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Introduction: hyperon puzzle of 

neutron stars and Λ potential



Hyperon puzzle of neutron stars

➢ Most of the equations of state in which hyperons 

(e.g. Λ) appear become too soft to support massive 

neutron stars with 2𝑴⊙ (solar mass).
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Demorest et al. Nature (2010)

➢ Many solutions have been proposed for avoiding softening.

⚫ Many-baryon repulsions (e.g. ΛNN): e.g. Nishizaki, Yamamoto, & Takatsuka

(2002); Togashi, Hiyama, Yamamoto, & Takano (2016); Gerstung, Kaiser, & Weise (2020).

⚫ YY repulsions (e.g. ΛΛ): e.g. Weissenborn, Chatterjee, Schaffner-Bielich (2012); Fortin, 

Avancini, Providencia, & Vidana (2017).

⚫ Transition to quark matter without phase transition (QH continuity): 

e.g. Baym, Hatsuda, Kojo, Powell, Song, & Takatsuka (2018); Kojo, Baym, & Hatsuda (2022).

with strange hadrons



YNN three-body repulsion from Chiral EFT

• YNN three-body force in dense matter: Nishizaki, Yamamoto, & Takatsuka (2002); 

Lonardoni et al. (2015); Togashi, Hiyama, Yamamoto, & Takano (2016); Friedman & Gal (2023) etc.

• Chiral effective field theory (decuplet saturation model)

Kohno(2018), D. Gerstung, N. Kaiser, and W. Weise (2020)
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Λ does not 

appear even at 

high densities!

𝜖Λ(𝜌) = 𝑚Λ +𝑈Λ (𝜌)

Avoiding 

hyperon 

puzzle!?



We have used Λ directed flow 𝒗𝟏 = 𝒑𝒙/𝒑𝑻 data of heavy-ion collision to verify 

the repulsive Λ potential from chiral EFT.

(Our previous work) Λ directed flow 𝒗𝟏
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Y. Nara, AJ, K. Murase, and A. Ohnishi, Phys. Rev. C 106 (2022) 044902

Chi3 (YN+YNN int.) 

reproduces the Λ 𝒗𝟏 data 

( 𝒔𝑵𝑵 ≥ 𝟒.𝟓 𝐆𝐞𝐕).

On the other hand, more 

attractive Λ potential also 

reproduces the data.

transverse momentum 𝑝𝑇 = 𝑝𝑥
2 + 𝑝𝑦

2 1/2

There remain two scenarios in which Λ appears or does not 

in dense neutron star matter.



Purpose of this study

To verify the scenario which Λ does not 

appear in neutron stars (NS) by 

distinguishing three Λ potentials (Chi3, 

Chi2, LY-IV) using Λ hypernuclear data.

GKW2 (GKW3): Gerstung, Kaiser, and Weise (2020).

Chiral EFT calculation including YN (YN+YNN) interaction.

LY-IV: Lanskoy and Yamamoto (1997).

Skyrme-type Λ potential reproducing Λ binding energies. 

No Λ in 

neutron stars

Admix Λ’s in NS
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Verifying the Λ potential
from hypernuclear data

Λ
𝐴𝑍
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• Can Chi2 and Chi3 reproduce the Λ 

binding energy data?

• If they reproduce the data, how is the 

level of accuracy compared to a 

conventional attractive model (LY-IV)?

deeper

Chi3 is deeper 

than LY-IV.

Can Λ potentials reproduce Λ binding energies?

Expected to be sensitive to the 

Λ potential in 𝝆 ≲ 𝝆𝟎.

Λ binding energy

𝑩𝚲
= 𝐴−1𝑍 Λ

𝐴𝑍―
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Spherical Skyrme-Hartree-Fock method

• Total energy of hypernuclei: 𝓔 𝚲
𝑨𝒁 = 𝓔𝑵 + 𝓔𝚲 − 𝓔𝐜.𝐦.

