Future Nuclear and Hadronic Physics at CERN AD: ideas and brainstorming

SPICE Workshop

Strange Hadron as a Precision Tool for Strongly Interacting Systems ECT* Trento, May 13–17, 2024

Alessandra Filippi INFN Torino

Outline

- Introductory remarks
- Physics with low energy antinucleons
 - Overview and open problems: a few selected topics
- The onset of strangeness in $\ensuremath{\overline{N\!N}}$ annihilation
 - Strangeness in nucleons
 - Hyperon physics and related topics
- State-of-art of \bar{p} infrastructure at CERN and timeline
- Conclusions

Introduction: why antinucleons again?

- Ideas for new measurements to be performed with low energy p
 's at a (possible) forthcoming future facility were discussed in a kickstart meeting at SMI, Vienna
 - FuPhy2024 meeting, April 8-10, 2024: <u>https://indico.cern.ch/event/1374378/</u>
- Lively interplay among physicists (mostly originating from past experiments at LEAR) and AD/ELENA machine staff
 - Lot of interest from machine staff in the ideas of a new hadron physics program to extend AD's life
 - A rich hadron physics program can be easily worked out, based on the outcomes of old LEAR experiments
 - New experimental techniques
 - Big progresses on the theoretical side for the interpretation of observations
 - Far time horizon but it needs to be laid out now!

FuPhy 2024

Puture Nuclear and Hadronic Physics at the CERN-AD

8-10 April 2024, Vienna

Scientific Topics • Nuclear and Hadronic Physics with Antiprotons and Antineutrons • Exotic Hadrons with Antiprotons • Exotic Hadronic and Leptonic Atoms • Atomic Collisions with Antiprotons • Hypernuclear Physics with Antiprotons • New Techniques, Instrumentation and Facilities

Registration deadline: 15 March 2024 Abstract deadline: 15 March 2024

Organizing Committee Claude Amsler (SMI) • Luca Venturelli (Brescia University & INFN) • Eberhard Widmann (SMI) Workshop Secretaries Carolina Dibold (SMI) • Stefano Migliorati (Brescia University & INFN) Organized by Stefan Meyer Institute (SMI), University of Brescia and INFN

Some ideas for new measurements with low energy antiprotons

Physics with low energy antiprotons: open issues

Several issues left open since LEAR times and new research topics

Annihilation dynamics studies

- p
 annihilation: at rest vs in flight processes
- Pontecorvo reactions
- Physics with antineutrons
- Antideuterons/antideuterium production

Meson and baryon spectroscopy

- Glueballs/exotic searches
- S-dibaryons searches
- Baryonium searches

Onset of strangeness in annihilation processes

- Strangeness in the nucleons
- Hyperon physics
- Strange mesonic excitations/hybrids
- Neutron skin measurements

Other topics

• n-n oscillations, ...

Antinucleons (\bar{p}, \bar{n}) annihilation dynamics

$\overline{N}N$ annihilation at rest

- Annihilation at rest occurs from protonium states: atomic $p\bar{p}$ states following \bar{p} capture in the n=30 orbital
- Cascade down to P and S states, density dependent
 - strongly suppressed by collisions with neighboring atoms through Stark effect

- Which mechanism underlying the production of particles in annihilation?
 - Gluon rich environment
 - Hot evaporating fireball gas
 - Pion final multiplicity distributed statistically (roughly ok with experiment)
 - But: keep into account the excitation of intermediate resonances
 - Quark and antiquark interactions
 - Clear evidences, but the exact mechanism is still unclear
 - Annihilation vs rearrangement interplay

Dynamic selection rules in \overline{NN} annihilations

- Experimental observation of peculiar behaviors in two-body processes
- More comprehensive theoretical interpretation needed
- More precise data could be useful...
 - 1. Suppression of K^+K^- production from *P* waves
 - Missing contribution from the quark annihilation graph A?
 - 2. Suppression of the $\rho\pi$ channel from ${}^{I}S_{0}$
 - 3. Dominance of $\omega\omega vs \rho\rho$ channel
 - Can be explained through rearrangement diagrams R?
 - 4. Suppression of φ production from *P* wave
 - 5. Suppression of $f'_2(1525)$ production from *S* wave
 - Both leading to sizeable excess compared to OZI-rule predictions

