δp/p~0.1%), EM calorimeter, PID & Si Vertex detector
- Finished ~10 years ago, still producing ~20 papers/year

Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$

Fit to Breit-Wigner

 BW fit is not very good especially near the peak.

 Best χ²/DOF: 308/243

> [PRD108.L031104 (2023)]

Fit to Flatte

$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$

f(m): non-relativistic Flatte $\frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k\right)}$

- Improved near the peak
- Best χ^2 /DOF: 257/243 – Better than BW by 7σ

Threshold cusp

• The fit explains the peak as a threshold cusp with nearby $\Lambda(1670)$

→ First identification of a threshold cusp from the spectrum shape

• Obtained $\Lambda(1670)$ parameters are consistent with those measured in $\Lambda_c \rightarrow \Lambda \eta \pi^+$ [PRD103 (2021) 052005]

	Present result	$\Lambda\eta\pi^+$ mode
Mass (MeV/c ²)	1674.4	$1674.3 \pm 0.8 \pm 4.9$
Width (MeV)	$50.3 \pm 2.9^{+4.2}_{-4.0}$	$36.1 \pm 2.4 \pm 4.8$

 Λ(1670) is usually considered as a 3-quark state, but may be a virtual molecular state Peak at $\overline{K}N$ threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$

14

• Cusp candidates are observed in $\Lambda \pi^{\pm}$ invariant mass spectra, from Λ_{c} decay K⁰p threshold

Two fitting models

1. Standard Breit-Wigner

$$f_{BW} = \frac{\Gamma/2}{(E - E_{BW})^2 + \Gamma^2/4},$$

2. Dalitz model (cusp) [Czech. J. Phys. B**32**, 1021 (1982)] For $\overline{K}N(I = 1)$ scattering length A=a+ib and decay momentum k/ κ (=|k| below the threshold)

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$
$$= \frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N},$$

neglecting decay form factor

Fitting results

1. Breit-Wigner

Mode	$E_{BW} [{\rm MeV}/c^2]$	$\Gamma [{ m MeV}/c^2]$	χ^2 / NDF
$\Lambda \pi^+$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda\pi^{-}$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

2. Dalitz model (cusp)

Mode	$a[\mathrm{fm}]$	$b[\mathrm{fm}]$	χ^2 / NDF
$\Lambda \pi^+$	0.48 ± 0.32	1.22 ± 0.83	68.9/68
$\Lambda \pi^{-}$	1.24 ± 0.57	0.18 ± 0.13	78.1/68

Dalitz model gives slightly better χ^2 , but the difference is not significant.

Results & discussions

- 1. Breit-Wigner Mass +: $1434.3 \pm 0.6^{+0.9}_{-0.0} \text{ MeV/c}^2$ $-: 1438.5 \pm 0.9^{+0.2}_{-2.5} \text{ MeV/c}^2$ Width +: $11.5 \pm 2.8^{+0.1}_{-5.3} \text{ MeV}$ $-: 33.0 \pm 7.5^{+0.1}_{-23.6} \text{ MeV}$
- Significance 7.5(6.2) σ
- This interpretation implies the existence of an exotic state, $\Sigma(1435)$.

Results & discussions

- 2. Dalitz (cusp) scattering length A=a+ib a K⁰p : $0.48 \pm 0.32^{+0.38}_{-0.01}$ fm K⁻n : $1.24 \pm 0.57^{+1.56}_{-0.16}$ fm b K⁰p : $1.22 \pm 0.83^{+2.54}_{-0.18}$ fm K⁻n : $0.18 \pm 0.13^{+0.00}_{-0.20}$ fm
- Many theories predict a cusp here. [e.g., Y. Ikeda et al., NPA881.98(2012)]

– Due to attraction between \overline{K} and N in the I=1 channel

 Obtained center values for a are larger than most theories (e.g., a(K⁻n)=0.3~0.6 fm for [*]), but with large uncertainties. (Also, form factor is ignored.)

II. J-PARC E72: Search for new narrow exotic Λ^* near the $\Lambda\eta$ threshold

A new Λ resonance around 1670 MeV?

- 2 independent theory groups claim there is a new narrow Λ^* resonance around 1670 MeV with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5±0.5 MeV, $\Gamma=1.5\pm0.5$ MeV
- The reason is the same
 - From $K^-p \rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Model independent

Differential cross sections (1)

Differential cross sections (2)

- Flat near the threshold
 Expected for J=1/2 (S-wave)
- Concave-up around p_K=734 MeV/c (Vs=1669 MeV)
- Flat again for p_K > 750 MeV/c (vs=1677 MeV)
- Concave shape requires J=3/2 amplitude
 reason for a narrow resonance; model independent

What can it be?

• The experimental data suggest the existence of a new Λ^* resonance with spin 3/2 (P₀₃ or D₀₃), Λ (1665):

Q: What is the nature of $\Lambda(1665)$, if it really exists?

