Hypernuclear projects of the high-resolution mass spectroscopy at JLab

University of Tokyo Sho Nagao

May 16, 2024

Motivation

Overview of hypernuclear exp. at JLab
 Prospects of JLab hypernuclear project
 (e,e'K⁺) Missing Mass Spectroscopy
 Decay Pion Spectroscopy

Motivation

Light A hypernuclei

We have long-standing discussed about AN CSB, AN-EN coupling etc.

- There are some update of B_{Λ} for ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{7}_{\Lambda}He$, ${}^{10}_{\Lambda}Be$
- We have still used B_{Λ} data of 1960s emulsion
- Data precision is enough ?
- Only a few n-rich hypernuclei (⁸_AHe, ⁶_AH) are available

Medium-Heavy hypernuclei

 (π^+, K^+) exp. have measured B_Λ wide mass range We have only B_Λ data on β -stability nuclei Peak significance is not enough for several hypernuclei B_Λ of ${}^{12}_\Lambda$ C likely to have shifted around 0.5 MeV

Hypernuclides	$\Delta B_{\Lambda}(Exp)$
	(keV) [4]
${}^4_{\Lambda}{ m He} - {}^4_{\Lambda}{ m H}$	300 ± 60
$^7_\Lambda { m Li}^* - ^7_\Lambda { m He}$	-320 ± 140
$^{8}_{\Lambda}\mathrm{Be}-^{8}_{\Lambda}\mathrm{Li}$	40 ± 80
$^9_\Lambda { m B} - ^9_\Lambda { m Li}$	-160 ± 210
$^{10}_{\Lambda}\mathrm{B} - ^{10}_{\Lambda}\mathrm{Be}$	100 ± 300
$^{11}_{\Lambda}\mathrm{B}^*$ – $^{11}_{\Lambda}\mathrm{Be}$	N/A

JLab CEBAF & (e,e'K⁺) missing mass spectroscopy

p.4

Overview of Hypernuclear Exp. @JLab

Proposed Experiments

^{40, 48}Ca(e,e'K⁺)^{40, 48}^K (Approved)

An isospin dependence study of the ΛN interaction through the high precision spectroscopy of Λ -hypernuclei with electron beam

²⁰⁸Pb(e,e'K⁺)²⁰⁸[^]Tl (Approved)

Studying A interactions in nuclear matter with the ²⁰⁸Pb(e,e'K⁺)²⁰⁸ATl reaction

⁶Li, ⁹Be, ¹¹B(e,e'K⁺)⁶[^]He, ⁹[^]Li, ¹¹[^]Be

Study of charge symmetry breaking in p-shell hypernuclei

²⁷Al(e,e'K⁺)²⁷[^]Mg

Study of a triaxially deformed nucleus using a Lambda particle as a probe

s-, p-shell hypernuclei with Decay Pion Spectroscopy

High-resolution spectroscopy of light hypernuclei with the decay pion spectroscopy

Hypernuclear Isotopes (40, 48 K)

Super-Heavy hypernuclei (²⁰⁸ Tl)

Study of effective ∧N interaction to support 2 ⊙ NS Mass dependence

Poor data quality Isotope dependence

No data for A>12

High-resolution Spectroscopy

CSB in p-shell

→ T.Gogami (Fri. talk)

Triaxial Deformed Nucleus (²⁷ Mg)

- > Study of triaxial deformed nuclei by using ∧ as a probe
- \succ Different overlap between p-shell Λ and nucleons results in different B_{Λ}
- ➢ High-resolution spectroscopy is able to measure the difference of ²⁷∧Mg structure

Decay Pion Spectroscopy @ JLab

High-resolution spectroscopy of light hypernuclei with the decay-pion spectroscopy

Spectroscopy of p-shell hypernuclei with high accuracy

Decay Pion Spectroscopy

High-resolution, High-precision mass spectroscopy

- Measurement of two-body decay pions
- Kaon Tagging
- Thin Target
 - \rightarrow High-Resolution
- Precise Momentum Calibration
 - → Accurate mass
- > Available for
 - Charged, Two-Body Decay & π^- MWD

Previous Experiment at MAMI

Proof of Principle at MAMI

- Pion measurement with spectrometers at the backward angles
- \succ First observation of ⁴_ΛH → ⁴He + π[−]
- N ~ 40, Resolution ~ 100 keV, Precision ~ 5 keV
- > ³_AH analysis is on going from 2022 data (R.Kino, Wed. talk)

 $M(^{A}_{\Lambda}Z) = \sqrt{M(^{A}(Z+1))^{2} + p_{\pi}^{2}} + \sqrt{M_{\pi}^{2} + p_{\pi}^{2}}$

What's new??