i, j: u (\overline{u}) and $d(\overline{d})$

Annihilation: no $(u\,\overline{u} + d\,\overline{d})$

Rearrangement: no $(d\overline{d} + d\overline{d})$

Pontecorvo reactions on three nucleons

- Class of (rare) annihilation reactions occurring on nuclei, forbidden on free nucleons: B.R. < 10⁻⁵
- Sensitive to small internuclear distances and to the dynamics in nucleon pairs in nuclei
- The two main approaches to explain the process expect large differences in branching ratios
- Systematic studies of $\bar{p} d$ @LEAR
- Experimental measurements mutually agree
- Disagreement with model expectations
- Large differences expected from the models for reactions on ³He, never measured so far
 - Possibility @ASACUSA or with a slowly extracted beam facility

- Predicted rates differ by 1-2 orders of magnitude
 - Fireball: 10⁻⁶
 - Rescattering: 10⁻⁷-10⁻⁸

Physics with \bar{n} 's: motivations

- $(\overline{n}p)$ is a fixed isospin system: I=1
- (pp) contains both the I=0 and I=1 sources
 - *n̄* 's offer a powerful selection rule excluding several initial states and constraining the combination of quantum numbers of intermediate objects/resonances

- The same quantum numbers are featured by the (p
 n) system formed in deuterium targets
 - PRO's:
 - higher statistics/cross section
 - \bar{p} annihilation can occur at rest, \bar{n} annihilation always in flight (more initial partial waves involved)
 - CON's
 - The hit neutron in deuteron has a Fermi momentum: the kinematics are not "exactly" closed
 - The recoiling nucleon has a momentum which should be measured
 - The recoiling nucleon can re-scatter against the particles produced in the annihilation
 - Additional complication: does the annihilation occur on a proton or a neutron in deuteron?

Physics with \bar{n} 's: four puzzles

Anomaly in the elastic *np* channel

- Can it be due to a quasinuclear bound state close to threshold?
- Can it be explained by a (sort-of) Ramsauer-Townsend nuclear effect?
 - The points at 64.5 and 80 MeV/c are close to the lower bound for σ_{el} imposed by *S*-wave unitarity

I=0 vs *I=1* sources interplay

- From the ratio between the total $\sigma_T(\bar{n}p)$ and $\sigma_T(\bar{p}p)$
- $\sigma_{ann}(\bar{n}p) < \sigma_{ann}(\bar{p}p)$
- Strong dominance of the *I*=0 source both in σ_T and σ_{ann}
- But the trend is not monotonical for the annihilation:
 - R(0,1) = 2.4 @ 70 MeV/c vs 1.5 @ 700 MeV/c

Charge-Exchange total and differential cross section

- Few measurements exist and mostly at high momenta
- Full angular range: excess at backward angles
- 0°: disagreement among several measurements, call for new data

Annihilation cross section on nuclei at low momenta

- Friedman (2014): the \bar{n} A annihilation cross section cannot be described by an optical potential fitting well also the \bar{p} A interactions
- Too few data on \overline{p} A for a thorough comparison
 - One single data from ASACUSA on Sn Friedman, NPA925 (2014), 141

Meson spectroscopy: open problems

Glueballs signatures in $\overline{N}N$ annihilations

 $\overline{N}N$ annihilation is a glue-rich environment suitable for glueball production

Several observation performed @LEAR in different final states by OBELIX and **Crystal Barrel** 13

Meson spectroscopy with kaons

A larger statistics and more precise detecting methods could help improving our knowledge on a few still open issues

<i>E/i</i> puzzle: $K\overline{K}\pi$ excitations

- $(K\overline{K}\pi)$: $J^p = (even)^+ \text{ or } (odd)^-$
- **Pseudoscalar states 0**⁻⁺: all of them decay in $K\overline{K}\pi$ (direct), K^*K , $a_0(980)\pi$
 - η (1275)
 - η (1440): η (1405) (gluonium) + η(1475) ?
- Axial states 1⁺⁺:
 - f₁(1285) does not decay in KK*
 - f₁(1420) hybrid? 4-q? K*K molecule?
 - *f*₁(1510)
 - Isovector a₁(1420) (COMPASS)