• Total energy of Λ:

density

kinetic density

Λ kinetic density

−𝒂𝟑
𝚲 𝝆𝚲𝛁

𝟐𝝆𝑵 + 𝒂𝟒
𝚲𝝆𝚲𝝆𝑵

𝟒/𝟑
+ 𝒂𝟓

𝚲𝝆𝚲𝝆𝑵
𝟓/𝟑

𝓔𝚲 = න𝒅𝟑𝒓
ℏ𝟐

𝟐𝒎𝚲
𝝉𝚲 + 𝒂𝟏

𝚲𝝆𝚲𝝆𝑵 + 𝒂𝟐
𝚲 𝝉𝚲𝝆𝑵 + 𝝉𝑵𝝆𝚲

Rayet (1976) & (1981); Lanskoy and Yamamoto (1997);

Guleria et al. (2012), Choi, Hiyama et al. (2022) etc...

: kinetic term with eff. mass

: density-dependent term

: surface term

• Solving self-consistently the HF eq. 𝜹𝓔𝐡𝐲𝐩/𝜹𝝍𝑩,𝒊 = 𝟎, then we obtain

Λ binding energy 𝑩𝚲 = 𝓔𝐜𝐨𝐫𝐞 − 𝓔𝐡𝐲𝐩 .

• We are ignoring the deformation, the spin-orbit force, the charge symmetry 

breaking effect, and the pair correlation.
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Fitting of the Λ potential from chiral EFT
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* The value of 𝑎3
Λ is determined to reproduce the Λ binding energy of Λ

13C (11.88 MeV).

(∵ Surface terms have a large effect. even-even nuclei)

Skyrme-type

Λ potential

in nuclear matter Λ kinetic density

A. Jinno, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).

Density Dependence Momentum Dependence

GKW2 (GKW3): Gerstung, 

Kaiser, and Weise (2020).

LY-IV: Lanskoy and Yammoto

(1997).

Kohno2 (Kohno3): Kohno 

(2018)



Λ binding energies

12

• Chi3 reproduces the data, at the same

level of accuracy as LY-IV.

∵ Λ potential depth of Chi2 is too deep.

mass number 𝑨−𝟐/𝟑
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A. Jinno, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).

• Chi2 overbounds a few MeV for s-wave.

(𝑎3
Λ in LY-IV model is also tuned to reproduce Λ

13C data)



Differences between Chi3 and LY-IV

mass number 𝑨−𝟐/𝟑
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Chi3 and LY-IV differ for some hypernuclei.

1. 𝚲
𝟏𝟔𝐎 binding energy

LY-IV is preferred?

2. Kink at 𝚲
𝟑𝟐𝐒

2

1

• Why do they differ?

• Can we distinguish them from 

the current data?
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Difference in the Λ energy dominates.

𝜟𝓔𝚲, 𝐤𝐢𝐧 𝜟𝓔𝚲, 𝝆 𝜟𝓔𝚲, 𝐬𝐮𝐫𝐟

13C_Λ -1.25 2.57 -1.10

16O_Λ -1.45 3.25 -1.05

𝜟𝓔𝚲, 𝐤𝐢𝐧 𝜟𝓔𝚲, 𝝆 𝜟𝓔𝚲, 𝐬𝐮𝐫𝐟

28Si_Λ -2.63 3.59 -0.96

32S_Λ -2.46 2.90 -0.93

𝚫𝓔𝚲,𝒊 = 𝓔𝚲,𝒊 𝐋𝐘 − 𝐈𝐕 − 𝓔𝚲,𝒊(𝐂𝐡𝐢𝟑)

-0.20 MeV +0.68 MeV +0.05 MeV -0.69 MeV-0.17 MeV +0.03 MeV

Def. of the Λ 
binding energy

Def. of the Λ total energy

𝐵Λ = ℰcore − ℰhyp
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The Λ potential at 𝝆 > 𝝆𝟎 makes the difference!

𝚲
𝟏𝟔𝐎

𝚲
𝟏𝟑𝐂

𝚲
𝟐𝟖𝐒𝐢

𝚲
𝟑𝟐𝐒

Preliminary Preliminary

The nucleon density differs near the center.

The Λ potential at 𝝆 > 𝝆𝟎  mainly makes the difference in 𝑩𝚲 .

Then, can we distinguish them from the current data...? 15



Schulze and

Hiyama (2014)

We have to discuss...

• Feasibility of the calculated nucleon density

The nucleon density distribution of 12C is 

different among Skyrme-HF, cluster calc., 

and the electron scattering exp. data.