- A: We have few ideas at the moment, aside from that it must be exotic, and thus very interesting.
- It is near the $\Lambda\eta$ threshold, but threshold cusp is unlikely. – Visible cusp appears only in S wave
- A molecular state in P or D? Then, where is the S state?
 - Cf. X(3872) & $\Lambda(1405)$ are in S wave.

\rightarrow It may be a new type of exotic state!

- Mixture of a molecular state and a 3-quark state???
- $udss\bar{s}$ pentaquark???

J-PARC E72

- Repeat the Kp $\rightarrow \Lambda \eta$ experiment again with a large acceptance detector, i.e., TPC (HypTPC)
 - Confirm angular distribution & the new resonance
 - Determine parity by Λ polarization measurement
- Principle
 - K beam momentum: 720-770 MeV/c
 - Momentum resolution: 1 MeV/c or better \rightarrow Can identify narrow resonance of Γ =1.5 MeV
 - Detect $\Lambda \rightarrow p\pi^-$, identify η by missing mass
- Test run in this spring.
 Physics run expected in 2025.

HypTPC

- High rate capability
 - (100µm+50µm+50µm)
 - Gating grid
- Target inside the drift volume through the target holder
 - Large acceptance
- Drift field parallel to B-
 - Good position resolution

Byproduct – threshold behavior

- We can take data not only on $K^-p \rightarrow \Lambda \eta$, but most other reaction channels such as $K^-p \rightarrow K^-p$ (elastic), $K^0{}_{s}n, \Sigma\pi, \Lambda\pi^0$, etc.
 - Study threshold behavior
 - The same excellent mass resolution (0.5 MeV)
- Determine pole position for $\Lambda(1670)$ and $\Lambda\eta$ scattering length

III. J-PARC E90: ΣN scattering length via cusp spectroscopy (& beyond)

$\Sigma N cusp$

- Seen in $K^{-}(stopped)+d$ $\rightarrow \Lambda p\pi^{-}$ and many others
- Maybe the cleanest cusp ever seen, but not confirmed.
 - Because the resolution is not enough

What should we do?

• Try even higher resolution

-0.4 MeV (σ) would be enough to see the cusp shape

- Tagging of the final state is necessary
 - Must be ΛN to derive $\Sigma N(I=1/2)$ scattering length
 - $-\Sigma N(I=3/2)$ contaminate if not tagged
- J-PARC E90
 - 0.4 MeV resolution with d(K⁻,p) reaction at p_K~1.4 GeV/c thanks to the high resolution of S-2S spectrometer.
 - Tagging of decay particles by the Hyperon Spectrometer $\rightarrow 4\pi$ acceptance

E90 setup

SET UP

- **Reaction:** $K^{-}d \rightarrow \Lambda p\pi^{-}$ at **1.4 GeV/c**
- **S-2S**(developed for E70): π^{-} measurements \rightarrow measurement of missing mass spectrum
 - Good mass resolution: ΔM ~ 0.4 MeV (σ), (Δp/p(K18)=3.3×10⁻⁴(FWHM), Δp/p(S-2S)=6.0×10⁻⁴(FWHM))
- HypTPC(developed for E42): Final state (Λp) restriction and background suppression

QF BACKGROUND SUPPRESSION BY HYPTPC

QF BACKGROUND SUPPRESSION BY HYPTPC

Importance of resolution

Identification possible with σ = 0.4 MeV, but not with 2 MeV

A new experiment to study $\overline{K}N(I = 1)$ interaction via cusp spectroscopy

+α:

$\overline{K}N(I = 1)$ scattering length

- Important, related to
 - Kaonic nuclei
 - Kaon condensation in neutron stars
- Dedicated experiments with a measurement of kaonic deuterium atom X rays.
 - J-PARC E57
 - Siddharta-2 at DA Φ NE
- A new, independent measurement possible using threshold cusp.

$\Lambda \pi - \overline{K}N(I = 1)$ cusp at J-PARC?

- We already saw a hint in $\Lambda_{\rm c}\,{\rm decay}@{\rm Belle}$
 - very poor S/N
 - Also unknown production mechanism
- Direct reaction is preferred
 - Two possibilities with $\Lambda\pi^\pm$ in the final state
 - p(K⁻,π[±])Λπ[∓]
 d(K⁻,p)Λπ⁻
 - reaction 2: small momentum transfer & controlled reaction mechanism – the same mechanism as J-PARC E31 [PLB837(2023)137637]

Summary

- Virtual state
 → Cusp: sharp peak-like structure at threshold
- In Belle
 - $-\Lambda\eta$ cusp is identified in $\Lambda_{c} \rightarrow pK^{-}\pi^{+}$
 - Another candidate found in $\Lambda\pi$ at the $\overline{K}N$ threshold
- J-PARC E72: Search for an exotic Λ(1665) and more data on Λη cusp
 → scattering length
- E90: ΛN - ΣN cusp study for ΣN scattering length
 - Can be applied to $\overline{K}N(I=1)$ case
 - Even more: any thresholds such as ΛK , ΣK , $N\eta^{(')}$, $\Lambda\eta'$, ...