Search for strangeonium & radial excitations

- The strangeonium spectrum does not simply replicate the light meson spectrum ~250 MeV higher in mass
- several channel dependent couplings
- To-date, only a few confirmed $s\bar{s}$ resonances:
 - $\eta \eta' (1 \ ^{I}S_{0} \ 0^{-+})$
 - φ(1020) (1 ³S₁ 1⁻⁻)
 - *f₁(1420)* (1 ³*P*₁ 1⁺⁺)
 - **f**₂(1525) (1 ³P₂ 2⁺⁺)
 - φ (1680) (2 ³S₁ 1⁻⁻)
 - φ₃(1854) (1 ³D₃ 3⁻⁻)
- Several observations still controversial

Open/hidden strangeness spectroscopy with \bar{n} **'s**

- Antineutrons as probes offer stringent quantum numbers selection rules
- Basic problem: lack of statistics!

 $\overline{n}p \rightarrow K^+K^-\pi^+$ Hidden strangeness resonances decaying in K^+K^- • $J^{PC} = (even)^{++}$ or $(odd)^{--}$ • $f_{0}, f_{2}, a_{0}, \varphi$ and radial excitations open strangeness radial excitations: K^* , κ , K_1 , K_2 , ... f₀(1500) & f₂(1525) 20 MeV) 18 a) ntries/(22.5 16 12 10 2 0 1.2 m(K*K⁻), GeV

$$\overline{n}p \rightarrow K^0_s K^0_s \pi^+$$

- $K^{\theta}_{S}K^{\theta}_{S}: J^{PC} = (even)^{++}$
- Possible resonant states:
 - No φ nor 1⁻⁻ strangeonium states
 - f_0, f_2 : only from $G = -1 ({}^{1}S_0, {}^{3}P_1, {}^{3}P_2)$
 - *a* : only from $G = +1 ({}^{3}S_{1}, {}^{1}P_{1})$

- Search for intermediate states decaying in $\overline{K}K\pi$
- Channel produced only by *P*-waves for *G*-parity conservation
 - Axial states production potentially favored
 - $K^0 K^{\pm}$ systems: $I^G = I^+$: a_0 , a_2 , ρ

The S-dibaryon

Features: S ~ |uuddss >

- G. Farrar, 2017: possible Dark Matter candidate (arXiv: 1708.08951)
- Tightly bound six-quark combination, doubly strange
 - Q = 0, B = 2, S = -2
 - Flavor singlet: very small coupling to γ , π , ρ , ...
 - Very compact object: r ~ 0.1-0.4 fm (< r_N/4)
 - Large binding energy, smaller mass: m_s < 2.05 GeV
 - new stable hadron, $\Lambda\Lambda$ bound state
 - If $m_S < m_A + m_p + m_e = 2.05$ GeV: only doubly-weak decays allowed, cosmologically stable
- S N interaction suppressed by tiny wavefunction overlap (σ ~ 10⁻³⁰ cm²)
 - It does not bind to nuclei (no exotic isotopes)
- Not excluded so far by experiments: upper limit by *BaBar* < 10⁻⁷

Detection: \bar{p} ³He \rightarrow *S*(*uuddss*) + *K*⁺*K*⁺ π^-

- Requires a multinucleon annihilation
- An antiprotonic ³He can be formed by eV-KeV antiprotons
 - in a trap (requires a cryogenic environment)
 - Experimental equipment: Solid Ar TPC
 - using a jet target (problems with vacuum, low rate...)
 - Experimental equipment: gaseous TPC + Si strips/pixels + TOF
 - It could exploit the AeGIS setup post LS3

Strangeness physics with antiprotons

Strangeness in the nucleon

- Annihilation at rest/low energy: good environment for the study in a nonperturbative regime of the sea-quark content in the nucleon
 - no strange valence quarks in nucleons
 - Almost ideal mixing in the vector meson nonet
- Signature of strangeness in the nucleon: sizeable OZI rule violation
 - Comparison of the production of hidden strangeness vs non-strange mesons
 - Different mechanisms can be advocated:
 - Quark-lines rearrangement
 - (s̄ s) quark content of the nucleon, possibly polarized since the behavior changes with the initial state
 - Existence of a tetraquark $sq\bar{s}\bar{q}$ states?