• Difference btw. 𝚲
𝟏𝟔𝐎 and 𝚲

𝟏𝟔𝐍 experimental data

→ Analysis incorporating CSB is needed.

From Chart of 

Hypernuclides

𝟏𝟑.𝟎𝟎𝟎 ± 𝟎.𝟖𝟗 MeV 𝟏𝟑.𝟕𝟔𝟎 ± 𝟎.𝟏𝟔𝟎 MeV

𝚲
𝟏𝟔𝐎 𝚲

𝟏𝟔𝐍
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https://hypernuclei.kph.uni-mainz.de/
https://hypernuclei.kph.uni-mainz.de/


Model independent analysis for 

constraining Λ potentials

17



Motivation

• We cannot distinguish the repulsive and 

attractive Λ potentials from hypernuclear data.

• To what extent can we constrain the Λ 

potential from the current hypernuclear data?

Millener, Dover, and 

Gal (1988). Guleria et al. (1988).
Choi, Hiyama et al.

(2022).

• Best fitting study to the 

hypernuclear data is done 

by many.

But estimation on the 

uncertainty of the Λ 

potential has not been done.

?

?

18



Skyrme-Hartree-Fock calculation to obtain Λ binding energy 𝑩𝚲
𝐜𝐚𝐥

How to analysis
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Determining 𝒂𝟏
𝚲, 𝒂𝟐

𝚲, 𝒂𝟒
𝚲, 𝐚𝐧𝐝 𝒂𝟓

𝚲

* The value of 𝒂𝟑
𝚲 is tuned for the Λ binding energy of Λ

13C.

(∵ Surface terms have large effect. even-even nuclei)

Comparison with the experimental data using RMSD

𝚫𝑩𝚲 =
𝟏

𝑵
∑ 𝑩𝚲

𝐞𝐱𝐩
−𝑩𝚲

𝐜𝐚𝐥 𝟐 𝚲
𝟐𝟎𝟖𝐏𝐛, 𝚲

𝟏𝟑𝟗𝐋𝐚, 𝚲
𝟖𝟗𝐘, 𝚲

𝟓𝟔𝐅𝐞, 𝚲
𝟓𝟏𝐕, 𝚲

𝟒𝟎𝐂𝐚, 𝚲
𝟑𝟐𝐒, 𝚲

𝟐𝟖𝐒𝐢, 𝚲
𝟏𝟔𝐎

in s, p, d, f, and g orbitals (𝑵 = 𝟐𝟒)

(0.5 MeV correction for (π+,K+) is included. Gogami et al. (2016))

What Λ potentials / parameters (𝑱𝚲, 𝑳𝚲 , 𝑲𝚲 , 𝒎𝚲
∗/𝒎𝚲) have small 𝚫𝑩𝚲?

𝑱𝚲 = 𝑼𝚲 𝝆 = 𝝆𝟎 , 𝑳𝚲 = 𝟑𝝆𝟎
𝝏𝑼𝚲

𝝏𝝆
𝝆 = 𝝆𝟎 , 𝑲𝚲 = 𝟗𝝆𝟎

𝟐 𝝏
𝟐𝑼𝚲

𝝏𝝆𝟐
𝝆 = 𝝆𝟎 ,𝒎𝚲

∗ /𝒎𝚲(𝝆 = 𝝆𝟎)

cf. symmetry energy



Accepted Λ potentials
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𝝆/𝝆𝟎

𝑼
𝚲
𝐌
𝐞
𝐕

A. Jinno, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).

Chi3: Fitted to Chiral EFT results including ΛNN+ΣNN, Gerstung, Kaiser, and Weise (2020).

LY-IV: Skyrme-HF, Lanskoy and Yamamoto (1998).

HPΛ2: Skyrme-HF, Guleria et al. (2012).

