Future prospects of Lambdaproton scattering experiment

Koji Miwa (Tohoku Univ., KEK IPNS, RIKEN) on behalf of J-PARC E40, E86, HYPS collaboration

Workshop on Strange hadrron as a Precision tool for strongly interacting systems May. $13^{rd} - 17^{th}$, 2024

UNIVERSITY

Contents

- Brief summary of Σp scattering experiment (J-PARC E40)
- New project of Λp scattering experiment at SPring-8
- Summary

Progress of theory & experiment of BB int. study

Theoretical progress

Hyperon-Nucleon int. w/ chiral effective field theory

Hyperon potential by Lattice QCD

BB interaction at almost physical point for multistrangeness sector

Improving accuracy w/ our new data

Experimental progress

BB interaction from femtoscopy

$$c(k^*) = \int S(r^*) \left| \Psi(\overrightarrow{k^*}, \overrightarrow{r^*}) \right|^2 d^3r$$

V[MeV]

Fix source size(S(r^*)) \rightarrow Study interaction from wave function $(\Psi(\vec{k^*}, \vec{r^*}))$

New Σp scattering data at J-PARC

Development of Chiral EFT at NNLO have got started with E40 data

But, the interactions are not uniquely determined yet. We need more data from additional channels (Λp , ...) and additional differential observables (polarizations, ...)

$d\sigma/d\Omega$ of Σ^+p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

Derived phase shift suggests that the ${}^{3}S_{1}$ interaction is moderately repulsive.

$d\sigma/d\Omega$ of Σ^+p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

Derived phase shift suggest that the ${}^{3}S_{1}$ interaction is moderately repulsive.

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Femtoscopy from HIC

New cross section data from Jlab CLAS

New project at SPring-8, J-PARC

 Λp scattering w/ (polarized) Λ

ALICE Collaboration, arXiv:2104.04427

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

Origin of the density dependence of ΛN interaction

Collaborative research regarding the two-body ΛN , ΣN int.

Ap scattering experiment with polarized A beam (J-PARC E86)

14

Advantage of scattering experiment: Spin observables can be measured thanks to self polarimeter of hyperon

Ap scattering experiment with polarized A beam (J-PARC E86)

15

Advantage of scattering experiment: Spin observables can be measured thanks to self polarimeter of hyperon

Ap scattering experiment using photo-produced Λ at SPring-8 (HYPS project)

This project is performed as RIKEN-TOHOKU project

Building ΛN interaction from ΛN scattering experiment using photo-produced Λ

17

Purpose of research

Building the realistic ΛN interaction by providing ΛN scattering data to chiral EFT theory

 Λ N interaction is still uncertain due to lack of scattering data, although the interaction is essential to describe many-body system with Λ such as hypernuclei and neutron stars.

We plan to perform Λp scattering experiment at BL33LEP

Why BL33LEP?

Advantage of γ beam: Λ production can be identified <u>most clearly</u> by detecting K+

Advantage of backward Compton γ beam: A forward spectrometer can be placed, making it possible to tag low-energy Λ with small momentum transfer for the first time.

We can get Λ beam from 0.3 GeV/c (for nuclear study) to 0.6 GeV/c (for neutron star)

Experimental setup of Λp scattering experiment at BL33LEP

Feasibility study at BL33LEP : Acceptance of Λ beam detection

Beam axis

We estimated essential parameters w/ simulation study

- Acceptance for K+
- Λ beam momentum distribution

Input

CATCH (CFT+BGO)

BGO calorimeter

Λ beam identification (Acceptance, Momentum)

- Acceptance for mimicked setup for HYPS : ~10%
 - Corresponding K+ momentum : 1 ~ 2 GeV/c
- Λ momentum range : 0.3 ~ 0.55 GeV/c
 - Cover lower momentum region. Close relationship with hypernuclear physics.
 - Good complementary with K1.1

Λ beam yield estimation

Items	Estimated values
γ beam intensity	2 MHz
Λ production cross section	1.5 μb
Liquid H ₂ target thickness, number	30 cm → 12.7 x 10 ²³ [1/cm ²]
K+ acceptance	0.11
K+ survival rate	0.69 (for p _{K+} =1.5 GeV/c, L=3.7 m)
DAQ, analysis efficiency	0.9 (assumption)
Tagged Λ yield per second	0.281 [1/s]
Tagged Λ yield per day	2.42 x 10 ⁴ [1/day]

We need to accumulate $10^7 \Lambda$ beams for 10% order accuracy: c.f. Σ^- p scattering (E40) 1.7 x $10^7 \Sigma^-$ beam

Beam time of ~400 days is necessary

Beam stop at 2027 August ?

Λp scattering identification

Proton can be stopped in BGO
→ Proton's direction and energy information
Pion cannot be stopped in BGO for many cases
→ Only direction information

But, π^- from Λ decay has low momentum (~150 MeV/c) \rightarrow many of π^- can be stopped (resolution is not so good)

 π^- energy is calculated from Λ 's decay kinematics.

Angular acceptance of Λp scattering by CATCH

Angular acceptance of Λp scattering by CATCH

Forward scattering angle : covered by Λ detection

Backward scattering angle : covered by proton detection

But, very forward and very backward regions might be hard due to Λ decay contamination

Even though, rather wide acceptance can be obtained.

Expected results

Accurate $d\sigma/d\Omega$ data and total cross section can put strong constraint on ΛN interaction theory.

Chiral NNLO Λ N interaction shows rather attractive nature

- Larger cross section around p_{Λ} ~500 MeV/c
- Deeper U(Λ) potential (-35~-37 MeV)

J. Haidenbauer et al., Eur.Phys.J.A 59 (2023) 3

Summary

- Many progresses have been obtained in the BB interactions study.
 - Lattice QCD, Chiral EFT, ...
 - Femtoscopy is successfully used for the hadron-hadron interaction study.
 - YN scattering experiment gets possible!
- New collaborative project regarding the two-body ΛN , ΣN interactions
 - Λp scattering experiment with photo-produced Λ
 - Precise measurement of ΣN cusp shape with S-2S
 - Lattice QCD potential of ΛN , ΣN , ΛN - ΣN potentials
- New experimental project will begin at SPring-8 to measure Λp scattering cross section
 - Λ particle (300<p_{Λ}<600 MeV/c)can be identified cleanly by $\gamma p \rightarrow K^+\Lambda$ reaction.
 - Experimental technology developed at J-PARC will be introduced.
 - Our goal
 - Total cross section measurement better than 10%
 - First derivation of the differential cross section for Λp elastic scattering

Precise ΣN cusp measurement with K⁻d $\rightarrow \Lambda p\pi^{-}$ reaction (J-PARC E90) K-

 $\Lambda N-\Sigma N$ Coupling dependence of cusp shape

Background of Λp scattering

Event ID for $10^7 \Lambda$

Hypernuclear physics

<u>Baryon-Baryon interaction</u> <u>Study of light Λ , Ξ hypernuclei</u> <u>Spectroscopy of heavy hypernuclei</u>

Phase shift in Chiral EFT NNLO and U_{Σ}

 ΣN (I=3/2) phase shift in chiral EFT