Polarized strange sea at low energy?

- Dynamical selection rule: $\bar{p}p \rightarrow K^+K^$ reaction suppressed from *P* wave
- Selected final states in *n p* annihilations: trend of the meson production and OZI ratio compatible with the hypothesis of an energy-dependent polarized strange content of the nucleon
 - \bar{ss} spins are parallel and opposite to the $\bar{n}p$ ${}^{3}S_{I}$ initial state
 - Muon induced DIS at high energies (*color transparency* effect): s̄s have spins parallel and opposite to the nucleon spin
- Increasing production of $f'_2(1525)$ with *P* wave and large OZI violation also in the meson tensor nonet

Hyperon production with \bar{p} 's

$ar{p}p ightarrow Y \overline{Y}$ reaction	p _{beam} thr. (GeV/c)
$\bar{p}p ightarrow \Lambda \overline{\Lambda}$	1.44
$\bar{p}p ightarrow \Sigma^0 \overline{\Lambda}$	1.65
$\bar{p}p \rightarrow \Sigma^+ \bar{\Sigma}^-$	1.85
$\bar{p}p \rightarrow \Sigma^*(1385)\overline{\Lambda}$	2.20
$\bar{p}p ightarrow \Xi^0 \overline{\Xi}{}^0$	2.58
$\bar{p}p ightarrow \Lambda(1520)\overline{\Lambda}$	2.60
$\bar{p}p ightarrow \Xi^- \bar{\Xi}^+$	2.61
$\bar{p}p ightarrow \Xi^*(1620)\overline{\Lambda}$	3.55
$\bar{p}p ightarrow \Xi^*(1690)\overline{\Lambda}$	3.78
$\bar{p}p ightarrow \Xi^*(1820)\overline{\Lambda}$	4.22
$\bar{p}p ightarrow \Omega^- \overline{\Omega}^+$	4.93
$ar{p}p o \Omega^*(2100) \overline{\Lambda}$	6.58

- Exclusive $Y \overline{Y}$ production: cleanest environment to constrain models of non-perturbative QCD
 - Quark-gluon interaction vs meson exchange
 - Discriminating observables (spin dependent): polarization and spin correlations
- PS185: most complete data-set of $\bar{p}p \rightarrow \bar{Y}Y$ cross sections
 - "large" production rates for both ground and (expected) radial excitations:
 1-100 μb high energy threshold (esp. for multi-strange production)

Spin observables

- Hyperons' unique feature: self-analyzing decay
 - The hyperon decay products are emitted along the spin direction of the parent hadron
 - The angular distribution of the daughter baryon is related to the hyperon polarization by:

 $I(\cos \theta_B) = (1 + \alpha_Y P_y \cos \theta_B)$

- In $\bar{p}p \rightarrow Y\overline{Y}$ the hyperon decay products are correlated
 - the polarization vector P is related to the production dynamics
- The differential cross-sections can be expressed in terms of
 - Angles
 - Decay asymmetries
 - Spin observables: polarizations and correlations
- The spin correlations are sensitive to the singlet fraction in the $\bar{p}p \rightarrow Y\overline{Y}$ reaction
 - PS185: dominance of spin triplet in $\bar{p}p \to \Lambda \bar{\Lambda}$

Barnes et al., PR **C54** (1996), 1877

CP-violation measurements

 Related to the baryogenesis mechanisms and matter-antimatter asymmetry in the Universe

- Deduced from weak phases in direct decays
 - Due to interference between strong and weak amplitudes
 - A non-zero difference between hyperon/antihyperon decay asymmetries can hint to *CP*-violation:

 $I(\cos \theta_B) = (1 + \alpha_Y P_y \cos \theta_B)$

$$A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} \sim -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$

strong, non-CP weak, possibly-CP

22

CP-tests in $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$

- Measurement by PS185 in $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$
- Clean test since the initial state is a CPeigenstate and no mixing occurs between hyperons
- Based on a sample of 96000 reconstructed events
- Reached a sensitivity of 10⁻²: consistent with zero at two \bar{p} momenta:
 - *p*_{*p̄*} = 1.642 GeV/c: *A*_{*CP*} = (0.026 ± 0.030)
 - $p_{\bar{p}} = 1.918 \text{ GeV/c: } A_{CP} = (0.010 \pm 0.037)$
 - World average: 0.01
- With heavier hyperons: subsequent decay chains ⇒ more weak phases