• 𝝆 ≤ 𝝆𝟎: constrained

• 𝝆 > 𝝆𝟎: Too attractive Λ 

potentials cannot 

reproduce the data.

gray lines: RMSD 𝚫𝑩𝚲 ≥ 𝟎.𝟕𝟓 𝐌𝐞𝐕

red lines: RMSD 𝚫𝑩𝚲 < 𝟎. 𝟕𝟓 𝐌𝐞𝐕

not allowed



1st derivative 𝑳𝚲 and 2nd derivative 𝑲𝚲
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Positive correlation 

btw. 𝑳𝚲 and 𝑲𝚲

𝐽Λ and 𝑚Λ
∗  are chosen 

for minimizing Δ𝐵Λ by 

golden-section search.
Contour line: 𝜟𝑩𝜦

𝝆𝟎𝝆𝟎shallower deeper

𝑲
𝚲
𝐌
𝐞
𝐕

𝝆𝟎

𝝆𝟎

deeper

shallower

If 𝑱𝚲 = 𝑼𝚲(𝝆𝟎) is 

well constrained 

from future data…
𝑳𝚲 𝐌𝐞𝐕

A. Jinno, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).

𝜌 ≤ 𝜌0: constrained



𝑈Λ 𝜌0 = 𝐽Λ is large.

𝑈Λ at 𝜌 ≲ 𝜌0 should be deeper,

or 𝐿Λ should be larger.

Positive correlation between 𝐿Λ and 𝐾Λ

𝑳𝚲 and 𝑲𝚲 at 𝑱𝚲 = −𝟐𝟗 MeV

22

𝑱𝚲 = −𝟐𝟗𝐌𝐞𝐕 (shallow)

𝑲
𝚲
𝐌
𝐞
𝐕

𝑳𝚲 𝐌𝐞𝐕

Λ potentials with 𝑲𝚲 > 𝟑𝟓𝟎𝐌𝐞𝐕, 

or repulsive potentials at high 

densities are favored.

𝝆𝟎
deeper

A. Jinno, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).



𝑳𝚲 and 𝑲𝚲 for three different 𝑱𝚲

large 𝑲𝚲 ≳ 𝟑𝟓𝟎𝐌𝐞𝐕

23A. Jinno, K. Murase, Y. Nara, and A. Ohnishi, PRC 108, 065803 (2023).

𝑱𝚲 = −𝟐𝟗 𝐌𝐞𝐕 𝑱𝚲 = −𝟑𝟎 𝐌𝐞𝐕 𝑱𝚲 = −𝟑𝟏 𝐌𝐞𝐕

𝑲
𝚲
𝐌
𝐞
𝐕

𝑳𝚲 𝐌𝐞𝐕 𝑳𝚲 𝐌𝐞𝐕 𝑳𝚲 𝐌𝐞𝐕

small 𝑲𝚲 ≲ 𝟓𝟓𝟎𝐌𝐞𝐕(wide range of 𝐾𝛬)

The range of 𝑲𝚲, or the degree of the repulsion at 𝝆 > 𝝆𝟎, can be 

constrained by the precise measurements of heavier hypernuclei.



Summary

Firstly, we have verified whether the repulsive Λ potential  based on chiral EFT 

derived by Gerstung et al. can explain the Λ hypernuclear data.

• The Λ potential based on the chiral two-body force overbounds for 1s orbital.

• Difference in 𝑼𝚲 𝝆 > 𝝆𝟎  may appear in 𝑩𝚲 𝚲
𝟏𝟔𝐎 －𝑩𝚲 𝚲

𝟏𝟑𝐂 and 𝑩𝚲 𝚲
𝟑𝟐𝐒 －𝑩𝚲 𝚲

𝟐𝟖𝐒𝐢 .

Next, we examine to what extent the Λ potential is constrained now.

• Too attractive Λ potentials at 𝝆 > 𝝆𝟎 cannot explain the data.

• The repulsion at 𝝆 > 𝝆𝟎 could be well constrained if 𝑱𝚲 = 𝑼𝚲 𝝆𝟎  is well 

determined from future high-resolution heavy hypernuclear data.

Future work

• Including the charge-symmetry breaking effect to discuss 𝚲
𝟏𝟔𝐎 and 𝚲

𝟏𝟔𝐍

• Comparing the model dependence on the nucleon density (e.g. Gogny-HF)
24



Backup



Used binding energy data



From where come the differences?

𝚲
𝟏𝟔𝐎

𝚲
𝟐𝟖𝐒𝐢

𝚲
𝟏𝟑𝐂

𝚲
𝟑𝟐𝐒

𝚲
𝟒𝟎𝐂𝐚

Def. of the binding energy

𝚫𝑩𝚲

𝚫𝓔𝚲
Λ total energy term dominates 

the difference.

Preliminary
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