Decay Pion Spectroscopy @JLab will be **Higher luminosity & Less background** → Expansion to p-shell hypernuclei **New calibration method** → Better accuracy **Heavy targets (Al, Ca, Pb targets)** → sd-shell ???

Setup Overview

Proposed (e,e'K⁺)

Medium-heavy ∧K isotopes (E12-15-008) Super-heavy ²⁰⁸∧Tl (E12-20-013) CSB in p-shell (LOI12-23-013) Triaxial Deformation (LOI12-23-016) High-resolution spectroscopy with HKS⊗HES Will be scheduled for 2026-2027

Setup Overview

Proposed (e,e'K⁺)

Medium-heavy ∧K isotopes (E12-15-008) Super-heavy ²⁰⁸∧Tl (E12-20-013) CSB in p-shell (LOI12-23-013) Triaxial Deformation (LOI12-23-016) High-resolution spectroscopy with HKS⊗HES Will be scheduled for 2026-2027

Another Spectrometer "Enge" for decay pion measurement DPS with HKS © Enge Parallel exp. with (e,e'K⁺)

Pion Spectrometer "Enge"

- Decay Pion Spectrometer as Hardware spectrometer Enge
- Focal Plane position = Pion Momentum 60 keV / mm Dispersion
- Position detector in vacuum
- Mom. coverage 70 ~150 MeV/c
- Drift Chamber for angular measurement
- Timing detector

Pion Spectrometer "Enge"

~30 times yield

- Much better luminosity thanks to higher beam energy and intensity
- Background reduction from in-flight hyperons

Spin assignment from decay width

FINUDA, Phys. Lett. B681 (2009) 139

- Decay width calc. well reproduced exp. data (T. Motoba and K. Itonaga, PTPS117(1994)477.)
- > Large Γ_{π} dependence on SPIN of parent hypernuclei

Hypernuclear formation probability

- ► A⁻² dependence of ⁴_ΛH Form. Prob. (H.Tamura, PRC40(1989)R479)
- > 1.57% @ $(K^-,\pi^-)_{stop}$, 1% @MAMI for ⁹Be target
- Prediction by AMD on ¹²C target

Expected Spectrum (Li target)

- Decay pions of ³_ΛH, ⁴_ΛH from ⁶Li target (simplest spectrum) Direct produced ⁶_ΛHe decays to ⁵_ΛHe and 3-body final state
 Σ⁻→ n + π⁻ as a major background source
- > Peak precision of < 10 keV after fitting with a response function

Expected Spectrum (C target)

- Many decay pions from p-shell hypernuclei
- \succ Robust peaks of ¹²_ΛB → ¹²C(*) + π[−]
- Interesting hypernuclei about CSB discussion
- Spin determination

Expected Spectrum (C target)

- Many decay pions from p-shell hypernuclei
- \succ Robust peaks of ¹²_ΛB → ¹²C(*) + π[−]
- Interesting hypernuclei about CSB discussion

Spin determination

Summary

A binding energy measurement for wide mass range & good precision Prospects of JLab hypernuclear project (e,e'K⁺) Missing Mass Spectroscopy ⁶_AHe, ⁹_ALi, ¹¹_ABe, ²⁷_AMg, ^{40,48}_AK, ²⁰⁸_ATl **Decay Pion Spectroscopy** Parallel exp. with (e,e'K⁺) HKS + Enge as Pion Spectrometer New calibration with alpha-sources Measurement for s-, p-shell hypernuclei

We submitted proposals, Exp. will run 2026-27.

Time difference of "K, pi"

Decay Width of ${}^{10}_{\Lambda}B \& {}^{12}_{\Lambda}B$