A-Hypernuclei production with low-energy \bar{p} 's

- Coherent production of hypernuclei can occur in p
 induced reactions on nuclei
 - Formation of protonium in the nuclear density tail
 - Annihilation of p
 at rest
 - 5% in kaons
 - Strangeness exchange reaction $N(K^{-}, \Lambda)\pi$ (80%)
 - Strangeness pair production induced by pions (20%)
 - Total expected rate:
 - 0.3% (¹⁶O) \rightarrow 1.2% (¹³²Xe)
- First measurements at LEAR: PS177, Bi and U targets
 - (0.3-0.7)% /annihilation

A. Schmidt et al., EPJ A60, 55 (2024)

- Yields on the order of 10⁻⁴ hyp/annih. can be achieved for many hypernuclear species, never observed before
- Challenge: how to detect the production of a hyperfragment
 - Mesonic vs non mesonic decay

Measurements of neutron skin with \bar{p} 's

- Production of Y Y pairs on the nuclear surface/halo can provide a measurement of the extension/features of the neutron skin
 - Measurement of the ratio of Y Y production in two isotopes with different neutron content (⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb)
 - $\Sigma^{-}\overline{\Lambda}$ pairs only produced in $\overline{p} n$ interactions
- Important input for the nuclear EoS, basic ingredient to define the hydrostatic equilibrium of stellar matter
 - The EoS is defined through the nuclear density
 - The isospin dependence of the EoS is correlated to the distribution of neutrons

The CERN facility for \bar{p} production: status, plans and time schedule

AD/ELENA: a Unique pbar Facility!

- The only place in the world with low energy pbars in a synchrotron!
 - It seems unlikely to have similar capabilities elsewhere for the next 10-20 years
- Serving 60 Research Institutes/Universities 350 Scientists 6 Active Collaborations

Courtesy of D. Gamba, CERN

ASACUSA Antiprotonic helium spectroscopy

BASE, BASE-STEP

Fundamental properties of the proton/antiproton, tests of clock WEP / tests of exotic physics / antimatterdark matter interaction, etc...

PUMA

protons

0

0

bo

an

Antiproton/nuclei scattering to study neutron skins

ALPHA, Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA Spectroscopy of GS-HFS in antihydrogen

ALPHA, AEgIS, GBAR Test free fall weak equivalence principle with antihydrogen

Some AD technical aspects – current situation

- PS: spill frequency of 4.8 s, only one spill/115 s used for AD
- AD delivers approximately 4x10⁷ p/2 min
 - AD needs 90 s to cool \overline{p} to 5.3 MeV
- So far, no slow extraction
 - Never required, it would be a major change but possible: $4x10^5 \overline{p}$, similar to LEAR intensity
- All existing caves are occupied
- Some digging will be done one could profit of these operations
- New building? Not much space available...
- The life of PS is guaranteed until 2042 end of LHC-HiLumi
- Extension possible but depending on several factors...
 - Interest of the community
 - Program after LHC-HL: FCC?
 - New PS needed?
 - 2042 is really a far future horizon

Summary

- A new facility producing low energy antinucleons would be highly desirable to explore new physics topics and to solve some puzzles left open since LEAR times
- Antiproton annihilation at rest:
 - The details of the annihilation mechanisms at microscopic level are not understood yet
 - More accurate data on branching ratios would be desirable to understand dynamical selection rules, the onset of strangeness, ...
 - A more accurate assessment of all systematic uncertainties would be appropriate, with more advanced detectors and analysis tools
 - New items of nuclear physics at rest: Pontecorvo reactions, sexaquarks, hyperon physics, meson and baryon spectroscopy, neutron skin...
- Antinucleon annihilation in flight:
 - Investigation of long-sought baryonium below the $\overline{N}N$ threshold
 - Study of the peculiar behavior of the annihilation cross-section close to threshold/study of the elastic channel
 - Understand the *I=0* vs *I=1* puzzle from the comparison of $\overline{p}p$ vs $\overline{n}p$ annihilation cross-sections
 - Closer look to CEX cross sections
 - More precise measurements of annihilation cross sections on nuclei

THIS IS THE MOMENT TO PROPOSE NEW IDEAS!

Backup slides

Antideuterons/antideuterium production?

囊

量

酉

Antideuterons

- Precise measurements of elementary observables
- d mass
- Magnetic momentum
- Binding energy
- \overline{d} can be produced via proton scattering on fixed solid targets (like \overline{p} 's at CERN, from 26 GeV PS protons on Iridium)
- Estimated cross-section @30 GeV: 10 nb/(sr MeV/c)
 - 3 order of magnitudes larger @200 GeV/c
- \overline{d} are formed at rest in the c.m. by \overline{n} and \overline{p} coalescence
 - Production mechanism for E < 30 GeV: cascade model (+ coalescence, + nuclear scatterings, ...)
- Better use targets with low Z: Al and Be (better than Ir)
 - On Be, at 26 GeV/c: $\frac{R_{\overline{d}}}{R_{\overline{p}}} \sim 4.6 \cdot 10^{-6}$
- @PS with an Ir target: $40 \times 10^6 \bar{p}$ /shot $\Rightarrow \sim 120 \bar{d}$ /shot expected, p_{max} 1.7 GeV/c

Antideuterium

- CPT-violation tests through antideuterium spectroscopy
- Weak Equivalence Principle tests through free falling antideuterium
- Tests of B L interactions
- \overline{D} could possibly be produced via a Penning Trap (similar to \overline{H} AeGIS) once \overline{d} are available

R.Caravita, arXiv:2404.08000

Spectroscopy of mesons with open/hidden strangeness

(qm)

- JETSET (PS202) revival: compact detector around a hydrogen cluster jet target
 - Hadron spectroscopy in the (1.96-2.43) GeV mass range
 - $\overline{p} p \rightarrow \varphi \varphi$: abundant production
 - Signal compatible with a 2⁺⁺ structure: first signature for a tensor glueball?
 - ξ(2230): m = 2.225 GeV, Γ = 30 MeV
 - $\bar{p}p \rightarrow p\bar{p}\pi^+\pi^-$
 - Centrality cut for baryonium searches
 - No signal observed

Searches for baryonium

- Bound states predicted in the \overline{NN} system due to the attractive short-range force
- Expected as a charged neutral state in the *I=0* channel
 - I=0: the ω and σ -exchange provide an attractive central contribution to the \overline{NN} potential
 - *I*=1: ρ -exchange \Rightarrow repulsive contribution
- Many attempts to search for baryonium signatures at LEAR, none reliable enough
- Better understanding of the NN potential structure would be needed

Additional items $\overline{n}n$: oscillation studies

- Motivation: search for a violation of the baryon number |∆B|=2
 - Could help to distinguish between GUT models, which predict different oscillation periods
- Experimental status
 - ILL(1994) on free neutrons:
 - $\tau(\bar{n} n) > 8.6 \times 10^7 \text{ s}, 90\% \text{ CL}$
 - Super-Kamiokande on nuclei:
 - $\tau(\bar{n} n) > 4.7 \times 10^8 \text{ s}, 90\% \text{ CL}$
 - New proposals with new techniques:
 - \overline{n} mirrors could extend x10⁴ the observation time
 - \overline{n} A scattering length needed as input
 - Usage of ultra-cold neutrons (neutron optics)
 - Neutron-gas interactions to compensate the magnetic field interaction
- Key issue: wall interaction of *n*'s and \overline{n} 's

$$P_{nar{n}}pprox (\cos
u t_W)^{2N}\left(rac{t_s}{ au_{nar{n}}}
ight)^2$$

- The oscillation frequency depends on the scattering length of *n* in nuclei
 - extracted through *n* A optical potential models (Friedman, Gal, PRD78 (2008), 016002)
 - Lack of experimental verification

AD/ELENA @CERN timeline

- CERN calendar structured adapted to the long shutdowns (LS) periods
 - LS3: fall 2025-mid 2027
 - No new installations can be possible, too early – really exceptionally good reasons to operate during this LS
 - LS4: fall 2032
 - New installations possible at this point if proposed NOW

- Groundwork, building construction and installations could be possible between shutdowns
- AD program could be over between LS3-LS4 (around 2030?)